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Abstract. Context-sensitivity is an important expected capability in applications in ubiquitous computing
(ubicomp) environments. These applications need to use different contextual information from the user, host
device, on board sensors, network, and the ambient environments to systematically adapt their actions. In
addition, some context-sensitive applications may use specific contextual conditions to trigger impromptu and
possibly short-lived interactions with applications in other devices. This property, referred to as context-sensitive
or context-aware communications, allows applications to form short-range mobile ad hoc networks consisting of
mobile and stationary devices, sensors, and other computing resources. Real-time applications, especially those
having reactive behavior, running on embedded devices and requiring context-sensitive communications
support, pose new challenges related to systematic representation of specific contexts, associations of contexts
with real-time actions, timely context data collection and propagation, and transparent context-sensitive
connection establishment. An object-based middleware can be effective to meet these challenges if such a
middleware can provide a well-defined development framework as well as lightweight runtime services. In this
paper, an adaptive and object-based middleware, called reconfigurable context-sensitive middleware (RCSM) is
presented to facilitate context-sensitive communications in ubicomp environments. To facilitates context-
sensitive communications, RCSM provides a context-aware interface definition language for specifying context-
sensitive interfaces of real-time objects, an object container framework for generating interfaces-specific
context-analyzers, and a context-sensitive object request broker for context-sensitive object discovery and
impromptu connection management. RCSM is adaptive in the sense that depending on the context-sensitive
behavior of the applications, it adapts its object discovery and connection management mechanisms.
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1. Introduction

Ubiquitous computing (ubicomp) environments (Weiser, 1991, 1993) focus on integrating
computers with the physical environments to make computing and communication
essentially transparent. Devices that operate in these environments are usually embedded
and use low-power wireless communication means, form numerous webs of mobile ad
hoc wireless networks or MANET (IETF, 2001) to exchange information, and react in a
transparent fashion. In ubicomp environments, the topologies of the networks are
dynamic due to arbitrary node mobility, and the networks usually contain no dedicated
network connectivity devices. Applications in ubiquitous environments should address



30 YAU AND KARIM

the following characteristics (Abowd and Mynatt, 2000; Oxygen, 2000; Yau and Karim,
2001a):

e Context sensitivity: Applications use various data about the surrounding environment
and the available resources to adapt their behavior and interactions.

e Context-sensitive interactions: Applications software in different devices exchange
data with each other through communication channels that are instantaneously
established, short lived, and terminated due to changing contexts and node mobility.

o [ntelligent human computer interaction: Applications software provides richer and
natural interfaces to support common forms of human expressions, such as speech,
hand gestures, etc.

While the characteristics related to human computer interaction are essentially
application-specific, characteristics related to the other two kinds (i.e., 1 and 2) specify
the need for system support for both development and runtime services for applications in
ubicomp environments. In case of context-sensitivity, it is necessary to provide
customized capabilities for applications, especially for real-time applications, where
detecting and analyzing different context must be accomplished in a timely fashion. For
context-sensitive communications, the runtime services of a device must be able to
detect, establish, and terminate communication channels autonomously as new devices
come in contact or existing devices move away. These requirements imply that the
underlying system services must themselves be context-sensitive, efficient, and address
the vast heterogeneity of devices in ubicomp environments. In this respect, middleware-
oriented approaches can be very effective if they can reduce the effort required to develop
ubicomp software and provide appropriate runtime services for applications with the
above-mentioned characteristics, in addition to providing the typical middleware
services, such as interoperability, transparency, object-orientation, etc. (OMG, 2001)
However, current middleware solutions are not adequate to support context-sensitivity for
real-time software in ubicomp environments because they are designed based on the
assumption that the underlying network is fixed and application software are not context-
sensitive. In addition, these middleware implementations mainly use client—server
interaction semantics, which are not the only type of interaction in ubicomp
environments. Moreover, most currently available middleware for mobile networks, as
we will summarize in a later section, do not make use of the context, which is often one
of the most important properties of applications in ubicomp environments (Abowd and
Mynatt, 2000).

In this paper, we will present an adaptive and object-based middleware, called
reconfigurable context-sensitive middleware (RCSM) to facilitate context-sensitive
communications in ubicomp environments. To achieve this, RCSM provides a context-
aware interface definition language for specifying context-sensitive interfaces of real-
time objects, an object container framework for generating interfaces-specific context-
analyzers, and a context-sensitive object request broker for context-sensitive service
discovery and impromptu connection management. RCSM is adaptive in the sense that
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depending on the context-sensitive behavior of the applications, it adapts its object
discovery and connection management mechanisms. The architecture of RCSM consists
of both application-specific and application-independent components. Application-
specific components are implemented in software while the application-independent
components can be realized in software or be implemented in reconfigurable hardware for
providing better flexibility and performance.

2. Background and Related Work
2.1. Background
2.1.1. Ubicomp Environments: Ubicomp Environments

The concept of ubicomp (Weiser, 1991, 1993) focuses on integrating computers with the
physical environment, making computing and communication essentially transparent to
the users. An interesting perspective is found in (DARPA, 1999), which differentiates
ubicomp environment from current computing infrastructures as follows: Current
computing infrastructure is a ‘‘one size fits all’’ model, while ubicomp makes the user the
center of computing, thereby dynamically adapting the computing model to individual
users’ needs and actions. Another goal of ubicomp is to make the computing experience
natural and everywhere to such a degree that the enabling technologies become
essentially invisible. Popular terms associated with ubicomp include pervasive computing
(IBM, 2001), invisible computing (Aura, 2000) etc. A ubicomp environment can be
thought of as a collection of connected computing nodes, such as embedded, wearable,
handheld computers, PCs, and workstations, that transparently cooperate with each other
to make computing and communications available to the user virtually everywhere with a
user-centric model. Construction of this type of environment now seems possible due to
rapid progress in inexpensive, short-range, and low-power wireless communication
hardware and emerging low-power networking standards, such as Bluetooth, IrDA, and
IEEE, 802.11 (Bluetooth, 1999; IEEE, 1997; IrDA, 2001).

2.1.2. Mobile Ad Hoc Networks (MANET)

A MANET (IETF, 2001) is a collection of connected autonomous mobile nodes, such as
wearables, handhelds, and other embedded devices with the following characteristics:

e the nodes are free to move arbitrarily (e.g., a wearable device moves with a living
carrier);

e usually have bandwidth and energy constraints; and
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e the topologies in MANETS are dynamic, and MANETS usually contain no dedicated
network connectivity devices, such as routers or a Global System for Mobile
Communications (GSM) base station, to assist the nodes in data communication.

