Compositional Real-Time Scheduling Framework

Insik Shin

Outline

- Compositional scheduling framework
 - Scheduling component model
 - Periodic resource model
 - Schedulability analysis
 - Utilization bound
 - Component timing abstraction

Traditional Scheduling Framework

Single real-time task in a single application

Hierarchical Scheduling Framework (HFS)

 Multiple real-time tasks with a scheduler in a single application, forming a hierarchy of scheduling

Compositional Scheduling Framework

VM Scheduler's Viewpoint

Problems & Approach I

- Resource supply modeling
 - Characterize temporal property of resource allocations
 - we propose a periodic resource model
 - Analyze schedulability with a new resource model

OS Scheduler's Viewpoint

Problems & Approach II

- Real-time demand composition
 - Combine multiple real-time requirements into a single real-time requirement

Compositional Real-time Scheduling Framework

Goal

- to support compositionality for timeliness aspect
- to achieve system-level schedulability analysis using the results of component-level schedulability analysis

Scheduling component modeling

Scheduling Component Modeling

- Scheduling
 - assigns resources to workloads by scheduling algorithms
- Scheduling Component Model: C(W,R,A)
 - W: workload model
 - R: resource model
 - A: scheduling algorithm

Resource Modeling

· Dedicated resource: always available at full capacity

- Shared resource: not a dedicated resource
 - Time-sharing: available at some times

- Non-time-sharing: available at fractional capacity

October 3, 2005

Resource Modeling

- Time-sharing resources
 - Bounded-delay resource model [Mok et al., '01] characterizes a time-sharing resource w.r.t. a non-time-sharing resource

- Periodic resource model $\Gamma(\Pi,\Theta)$ [Shin & Lee, RTSS '03] characterizes periodic resource allocations

Schedulability Analysis

- A workload set is schedulable under a scheduling algorithm with available resources if its real-time requirements are satisfiable
- · Schedulability analysis determines whether

Resource Demand Bound

- Resource demand bound during an interval of length t
 - dbf(W,A,t) computes the maximum possible resource demand that W requires under algorithm A during a time interval of length t
- Periodic task model T(p,e) [Liu & Layland, '73]

Demand Bound Function - EDF

- For a periodic workload set W = {Ti(pi,ei)},
 - dbf (W,A,t) for EDF algorithm [Baruah et al.,'90]

dbf (W, EDF, t) =
$$\sum_{T_i \in W} \left[\frac{t}{p_i} \right] \cdot e_i$$

Resource Supply Bound

- Resource supply during an interval of length t
 - sbf_R(t): the minimum possible resource supply by resource R over all intervals of length t
- For a single periodic resource model, i.e., Γ(3,2)
 - we can identify the worst-case resource allocation

Resource Supply Bound

•
$$sbf_R(i) = 1$$

Resource Supply Bound

- · Resource supply during an interval of length t
 - sbf $_R(t)$: the minimum possible resource supply by resource R over all intervals of length t
- For a single periodic resource model, i.e., Γ(3,2)
 - we can identify the worst-case resource allocation

Supply Bound Function

- Resource supply during an interval of length t
 - $sbf_{\Gamma}(t)$: the minimum possible resource supply by resource R over all intervals of length t
- For a single periodic resource model $\Gamma(\Pi,\Theta)$

sbf
$$\Gamma(t) = \begin{cases} t - (k+1)(\Pi - \Theta) & \text{if } t \in [(k+1)\Pi - 2\Theta, (k+1)\Pi - \Theta] \\ (k-1)\Theta & \text{otherwise} \end{cases}$$

Schedulability Conditions (EDF)

 A workload set W is schedulable over a resource model R under EDF if and only if for all interval i of length t

- sbf_R(i): the minimum resource supply by resource R during an interval i
- dbf_w(i): the resource demand of workload W during an interval i

Schedulability Condition - EDF

• A periodic workload set W is schedulable under EDF over a periodic resource model $\Gamma(\Pi,\Theta)$ if and only if

$$\forall t > 0$$
 $dbf(W, EDF, t) \leq sbf_{\Gamma}(t)$

Schedulability Condition - RM

• A periodic workload set W is schedulable under EDF over a periodic resource model $\Gamma(\Pi,\Theta)$ if and only if

$$\forall t > 0 \ \forall T_i \in W \ dbf(W, RM, t, i) \leq sbf_{\Gamma}(t)$$

- For a periodic workload set $W = \{T_i(p_i,e_i)\},\$
 - dbf (W,A,t,i) for RM algorithm [Lehoczky et al., '89]

dbf (W, RM, t, i) =
$$e_i + \sum_{T_k \in HP(T_i)} \left[\frac{t}{p_k} \right] \cdot e_k$$

Utilization Bounds

- For a periodic workload T(p,e), utilization $U_T = e/p$
- \cdot For a periodic workload set W, utilization U_W is $\overline{T_{i}\in W}$ p_i
- Utilization bound (UB) of a resource model R
 - given a scheduling algorithm A and a resource model R, UB_{RA} is a number s. t. a workload set W is schedulable if

$$U_W \le UB_{R,A}$$

Utilization Bounds

Example:

