Real-Time Scheduling

CIS700

Insup Lee

Outline

- Real-time systems
- Real-time scheduling algorithms
 - Fixed-priority algorithm (RM)
 - Dynamic-priority algorithm (EDF)

Real-Time Systems

- Definition
 - Systems whose correctness depends on their temporal aspects as well as their functional aspects
- Performance measure
 - Timeliness on timing constraints (deadlines)
 - Speed/average case performance are less significant.
- Key property
 - Predictability on timing constraints

Real-Time System Example

- Digital control systems
 - periodically performs the following job:

senses the system status and actuates the system according to its current status

Real-Time System Example

- Multimedia applications
 - periodically performs the following job:

reads, decompresses, and displays video and audio streams

CIS 700

Fundamental Real-Time Issue

- To specify the timing constraints of real-time systems
- To achieve predictability on satisfying their timing constraints, possibly, with the existence of other real-time systems

Scheduling Framework Example

Real-Time Workload

- Job (unit of work)
 - a computation, a file read, a message transmission, etc
- Attributes
 - Resources required to make progress
 - Timing parameters

Real-Time Task

- Task : a sequence of similar jobs
 - Periodic task (p,e)
 - Its jobs repeat regularly
 - Period p = inter-release time (0 < p)
 - Execution time e = maximum execution time (0 < e < p)
 - Utilization U = e/p

Deadlines: Hard vs. Soft

- Hard deadline
 - Disastrous or very serious consequences may occur if the deadline is missed
 - Validation is essential : can all the deadlines be met, even under worst-case scenario?
 - Deterministic guarantees
- Soft deadline
 - Ideally, the deadline should be met for maximum performance. The performance degrades in case of deadline misses.
 - Best effort approaches / statistical guarantees

Schedulability

 Property indicating whether a real-time system (a set of real-time tasks) can meet their deadlines

Real-Time Scheduling

- Determines the order of real-time task executions
- Static-priority scheduling
- Dynamic-priority scheduling

RM (Rate Monotonic)

- Optimal static-priority scheduling
- It assigns priority according to period
- A task with a shorter period has a higher priority
- Executes a job with the shortest period

RM (Rate Monotonic)

• Executes a job with the shortest period

RM (Rate Monotonic)

• Executes a job with the shortest period

Response Time

- Response time
 - Duration from released time to finish time

Response Time

- Response time
 - Duration from released time to finish time

Response Time

Response Time (r) [Audsley et al., 1993]

$$r_i = e_i + \sum_{T_k \in HP(T_i)} \left[\frac{r_i}{p_k} \right] \cdot e_k$$

• HP(T_i): a set of higher-priority tasks than T_i

RM - Schedulability Analysis

• Real-time system is schedulable under RM if and only if $r_i \leq p_i$ for all task $T_i(p_i,e_i)$

Joseph & Pandya, "Finding response times in a real-time system", The Computer Journal, 1986.

RM – Utilization Bound

• Real-time system is schedulable under RM if $\sum U_i \le n (2^{1/n}-1)$

Liu & Layland, "Scheduling algorithms for multi-programming in a hard-real-time environment", Journal of ACM, 1973.

RM – Utilization Bound

- Real-time system is schedulable under RM if $\sum U_i \le n \ (2^{1/n}-1)$
- Example: $T_1(4,1)$, $T_2(5,1)$, $T_3(10,1)$,

3

$$\sum U_i = 1/4 + 1/5 + 1/10$$

= 0.55
 $(2^{1/3}-1) \approx 0.78$

Thus, $\{T_1, T_2, T_3\}$ is schedulable under RM.

RM – Utilization Bound

• Real-time system is schedulable under RM if $\sum U_i \le n (2^{1/n}-1)$

RM Utilization Bounds

- Optimal dynamic priority scheduling
- A task with a shorter deadline has a higher priority
- Executes a job with the earliest deadline

• Executes a job with the earliest deadline

• Executes a job with the earliest deadline

• Executes a job with the earliest deadline

- Optimal scheduling algorithm
 - if there is a schedule for a set of real-time tasks,
 EDF can schedule it.

October 3, 2005

Processor Demand Bound

- Demand Bound Function : *dbf(t)*
 - the maximum processor demand by workload over any interval of length t

EDF - Schedulability Analysis

• Real-time system is schedulable under EDF if and only if $dbf(t) \leq t$ for all interval t

Baruah et al.

"Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor", Journal of Real-Time Systems, 1990.

- Demand Bound Function : dbf(t)
 - the maximum processor demand by workload over any interval of length t

EDF – Utilization Bound

Real-time system is schedulable under EDF if and only if

$\sum U_i \le 1$

Liu & Layland,

"Scheduling algorithms for multi-programming in a hard-real-time environment", Journal of ACM, 1973.

EDF – Overload Conditions

• Domino effect during overload conditions

 \cap

October 3, 2005

- Example: $T_1(4,3), T_2(5,3), T_3(6,3), T_4(7,3)$

CIS 700

- Rate Monotonic
 - Simpler implementation, even in systems without explicit support for timing constraints (periods, deadlines)
 - Predictability for the highest priority tasks
- EDF
 - Full processor utilization
 - Misbehavior during overload conditions
- For more details: Buttazzo, "Rate monotonic vs. EDF: Judgement Day", EMSOFT 2003.