These characteristics distinguish MANETs from other mobile networks with fixed
routing infrastructure, often known as infrastructure-based mobile networks, such as
personal communication systems (PCS) and GSM cellular technology (Rappaport, 1995).
Applications of MANETS include mobile command and control centers, public-meeting
places, and especially the cases where a fixed network infrastructure is neither available
nor feasible, and where rapid communication setup and termination are necessary. Based
on physical environmental conditions and other stimulus, nodes in this environment form
numerous webs of ad hoc short-range wireless networks to exchange information, and
react in a transparent fashion. Devices operating in MANETs have memory and
processing constraints and usually have close coupling with specific hardware
components. Most of the research efforts in MANET have been in devising routing
techniques (Broch et al., 1998; Gupta, 1999; Lee, 1999, 2000; Royer and Toh, 1999;
Vaidya, 2001). On the other hand, evolving standards and effort on low-power
networking, such as Bluetooth (Bluetooth, 1999), IrDA (IrDA, 2001), HomeRF
(HomeRF, 2001), IEEE 802.11 (IEEE, 1997), IEEE 802.15 (IEEE, 2001), Pen (Bennett
et al., 1997), PicoRadio (Rabaey et al., 2000), are now enabling significant advantage to
construct and experiment with various types of ubicomp applications. The standards
usually vary in terms of their support for voice and data, the layers of protocols
supported, and most importantly the power and cost of the radio hardware. For example,
the goal of PicoRadio (Rabaey et al., 2000) is to devise a very cheap radio technology (50
cents per device as oppose to $5-10 for a Bluetooth device) and ultra-low power
consumption (100 uW for PicoRadio as oppose to 100 uW for Bluetooth) by trading-off
the transmission range (2 m in contrast with Bluetooth’s 10 ). On the other hand, IEEE
802.11b, which is by far the most widely used wireless network technology, provides a
typical range of up to 100-200 m with a data rate of 11 Mbps. Another standard, IEEE
802.11a, provides 54 Mbps in a higher frequency. However, the high performance causes
IEEE 802.11-based products to cost more and to consume more power.

2.1.3. Middleware

In general, middleware is a collection of cooperating components that strive to achieve
the following goals (Bernstein, 1996; Schreiber, 1995):

e To increase the degree of interoperability among software packages, which are
distributed and are developed using different languages, operating systems, and
hardware platforms.

e To facilitate the interactions among distributed applications by elevating the
programming abstraction and forcing a clear separation between interface and
implementation.
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2.14. Context, Context-Sensitivity, and Context-Sensitive Applications

DEFINITION 1 The context with respect to a particular device is any detectable and
relevant attribute related to the device, and its interaction with other devices for the
application software of the device to take different actions adaptively in different contexts
(Yau and Karim, 2001a).

For example, a device’s current geographical location, the history of a device’s
interactions with other devices, and its available battery power are some of its contexts,
assuming that these attributes are of interest to some application software installed in the
same device. A more general definition of context can be found in (Dey, 2001), where
context is any information that can be used to characterize the situation of an entity. It is
important to note that the concept of context is the building block for representing
situation, which allows ubiquitous applications to act in a more intelligent manner by
capturing the patterns in context and past actions over a period of time.

DEFINITION 2 The context-sensitivity of an entity is the ability of the entity to detect its
current context and changes in any contextual data, and respond in a well-specified
fashion.

DEFINITION 3 Context-sensitive applications are applications that are context-sensitive
and are able to adaptively take different actions in different contexts.

Examples of an entity in Definition 2 are application objects, middleware implementa-
tion, and devices. Examples of context-sensitive applications can be found in (Chen,
2001; Marmasse and Schmandt, 2000; Pascoe, 1998). Context-sensitive real-time
software can be characterized as a particular kind of context-sensitive software, which
detects and analyzes different contexts to manage the invocation and scheduling of its
time critical tasks.

2.2. Related Work

Although little work has been done on middleware for ubicomp environments, it is
necessary to know the existing work on middleware for both enterprise and mobile
networks due to their common objectives for facilitating the development and runtime
operations of various applications. The existing middleware for enterprise and mobile
networks can be divided into commercially available middleware implementations with
corresponding industry standards, and openly available specialized laboratory-version
middleware. For the enterprise networks, available middleware implementations are
mostly based on industry standards and their variations, such as CORBA (OMG, 2000),
COM (COM, 1995), Real-time CORBA (OMG, 2001), TINA-C (TINA-C, 1998). In
addition, openly available laboratory-version middleware, such as TAO (Gokhale and
Schmidt, 1999; Loyall, 1999) and dynamicTAO (Kon et al., 2000), have been developed
for real-time and resource-constrained systems. In the remainder of this section, we will
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summarize the existing middleware for mobile networks due to the dependence of
ubicomp applications on this type of networks. This type of middleware is currently
available as laboratory-versions, not as commercial products.

2.2.1. Middleware for Mobile Networks

The Mobiware (Campbell, 1998) project at Columbia University provides the facilities
for managing an open, active, and adaptive mobile network. Mobiware accomplishes its
goal by taking advantage of a CORBA-based architecture (OMG, 2001) and using
different adaptive algorithms as Java objects, which can be injected dynamically into
mobile devices, access points, and mobile-capable network switches or routers. Thus, it
enables the addition of value-added quality of service (QoS). Applications of Mobiware
include QoS-controlled handoff management and flow bundling during the mobility of
different devices. Mobiware can be considered as a solution for developing applications
that manage the infrastructure of a mobile network, as opposed to supporting the end user
applications.

The Architecture for Location Independent CORBA Environments (ALICE) (Haahr et
al., 1999) project at Trinity College modifies the CORBA architecture, by introducing a
mobility layer between transport layer and the CORBA IIOP layer to provide support for
both mobile clients and mobile servers. The limitation of ALICE, however, is its
assumptions on the fixed mobile gateways and client—server semantics that make it fairly
restricted in applications for mobile ad hoc networks.

The LIME middleware (Murphy et al., 2001) at Washington University adopts a
coordination perspective based on shared tuple space model. The programming model
offered by LIME views mobility as transparent changes in the content of the tuple space.
This model easily supports interactions among mobile devices in mobile ad hoc networks
since the tuple-space model supports location transparency and disconnected operations.
In addition, LIME supports context-sensitivity in a limited sense at the application level,
but only treats contexts based on the data stored in the tuple spaces. Therefore, it ignores
the state of the device and the surrounding environment as parts of the overall contextual
condition.

The project of XMIDDLE (Mascolo et al., 2002) at University College, London
develops a middleware that is specifically focused on sharing and replication of
documents in mobile ad hoc networks. Although XMIDDLE relies on a coordination
model, it improves the mechanism by taking advantage of hierarchical structure of
extensible markup language (XML) (W3C, 2001) documents. The middleware further
supports versioning and merging of documents in application-specific fashion.