- Consider a periodic resource $\Gamma(\Pi,\Theta)$, where Π = 10 and Θ = 4, and suppose UB $_{\Gamma$, EDF</sub> = 0.4.
- Then, a set of periodic task W is schedulable if

$$U_{\rm W} \leq 0.4$$

- $W = \{T1(20,3), T2(50,5)\} s.t.$ $U_w = 0.25$, is schedulable

October 3, 2005

CIS 700

Utilization Bound - EDF

• For a scheduling component $C(W, \Gamma(\Pi, \Theta), A)$, where A = EDF, its utilization bound is

UB<sub>\(\text{\Gamma}\), EDF(Pmin) =
$$\frac{k \times U_{\\Gamma}}{k + 2(1 - U_{\\Gamma})}$$</sub>

- P_{min} is the minimum task period (deadline) in W.
- k represents the relationship between resource period Π and the minimum task period P_{min} , $k \approx P_{min}/\Pi$

- Observation for a component $C(W, \Gamma(\Pi, \Theta), EDF)$
 - C is schedulable iff dbf (W,EDF,t) ≤ sbf_r(t)

- Observation for a component $C(W, \Gamma(\Pi, \Theta), EDF)$
 - C is schedulable iff dbf (W,EDF,t) ≤ sbf, (t)
 - dbf (W,EDF,t) $\leq U_W \cdot t$

- Observation for a component $C(W, \Gamma(\Pi, \Theta), EDF)$
 - C is schedulable iff dbf (W,EDF,t) ≤ sbf_r(t)
 - dbf (W,EDF,t) $\leq U_{W} \cdot t$
 - U_Γ(t-2(Π-Θ)) ≤ sbf_Γ(†)

- Observation for a component $C(W, \Gamma(\Pi, \Theta), EDF)$
 - C is schedulable iff dbf (W,EDF,t) ≤ sbf, (t)
 - dbf (W,EDF,t) $\leq U_{W} \cdot t$
 - U_Γ(t-2(Π-Θ)) ≤ sbf_Γ(†)
 - Therefore, C is schedulable if $U_W \cdot t \leq U_{\Gamma}(t-2(\Pi-\Theta))$

- For a component $C(W, \Gamma(\Pi, \Theta), EDF)$
 - for all $t > P_{\min}$, if $U_W \cdot t \le U_{\Gamma}(t-2(\Pi-\Theta))$ then C is schedulable.

$$U_{W} \le U_{\Gamma}(t-2(\Pi-\Theta))/t$$

Utilization Bound - RM

- For a scheduling component $C(W, \Gamma(\Pi, \Theta), A)$, where A = RM, its utilization bound is
 - [Saewong, Rajkumar, Lehoczky, Klein, '02]

UBr, RM(n) =
$$n \left(\frac{3 - U_{\Gamma}}{3 - 2 \times U_{\Gamma}} \right)^{\frac{1}{n}} - 1$$

- We generalize this earlier result, where $k \approx P_{min} / \Pi$.

Component Abstraction

- Component timing abstraction
 - To specify the collective real-time demands of a component as a timing interface

Component Abstraction

- Component timing abstraction
 - To specify the collective real-time demands of a component as a timing interface

Component Abstraction (Example)

• In this example, a solution space of a periodic resource $\Gamma(\Pi,\Theta)$ that makes $C(W,\Gamma(\Pi,\Theta),EDF)$ schedulable is

(a) Solution Space under EDF

Component Abstraction (Example)

- An approach to pick one solution out of the solution space
 - Given a range of Π , we can pick $\Gamma(\Pi,\Theta)$ such that U_{Γ} is minimized. (for example, $28 \leq \Pi \leq 46$)

(a) Solution Space under EDF

Component Timing Abstraction

- Component timing abstraction
 - To abstract the collective real-time demands of a component as a timing interface

Compositional Real-Time Guarantees

Compositional Real-Time Guarantees

Abstraction Overhead

• For a scheduling component $C(W, \Gamma(\Pi, \Theta), A)$, its abstraction overhead (O_{Γ}) is $\frac{U_{\Gamma}}{U_{W}}$ -1

Abstraction Overhead Bound

• For a scheduling component $C(W, \Gamma(\Pi, \Theta), A)$, its abstraction overhead (O_{Γ}) is

- A = EDF
$$O_{\Gamma, EDF} \le \frac{2 \times (1 - U_W)}{k + 2 \times U_W}$$

-
$$A = RM$$
 $O_{\Gamma, RM} \le \frac{1}{\log \left(\frac{2k + 2(1 - U_W)}{k + 2(1 - U_W)}\right)} - 1$

Abstraction Overhead

Simulation Results

- with periodic workloads and periodic resource under EDF/RM
- the number of tasks n: 2, 4, 8, 16, 32, 64
- the workload utilization U(W): 0.2~0.7
- the resource period: represented by k

Abstraction Overhead

• k= 2, U(W) = 0.4

Summary

- Compositional real-time scheduling framework
 - with the periodic model [Shin & Lee, RTSS '03]
 - 1. resource modeling
 - utilization bounds (EDF/RM)
 - 2. schedulability analysis
 - exact schedulability conditions (EDF/RM)
 - 3. component timing abstraction and composition
 - overhead evaluation
 - upper-bounds and simulation results

Future Work

- Extending our framework for handling
 - Soft real-time workload models
 - non-periodic workload models
 - task dependency

References

- Insik Shin & Insup Lee,
 "Periodic Resource Model for Compositional Real-Time Gaurantees", the Best Paper of RTSS 2003.
- Insik Shin & Insup Lee,
 "Compositional Real-time Scheduling Framework",
 RTSS 2004.