The QoS-Aware Middleware (Nahrstedt et al., 2001) and iMAQ (Chen et al., 2002)
projects at University of Illinois Urbana-Champaign provide cross-layer middleware
frameworks to support QoS in mobile ad hoc networks. The services range from QoS
specification, translation, and runtime adaptation. The adaptation policies are based on a
fuzzy control model. The cross-layer architecture spans across route computation,
forwarding, group communication, data accessibility service, and location management.
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TSPACES (TSAPCES, 1998) by IBM Research focuses on a Java-based communica-
tion middleware based on the concept of tuple-spaces. It provides asynchronous
messaging-based communication facilities without any explicit support for context-
awareness. BlueDrekar (BlueDrekar, 2000), also by IBM Research, is a middleware to
provide a protocol layer and a set of APIs to enable communication between two
Bluetooth-equipped devices.

Overall, existing middleware technology has the following difficulties to support real-
time application software in ubicomp environments:

e Currently available industry standard middleware implementations are designed
based on the assumption that the underlying network is stable. In addition, these
middleware implementations mainly use client—server interaction semantics, which
are not usually suitable in ubicomp environments.

e Most middleware for mobile networks do not make use of the different context, which
is often the most important aspect in ubicomp environment. Moreover, no
mechanisms yet exist to provide a direction correlation between context and real-
time operations of application objects.

e Many existing laboratory versions of middleware have their own unique architectures
and interaction semantics. This heterogeneity in their architectures may defeat the
main purpose of actually using them for real-world applications, since it becomes
difficult to achieve interoperability among different middleware architectures.

e None of the existing middleware implementations directly address the major aspects
of ubicomp environments, such as context-sensitivity, and context-sensitive
communication.

3. Expected Capabilities of an Adaptive Middleware for Ubicomp Environments

Based on discussions in the previous section, we can summarize what characteristics an
adaptive middleware to facilitate context-sensitive communications in ubicomp
environments must or should have:

(S1) Uniform development support: Almost all the commonly used programming
languages that exist today do not have any basic support for expressing context-awareness.
Even if context-aware languages will exist in the future, the support for expressing context-
awareness on a conceptual level most likely to be different across different languages. As
such, a middleware needs to provide a uniform and common way to express context-
awareness of application software without restricting the application software developers
to use a specific programming language, operating system, or programming environment.

(S2) Application-specific context acquisition, analysis, and detection: A middleware
should provide a uniform and platform independent interface for various applications to
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express their needs for different contexts without knowing how the context data is
actually acquired.

(S3) Application- and device-independent context acquisition and propagation:
Most context data are usually acquired from low-level sources, such as sensors, networks,
and device hardware. To facilitate reusability of application software, a middleware should
provide a facility for acquiring raw context data from various sources, package these raw
data into structured information, and propagate this information to different applications
according to their context-sensitivity properties. This will avoid the need for writing
application- or device-specific code for performing these low-level operations.

(S4) Context-triggered action: Context-sensitive application software programs usually
need to decide what actions to take based on the current context. The action may involve
adapting to the new environment, notifying the user, communicating with another device
to exchange information, or any other task. A middleware should provide the facilities for
application software programs to define such context-triggered actions so that these
actions are transparently invoked whenever the corresponding contexts are valid.

(S5) Transparent support for spontaneous and ad hoc communication: A middleware
should be able to abstract the details of ad hoc communications from the applications to
facilitate interoperability independent of network type. The topologies in mobile ad hoc
networks change dynamically and devices may not know each other a priori. On the other
hand, a device in a mobile ad hoc network may connect to a previously known computer
(e.g., a file or a web server) in a wired network. Thus, a middleware should facilitate a
transparent communication model so that application software can flexibly interact with
each other in different network environments. Also, this middleware should proactively
discover new devices and its functionality, establish new communication links, and notify
the application layer whenever a ‘‘compatible’” device is found.

(S1) to (S5) correspond to the capabilities required in an adaptive middleware for
ubicomp environments. In addition, a middleware for ubicomp environment should also
have some other desirable capabilities, such as reconfigurability, lightweight design, and
low power consumption, to improve its overall usability for energy-constrained devices.
In addition, in order to make the middleware expandable in different application domains,
it is desirable to have a reusable framework in the middleware to facilitate the generation
of higher-level domain-specific services, such as group communication and security.

4. Our Approach to Developing the Adaptive Middleware

In order to have an adaptive middleware with the afore-mentioned characteristics, we
have developed the RCSM (Yau, 2001a; Yau, 2002) to facilitate the development and
runtime operations application software that requires context-awareness and/or
spontaneous and ad hoc communications. In addition, we support these two
characteristics in an integrated way to provide context-sensitive communications to the
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Context-sensitivity

Context-sensitive
ad hoc
communication

Ad hoc communication

Figure 1. Application software with properties 1-3 facilitated by our RCSM.

application software. This concept is shown in Figure 1, where context-sensitive
communications represent the intersection of context-sensitivity and ad hoc commu-
nication.

We summarize the major capabilities of RCSM in the following subsections. The
capabilities presented in Sections 4.1-4.3 address the desired characteristic S1 as
mentioned in the previous section. Section 4.4 addresses the characteristics S2 and S4. S3
and S5 are addressed in Sections 4.5 and 4.6, respectively.

4.1. Compliance with OMG’s Object Management Architecture (OMA)

We designed RCSM to be compliant with the OMA framework to make it both practical
and easy to use with other industry standard middleware implementations. This makes
RCSM possibly the first CORBA-compliant middleware for ubicomp environments.
Similar to OMA and as shown in Figure 2(a) and (b) we represent user-level application
software as application objects. However, unlike OMA, there are two types of application
objects in RCSM: context-sensitive and client—server. Figure 2(a) and (b) also illustrate

Client-server and

5 LG Vertical Horizontal s
Application : . context-sensitive RCSM
objects CURHA CORBA application facilities
k facilities facilities G
objects
| Object request broker | | RCSM object request broker (R-ORB) |
I I
[ CORBA services J [ RCSM services ]

(a) (b)

Figure 2. (a) Object management group’s object management architecture (OMA); (b) RCSM’s OMA-
compliant architecture.
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that similar to OMA’s object request broker, the RCSM’s object request broker (R-ORB)
is the component that enables application objects, implemented in different languages, to
communicate in a distributed environment consisting of heterogeneous networks and
platforms. In addition to providing client-server communications, R-ORB provides
context-sensitive communications to the application objects. RCSM’s Context-aware
interface definition language (CA-IDL), which is based on CORBA’s interface definition
language (IDL), can be used to develop application objects by separating their interfaces
from their implementations. We also provide the necessary capabilities in RCSM to
develop and deploy additional services and facilities for domain-specific use of RCSM.

4.2. Context-Sensitive Objects as Building Blocks for Context-Sensitive
Application Software

Similar to mature middleware standards and prototypes, such as CORBA, COM, and TAO
(COM, 1995; Gokhale, 1999; OMG, 2000) for fixed networks, RCSM provides an object-
based framework for supporting context-sensitive applications. In addition to supporting
client and server objects, RCSM provides context-sensitive objects as the building blocks
of context-sensitive application software.

DEFINITION 4 A context-sensitive object is an object that consists of two parts: a context-
sensitive interface and a context-independent implementation. The interface encapsulates
the description of the ‘‘context-awareness’’ of the application, while the implementation
remains ‘‘context-free’’.

Figure 3 provides a conceptual picture of a context-sensitive object. Representing
application software as context-sensitive objects allows developers to easily express the
‘‘context-awareness’’ property within the realm of object-oriented software development
methodologies. As illustrated in Figure 3, taking an object-based approach in RCSM
presents additional leverages beyond the benefits provided by the simple object-

Context-sensitive application object O

Context-sensitive interface for object O
(expressed in CA-IDL)

Context + Method
expression signature

Context-independent implementation of
object O (e.g. C++, C, C#, or Java)

Figure 3. A Context-sensitive object O in RCSM.
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orientation. The important benefit of this method is that the implementation is completely
isolated from the context specification, i.e., it is context-independent. Using the context-
sensitive interfaces, RCSM determines which type of context to monitor, how often to
monitor, and which method of the objects to activate in the current context. On the other
hand, the developer only needs to focus on implementing the methods of the object in his/
her favorite language without worrying about context monitoring, detection, and analysis.

4.3. CA-IDL for Expressing Object-Specific Context-Awareness

We have developed CA-IDL to allow application developers to specify context-sensitive
interfaces. The syntax of CA-IDL is similar to CORBA’s IDL (OMG, 2000), but CA-IDL
has additional language constructs to define context expressions as shown in Figure 2. We
have made CA-IDL based on CORBA since CORBA’s IDL already provides a mature
and industry standard interface specification mechanism. This makes our RCSM easy to
use for developers who are already familiar with CORBA- (or COM)-based application
software programming.

4.4. Interface-Specific Context-Analyzers for Providing Context-Sensitivity

An important feature of RCSM is that the difficult tasks related to context acquisition,
monitoring, and detection are done in the middleware level, rather than in the application
software level. This greatly simplifies the application software development. However,
since the context-awareness requirements usually vary across applications, RCSM
provides adaptive object containers (ADCs), which are customly-generated interface-
specific context analyzer components. As shown in Figure 4, these components are
interface-specific because each interface of a context-sensitive object is, in fact, expresses

Context-sensitive interface for object O
(expressed in CA-IDL)

Context T Method
expression signature

RCSM’s CA-IDL compiler
(e.g. C++ mapping)

ADC (in C++) for object O

Figure 4. Interface-specific ADCs for providing object-specific context-awareness.
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the context-awareness of that object. Based on each interface description, RCSM’s CA-
IDL compiler generates a custom-made ADC tailored for a particular context-sensitive
interface. During runtime, an ADC communicates with other RCSM components to
acquire context data and performs periodic context analysis according to the interface
specification. It also communicates with the object implementation to invoke different
methods whenever suitable contexts are detected as a result of the analysis. Instead of
being static context-processing mechanisms, the type of ADCs that can be generated is
virtually unlimited. For a different requirement, the application developer just needs to
specify a different interface in CA-IDL and compile it to generate a new ADC.

DEFINITION 5 Context-triggered object activation is a type of object activation
mechanism where an ADC activates a context-sensitive object whenever the ADC
detects that it is suitable to activate the object in the current context.

4.5. Application- and Device-Independent Context Acquisition and
Processing Framework

According to Definition 1, contexts can cover a wide range of information that could be
analyzed by the ADCs on behalf of the objects. Realistically, this information is limited to
the capabilities of the hardware (e.g., sensors) and the low-level operating system support.
Moreover, these capabilities vary across devices. We have designed a device-independent
context acquisition and processing framework (R-CAP) in RCSM to perform low-level
context monitoring and acquisition using the available underlying system services. As
shown in Figure 5, the framework is divided into several parts, and it facilitates the
construction of higher-levels (Levels 2 to N) context processing components.

Context-interest registration: Since during runtime ADCs need latest context
information, each ADC registers its interest in different context data according to the
corresponding CA-IDL specification. The registration is shown as the dotted arrowhead
in Figure 5. Based on this registration, RCSM’s R-CAP framework decides what
information needs to be monitored and propagated to an ADC during runtime.

Context acquisition from local sources: Some contexts can be acquired from the
device itself, and without relying on other computing resources. For this type of contexts,
the R-CAP periodically follows a deterministic context acquisition procedure that
guarantees availability of latest context data to the ADCs. Examples of such context types
are current battery power of the device, the list of currently opened programs, etc.

Context acquisition from remote sources: Some contexts, however, cannot be acquired
from the local device, and RCSM must rely on remote computing resources. For this type
of contexts, R-CAP uses a different context acquisition procedure that collects context
data whenever such remote sources are available. Figure 5 illustrates the remote context
sources as the dotted rectangle. An example of such context types is the current location
of a device where the location beacon must be heard from a beaconing server. Since
remote context sources may not be available all the time, R-CAP, in this case, cannot
guarantee the availability of latest contexts that need to be acquired remotely.
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Figure 5. Components of RCSM’s context acquisition and processing framework, R-CAP.

Raw context data to structured context data conversion: Periodically, after every
acquisition process, R-CAP converts the raw context data to higher-level structured
context data according to the need of the ADCs. As the solid arrowheads in Figure 5
illustrate, the raw context data from the context acquisition components are periodically
propagated to the raw- to structured-context conversion component, which then
propagates the structured context data to the ADCs.

4.6. RCSM Object Request Broker for Context-Sensitive and Ad Hoc
Communications

We have designed the R-ORB as the key mechanism in RCSM to provide context-
sensitive and ad hoc communications to the application software. R-ORB hides the
intricacies of mobile ad hoc networking. As shown in Figure 6, it also performs remote
device and object discovery on behalf of the application, and communicates with the
ADCs whenever devices with appropriate services are found. Figure 6 also illustrates
how the component-based architecture of RCSM facilitates this dynamic cooperation
between R-ORB and ADCs to allow ad hoc and application-transparent exchange of
information between a pair of distributed context-sensitive objects. In addition to
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Figure 6. RCSM’s component hierarchy.

providing client—server communication facilities, RCSM provides context-sensitive
communication, and provides the communication facilities for R-CAP’s remote context
acquisition.

DEFINITION 6 Context-sensitive communication is a type of communication, where the
communication channel is established between a pair of devices based on some specific
contexts.

DEFINITION 7 Context-sensitive inter-object communication is a type of context-sensitive
communication between two distributed context-sensitive objects, such that these objects
are compatible to communicate with each other and both objects can be activated in the
current context according to their context-sensitive interfaces.

In Definition 7, by compatibility we mean that both objects are able to meaningfully
exchange data with each other. The compatibility between two objects can be determined
through the matching of the objects’ interface signatures, including the number and types
of parameters, or other application-specific criteria, such as the matching of radio-
frequency identifiers, security attributes, etc.
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DEFINITION 8 A context-triggered communication channel between two devices is a type
of communication channel, setup by the R-ORBs in these devices to facilitate the context-
sensitive inter-object communication between a pair of objects.

According to Definition 8, an R-ORB may need to simultaneously manage multiple
context-triggered communication channels. The exact number depends on the number of
context-sensitive objects and other devices in the network.

We use the R-ORB-oriented approach in developing RCSM, because providing only a
context-sensitive communication protocol is not sufficient in a middleware. We still need
a good ‘‘packaging’’ solution to uniformly ease both the development and runtime
aspects between the context-processing layer (i.e., the ADCs) and the communication
layer (i.e., context-triggered communication mechanism). We have chosen the CORBA
ORB-oriented approach because the ORB functions as a single gathering point for (a)
appropriately isolating the intricacies of various transport protocols from the application
objects by providing platform independent inter-object communication facilities, (b)
providing uniform interfaces to deploy and use various distributed services in the
middleware for enhancing the capabilities of the application objects, and (c) providing
reusable mechanisms to facilitate remote object discovery, object registration, object
activation and method invocation, data marshalling, and communications over distributed
environments. Without an ORB, it is difficult and cumbersome to provide these
capabilities in the transport layer, in the operating systems, or in the application layer.
Finally, R-ORB allows us to satisfy (S5) as described in Section 3.

Figure 7 shows how RCSM’s capabilities can be used to facilitate the development and
runtime operations of real-time application software for ubicomp environments. Each
arrowhead in Figure 7 corresponds to a step. Step (R1) corresponds to the specification of

CA-IDL !

Q—{ CA-IDL compiler ]

Application
object OA
---9 ADC of OA p °

44— C(CIC

--- ADC of OB

ODD R-ORB

Figure 7. RCSM’s overall functionality (ODD: object discovery message; CTC: context-triggered
communication channel).
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the interfaces of some context-sensitive objects. Step (R2) corresponds to the generation
of interface-specific ADCs based on Step (R1). Step (R3) corresponds to R-CAP’s
context propagation to the ADCs. Step (R4) illustrates an ADC’s notification to the
R-ORB to indicate that the ADC has detected the suitability of object activation in the
current context. Steps (RS) and (R6) correspond to R-ORB’s remote object discovery and
context-triggered communication channel establishment processes. In Step (R7), R-ORB
notifies the ADCs that it has found a compatible remote object for the local object. In
response to this notification, the ADC in Step (8) activates the object.

We will provide a detailed overview of RCSM’s development and runtime supports for
real-time software in Section 5. We will present the details related to Steps (R1), (R2),
(R4), and (R8) in Sections 6 and 7. In Section 8, we will discuss the details related to
Steps (R5), (R6), and (R7). We will conclude the paper by providing an illustrative
example. In this paper, we do not provide the details corresponding Step (R3).

5. Support for Development and Runtime Operations of Real-Time Ubicomp
Application Software

RCSM’s application software development framework is similar to CORBA (or COM’s)
client—server development process. In addition to client-server applications, RCSM
facilitates the development of context-sensitive application object as described before. As
shown in Figure 8(a), an application developer begins by specifying the interfaces of
context-sensitive application objects. A procedure for identifying context-sensitive

Obiject registration with
RCSM ORB (by application

developer)
v
Periodic context monitoring and 4
Context-sensitive interface specification cgﬁ?li:j;:ﬁ lz;ir:ifjelg?éif;:
(by application developer) y ¥ i
v : :
Interface-specific ADC generation Phacctdiscoyery by RESMORE).
(by CA-IDL compiler) v
4 Context-triggered communication
Object skeleton generation Chf‘; "eég‘sl:;’hc;g?;m
(by CA-IDL compiler) Y
v A 4
Real-time object implementation - Context-based f’bje_“'l activation
(by application developer) (by interface-specific ADCs) =

(a) (b}

Figure 8. (a) Context-sensitive real-time software development support in RCSM; (b) runtime services of
RCSM to support context-sensitive communications.



RECONFIGURABLE CONTEXT-SENSITIVE MIDDLEWARE FOR REAL-TIME SOFTWARE 45

application objects from the application requirements was described in (Yau, 2001b). The
interface specification is then fed into RCSM’s CA-IDL compiler, which generates a pair
of interface-specific ADC and object skeleton. The developer then implements the
functionality by extending the object skeleton. The interface-specific ADC embeds the
mechanism to provide the necessary context-awareness support to the application object.
After the developer completes the implementation, the application object then becomes
ready for deployment. In case of client—server type application objects, CA-IDL
generates a simpler version of ADC, which functions similar to a CORBA’s portable
object adapter (OMG, 2001).

An application developer can deploy an application object by registering the object
with the R-ORB. As shown in Figure 8(b), after the registration, RCSM provides four
main services to the application objects during runtime. The interface-specific ADC and
RCSM’s R-CAP framework cooperatively provide the necessary context-awareness
support to the application object. On the other hand, R-ORB provides object discovery
and communication services. In case the application object is of type client—server,
R-ORB simply functions as a client—server ORB to propagate and accept client—server
messages to/from remote devices. However, if the application object is context-sensitive,
R-ORB uses its context-triggered object discovery and channel establishment procedure
to spontaneously establish communications with compatible application objects in remote
devices.

6. Specification of Context-Sensitive Interfaces for Real-Time
Context-Sensitive Objects

In this section, we discuss how an application developer can perform Step (R1) by
specifying the context-sensitive interfaces for real-time ubicomp applications. Using
RCSM’s CA-IDL, the context-awareness of a real-time object can be expressed by
associating context expressions along with the methods declared in the object’s interface.
A real-time context-sensitive object is a type of object that associates a particular context
along with at least one of its prioritized methods in the object interface. We define this
type of methods as real-time context-sensitive methods. These methods are invoked
whenever their corresponding objects are activated and their scheduling criteria are met.
In Section 6.1, we discuss how a developer can use our CA-IDL to specify their interests
in different contexts. We then discuss how to specify context-sensitive interfaces in
Section 6.2.

6.1. Context Specification
6.1.1. Context Categories

Specification of contexts in an object interface is limited by the context data supported by
the host device. The types of context available within a device, in turn, are limited to the
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Table 1. Examples of context-category structure definitions in RCSM.

RCSMContext RCSMContext RCSMContext
DeviceSpecificContext EnvironmentSpecificContext UserSpecificContext
{double battery_power; {unsigned int number_peer_devices; {unsigned int
double light_intensity; char [16] location; }; calendar_usage_rate; };

double net_transmission_rate; } ;

device’s context-sensing capabilities. We perform the following steps (Whenever RCSM
is ported to a new device):

a. Classify the contexts in the following categories:

i. Device-specific context—context information that is specific to the device, such
as the number of objects activated or currently running, remaining battery
power, and current time.

ii. Environment-specific context—context information that is specific to the
surrounding environment, such as the current location, the number of devices in
the vicinity, light intensity, and current temperature.

iii. User-specific context—context information that is specific to the user, such as
user information and the number of times a user runs a particular application.

b. Define a structure type for each category. We accomplish this by using the
RCSMContext keyword of our CA-IDL. Each structure type includes one or
more data types to store values of different contexts that are detectable by
RCSM. We uniquely identify each structure type by using one of the
following CA-IDL keywords: DeviceSpecificContext, EnvironmentSpecificContext,
and UserSpecificContext.

Several examples, which show the definitions of three structure types, corresponding to
all three categories, for a particular device, are given in Table 1. As shown in Table 1, this
device supports six different types of contexts: battery power, light intensity around the
device, and the network bandwidth are device-specific contexts; the number of peer
devices in the vicinity and the location of the device are environment-specific contexts;
and the frequency of the user’s usage of the calendar software is the user-specific context.

6.1.2. Context Variables, Temporal Operators, and Context Expressions

DEFINITION 9 Context variables are variables in CA-IDL to specify different values for a
specific context.
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An application developer can use a context-variable to express his/her interest in
specific values of a context. We declare a context-variable in CA-IDL using the
RCSMContext_var keyword and then specifying the corresponding structure type and a
particular value for the context-variable according to its data type. The general structure
for defining a context variable is shown below:

RCSMContext_var ((category type)) (({variable name)) where ({(structure field))
op ({constant expression))

For example, we can use the examples presented in Table 1 to specify context-variables
Cl1, C2, and C3 as shown in (1), (2), and (3). As (1) and (2) show, Cl1 is a context-variable
to store a specific value—*‘GWC329’—for the location context, and C2 stores the
boolean value to indicate whether the number of peer devices is more than 1. As (3)
shows, C3 is a context-variable to store the boolean-valued conjunction related to two
different contexts: number of peer devices and network bandwidth. The bold letters in
(1)-(3) indicate that they are CA-IDL-specific keywords.

RCSMContext_var DeviceSpecificContext C1 where (location = ““GWC329”’)
(1)

RCSMContext_var EnvironmentSpecificContext C2 where

(number_peer_devices > 1) (2)

RCSMContext_var EnvironmentSpecificContext C3 where

(number_peer_devices > 2) and (net_transmission_rate >= 40) (3)

It is important to note that the actual semantic interpretation of the context-variables is
application-specific, and hence should be part of the object implementation rather than a
feature of the core middleware services.

DEFINITION 10 Temporal operators are operators to specify temporal relationships
among multiple context variables in CA-IDL.

Most of the operators as summarized in Table 2 are conceptually similar to the basic
regular expression operators. Al and A2 in Table 1 are two context variables.

Table 2. Temporal operators in CA-IDL for constructing context expressions.

Operator Usage Description

Union: “‘+ "’ [(A1+4 A2){] Either A1 or A2 is true for the last time period ¢
Concatenation: ““ A"’ [(A1 A A2)1] Both Al and A2 are true for the last time period ¢
Singular: “*( )"’ [(A1){] Al is has been true for the last time period ¢
Precedence: *‘- >’ [(Al-> A2){] A2 becomes true within ¢ time units A1’s being true
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DEFINITION 11 Context expressions are expressions to represent the relations among
context variables using temporal operators.

We define a context expression using the RCSMContext_var keyword and then
specifying the relations between two context variables or expressions. In this sense, we
can define a complex context expression recursively by using simpler context
expressions. For example, assuming we are interested in the condition that either C1 or
C2 (as previously declared) is true for the last 10 seconds, we can use the union operator
““4+ 7 in Table 2 to declare a context expression E1 as follows:

RCSMContext_var E1 where [(C1 + C2) 10] 4)

6.2. Context-Sensitive Interface Specification

An application developer can define an interface for a context-sensitive real-time object
by associating context variables and context expressions in CA-IDL with the method
signatures as follows:

1. Annotate a method of a context-sensitive interface with either an [incoming] or an
[outgoing] tag.

2. Add an [activate-at-context x] tag where x represents a context-variable or context
expression.

An [incoming] tag signifies that the corresponding method should be invoked only
after data is available from a remote object following the creation of a context-triggered
communication channel. An [outgoing] tag signifies that the method should be invoked
first to generate the necessary data that will be transmitted to a remote method with an
[incoming] tag. It is necessary for any pair of methods to be of opposite types to be
able to communicate through a context-triggered communication channel. For example,
we can define an interface—ContextSensitivePrinter—for a hypothetical context-
sensitive object for facilitating printing services by dynamically discovering printers in
a room, GWC 329. As shown in (5), the ContextSensitivePrinter interface has two
methods: The first method—SendDocumentstoPrinter is invoked whenever C1 is true.
From (1), we can see that Cl refers a particular location ‘““GWC329°. As such,
whenever the device detects that it is in ““GWC329’°, the SendDocumentstoPrinter
method is invoked. The outgoing tag indicates that this method should generate the
necessary data for use by the remote object, if in fact a context-triggered
communication channel is established with another device (possibly a printer). The
second method—NotifyUser is invoked to ask for user’s preference for a specific
printer whenever more than one printer is detected in GWC329 for more than 5
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seconds. For NotifyUser, we can use the context-variables C1 and C2 as declared in (1)
and (2).

interface ContextSensitivePrinter {
[outgoing][activate at C1]void SendDocumentstoPrinter(. .. ... );
[outgoing][activate at (C1 A C2)5] void NotifyUser (... ... );

h (5)

7. Development of Adaptive Object Containers (ADC)

In this section, we discuss how ADCs can be used to perform Steps (R2), (R4), and (R8)
in RCSM. An ADC, which is generated by the CA-IDL compiler based on a context-
sensitive interface specification, has the following main tasks:

e Register the corresponding context-sensitive object and its interests in context with
the R-ORB.

e Periodically receive the context data from the R-ORB.

e Analyze the data to check if the context for the associated context-sensitive object is
true.

e Activate the associated context-sensitive object and invoke the method as indicated
by the R-ORB.

We describe Steps (R2), (R4), and (R8) in Sections 7.1, 7.2, and 7.3, respectively.

7.1. Interface-Specific ADC Generation

The CA-IDL compiler generates an ADC for a specific context-sensitive interface by
generating the following objects as shown in Figure 9.

RTDispatcher: RTDispatcher is responsible for activating the object and its methods
through the RTObjectBase. If multiple methods need to be invoked RTDispatcher uses
the priority information of a method to decide the method invocation. RTDispatcher
invokes a method only after receiving an event from the R-ORB. This event, which we
will define in Section 8, indicates that R-ORB has found a compatible object in a remote
device and has established a context-triggered communication channel.

RTObjectBase: This object has the definitions of the methods described in the interface
specified in CA-IDL. An application developer extends this object to develop the
implementations of the context-sensitive object.

RTObjectContextReflector: This object (RTOCR) is responsible for detecting the
suitability of method invocation in the current context. Based on the context-variables or
expressions specified for each method, the CA-IDL compiler generates an RTOCR. In
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Figure 9. The architecture of an ADC.

order to facilitate Step (R2) the compiler generates two tables in each RTOCR to
facilitate this task. The first table is called the CV-Table, which stores the information
related to context variables in an interface. The second table is the CE-table, which stores
the information related to the context expressions. We illustrate each table as Tables 3 and
4 and explain their columns in Tables 5 and 6, respectively. An RTOCR also has a CB-
table to store the latest values of the contexts received from the underlying R-CAP

framework.

Table 3. A CV-table in an ADC.

Row Context variable Operator Constant value \% True for duration Method ID

1 Method 1

2 Method 2
Method n

Table 4. A CE-table in an ADC.

Row Context Operator Context right Specified Vv True for Method ID
left entry entry duration duration

1 Method 1

2 Method 2

n Method n
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Table 5. Explanation of the fields in a CV-table.

Context Variable
Operator

Constant Value
\%4

True for Duration
Method ID

Stores the identifier for a particular context variable.

Stores the identifier for the operator (boolean) that is used to specify a specific
value for the context variable.

Stores the constant value of a context variable.

Stores the True/False to indicate whether the value stored in the Constant Value field is
true in the current context.

Stores the elapsed time since when the V field is True, if it is true.

Stores the numerical identifier of the corresponding method.

Table 6. Explanation of the fields in a CE-table.

Context Left Entry
Operator

Context Right Entry
Specified Duration
Vv

True for Duration
Method ID

Stores the left portion of a context expression.

Store the identifier for the operator (temporal) that is used to build the corresponding
context expression.

Stores the right portion of a context expression.

Stores the time value for which the corresponding context expression should be true.

Stores the True/False to indicate whether the corresponding context expression is true
in the current context.

Stores the elapsed time since when the V field is True, if it is true.

Stores the numerical identifier of the corresponding method.

7.2. Runtime Context Analysis

An RTOCR in an ADC uses the CV-table, the CE-table, and CB-table to perform Step

(R2) as follows:

a. For each row in the CV-table, the RTOCR compares the corresponding current value
in the CB-table with the value stored in the Context Variable column. If the value is
true, it sets the V column of the corresponding row to 7. If the V field has been true
before, it updates the ‘“True for Duration’’ field by adding the time elapsed since last
time it had performed this step. If V is T, it notifies the R-ORB that the corresponding
object is suitable for activation in the current context. The notification includes the
Method ID and the corresponding interface name.

b. For each row in the CE-table, RTOCR performs the same operations as in Step (a),
except that it evaluates if the entire context expression is true for the Specified
Duration using the current values from the CB-table.
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7.3. Context-Triggered Object Activation and Method Invocation

Although an ADC is responsible for activating a context-sensitive object, an ADC and the
R-ORB work cooperatively to identify the suitability of context-triggered object
activation as follows:

a. Following a notification from RTOCR in Steps (a) and (b), an R-ORB initiates an
object discovery procedure to discover remote objects for the local method.

b. If a compatible object in a remote device is found, the R-ORB notifies the
RTDispatcher object of the ADC. This notification corresponds to Step (R7).

c. The RTDispatcher object checks the scheduling criteria to determine if the method
can be invoked. If the criteria are met, the RTDispatcher activates the object and
invokes the method as shown in Figure 9. This activation corresponds to Step (R8).

8. Context-Sensitive Communications Using R-ORB

In this section, we will discuss how R-ORB performs Steps (R5) and (R6) to provide the
context-sensitive communication facilities in RCSM. R-ORB itself behaves as a context-
sensitive object to decide when to establish context-triggered communication channel
with a remote R-ORB so that a local object can exchange data with a remote object. We
will describe the context-sensitive behavior of R-ORB in Section 8.1, and describe Steps
(R5) and (R6) in Section 8.2.

8.1. R-ORB’s Context-Sensitive Actions

DEFINITION 12 A context-match event is a signal generated by an ADC to notify the
R-ORB that a context variable or context-expression in an interface is currently true.

DEFINITION 13 An object-match event is a signal generated by an R-ORB to notify an
ADC that a remote object is found that is suitable to communicate with the ADC’s
application object.

In Definition 13, by suitability, we mean matching of the object interface signatures,
including number of parameters and parameter types, etc. The ADC’s notification to
R-ORB in Step (a) in Section 7.2 is the context-match (CM) event. The R-ORB’s
notification to the ADC in Step (d) in Section 7.3 is the object-match (OM) event. Using
these signals the ADCs and the R-ORB in a device to coordinate their actions. We now
define the necessary and sufficient conditions for establishing a context-triggered
communication channel:
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Table 7. Context variables of an R-ORB.

Context

variables Description Type

X, Number of new devices detected in the vicinity Natural number
X, Number of existing devices that are no longer detected Natural number
Ecg Whether any CM event is pending with respect to a context-sensitive object Boolean

Eg Whether any OM event is pending with respect to a context-sensitive object Boolean

Necessary condition:
39;|pending(0,,, CM) = True A O,, € methods(J;) (6)

where 0; represents a context-sensitive object in the local device ‘‘pending(0,,,CM)”’
represents that a CM event corresponding to method O,, has occurred, and
“‘methods(0;)”” represents the set of methods of a context-sensitive object ;.

Sufficient condition:

39;|pending(0,,, OM) = True A O,, € methods(J;) (7)

3

where ‘‘pending(9,0,,,IM)’’ indicates that a recent OM event corresponding to method
0,, has occurred.

The condition in (6) is necessary with respect to that in (7), because if the CM event is
false in (6), the OM event is false by default, because the R-ORB does not initiate an
object discovery procedure, which is executed to decide if (7) holds true. The condition in
(7) is sufficient with respect to that in (6) since (7) is being true indicates the success of an
object discovery procedure, which is executed only after the condition (6) becomes true.

The occurrence of a CM event implies that at least one object in the local device is
ready to be activated in the current context, and hence R-ORB should take the necessary
actions to find a communication partner for this object. Thus, we can see that it is
beneficial to consider R-ORB as a context-sensitive object itself. As such, we define the
context variables for R-ORB in Table 7.

Table 7 shows that R-ORB essentially is responsible for ‘‘sensing’’ the following
contexts: both CM and OM events and the devices that are currently in the vicinity. With
the information in Table 7, we now define the context-sensitive operations of R-ORB as
shown in Table 8.

In Table 8, the values of Kpj, and Kj; , can be set to any natural number and thus can be
used as threshold values to manage the ‘‘level of sensitivity’’ of the R-ORB. Similarly,

Table 8. Context-sensitive operations of an R-ORB.

Context expressions Action taken by R-ORB if context is true
1. [{(Ecs = True) A (X, > Kpp)},24] Initiate communication with the peer devices to discover the
objects in these devices
2. {(X;,>Kpp),t5} Update the remote object information cache
3. {(Eg =True),t-} Establish a context-triggered communication channel with a device

and notify the ADC to activate the object in the local device
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the parameters—t,, f5, and - can be set to any real number and changed dynamically.
This implies that degree of context sensitivity of R-ORB can be adapted in response to
variations in context data over a period.

8.2. Context-Sensitive Object Discovery and Context-Triggered Communication
Channel Establishment

In order to facilitate Steps (R5) and (R6), R-ORB broadcasts ODD messages so that the
remote R-ORBs in other devices can discover the objects in the local device. An ODD
message has the following information:

{Device address, interface id, method id, {parameter list, parameter type}, keywords}
(8)

where Device address corresponds the unique address of the device (e.g., IP address),
object id corresponds to a unique identifier of an interface, and method id corresponds to
the method that satisfies (6). Parameter list and parameter type represent the parameters
and their types of the method. Keywords represent a list of optional keywords that can be
used to match the services of two objects for exchanging data. To prevent unnecessary
bandwidth consumption, R-ORB only broadcasts the information of the context-sensitive
objects that already have pending context-match events, i.e., these objects satisfy the
necessary condition for a connection establishment. Hence, the ODD broadcasting is
completely turned off when no CM event is received from the ADCs. Steps (a) and (b)
correspond to Step (RS), and the remaining steps correspond to Step (R6).
Whenever the R-ORB receives an ODD broadcast, it takes the following actions:

a. If there is any method satisfying the condition in (6), perform a matching by
comparing the local method and its objects with the information contained in the
ODD message.

b. If a matching is found in Step (b), generate an OM event for this method and
continue to Step (c). Otherwise, stop.

c. If the method, for which the OM event is generated in Step (b), is of type outgoing,
notify the corresponding ADC to invoke the method and retrieve the results. If the
method’s type is incoming, continue to Step (e).

d. Periodically check if the ADC that was notified in Step (c) has completed the method
invocation and has passed the object data to the R-ORB. When the data is received
from the ADC, continue to Step (f).

e. Periodically check for the data transmission from the R-ORB of the device from
which the ODD message in Step (a) came from. When the data is received from the
remote R-ORB, continue to Step (g).
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f. Create a point-to-point communication channel with the remote R-ORB of the device
from which the ODD message in Step (a) came from. Transmit the object data
received at Step (d) to the remote R-ORB. Terminate the channel after the
transmission is completed.

g. Notify the ADC of the method in Step (a) to invoke this method and pass in the data
received in Step (e) to the ADC.

9. An Illustrative Example

In this example, we illustrate Steps (R1)—(R8). The requirements of our target system are
as follows: The system is a network of embedded sensors. Two different types of sensors,
motion and noise detectors, are used to monitor an environment. As shown in Figure 10, a
mobile robot collects the data from these sensors whenever the robot is within the 10 m of
either sensor. Both types of sensors are stationary and have limited radio transmission
range of up to 10 m. We assume Object M, Object N, and Object MB provide the desired
functionality in the motion detectors, noise detectors, and the mobile robot respectively.

Step (R1): In this step, we provide the context-sensitive interfaces of Object A, B, and C
based on the procedure explained in Section 5.

Object MB
//Name: Mobile Robot Object

//Define a context variable

RCSMContext_var NetworkContext C where (number_peer_devices > 0);
//Interface Definition

interface MB {

Region under surveillance.

Motion Noise Maotion Noise Noise
sensor sensor sensor SENSOr SENSOr
Motion Noise Motion Noise Noise
SENS0r Sensor SENSOr sSensor Sensor

Region under surveillance. The mean distance between two sensors is more than 10 m. The mean distance between the robot and any
sensor should be less than 10 m since a sensor’s radio ransmission range is limited to 10m.

Figure 10. A mobile robot uses RCSM’s context-sensitive communications to collect surveillance data
whenever the robot is within the 10m of a motion or a noise sensor.
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[incoming] [activate at C] receive_noise_data([in] string data);
[incoming] [activate at C] receive_motion_data([in] string data);

b

Object M
//Name: Motion Data Collector

//Define a context variable
RCSMContext_var NetworkContext C where (number_peer_devices > 0);
//Interface Definition
interface M {
[outgoing] [activate at C] exchange_motion_data ([out] string data);
b

Object N
//Name: Noise Data Collector

RCSMContext_var NetworkContext C where (number_peer_devices > 0);
//Interface Definition:
interface N {
[outgoing] [activate at C] exchange_noise_data ([out] string data);
1

Tables 9—11 show the compatible object-method signatures for each object to facilitate
context-sensitive communications.

Step (R2): Based on these interfaces, in this step the CA-IDL compiler generates three
ADCs based on the procedure explained in Section 6. The context-variable tables of these
ADCs are shown in Tables 12—14.

Table 9. Compatible interface-method signatures for Object MB in the mobile robot.

Local Object-Method Signatures Compatible Object-Method Signatures
Object MB: receive_noise_data([in] string data) Object N: exchange_noise_data ([out] string data);
Object MB: receive_motion_data([in] string data); Object M: exchange_motion_data ([out] string data);

Table 10. Compatible interface-method signatures for Object M in the motion detectors.

Local Object-Method Signatures Compatible Object-Method Signatures
Object M: exchange_motion_data ([out] string data); Object MB: receive_motion_data([in] string data);

Table 11. Compatible interface-method signatures for Object N in the noise detectors.

Local Object-Method Signatures Compatible Object-Method Signatures
Object N: exchange_noise_data ([out] string data); Object MB: receive_noise_data([in] string data)
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Table 12. Context-variable table for Object MB in the mobile robot.

Constant Specified True for
Row Context variable Operator expression duration Vv duration Method Id
1 Number_peer_devices > 1 — — — 1
2 Number_peer_devices > 1 — — — 2

Table 13. Context-variable table for Object M in the motion detectors.

Constant Specified True for
Row Context variable Operator expression duration Vv duration Method Id
1 Number_peer_devices > 1 — — — 1

Table 14. Context-variable table for Object N in the noise detectors.

Constant Specified True for
Row Context variable Operator expression duration Vv duration Method 1d
1 Noise_level > 0 — — — 1

Step (R3): Since each sensor is more than 10 m apart from the other sensors, it cannot
detect other sensors. If the mobile robot is not within the 10 m, the R-CAP periodically
propagates the number of peer devices (which is 0) to the ADCs. Whenever the robot is
in the vicinity, the number becomes 1. The same is true for the mobile robot as well.
Whenever it is within 10m of some sensors, the number becomes 1. Otherwise, it
stays 0.

Assume, the robot is within the range of a motion detector. The following sequences of
actions occur:

Step (R4): According to Tables 9 and 10, both Object MB and Object M satisfy the
condition expressed in (6), because for both the robot and the sensor the
number_peer_devices is 1. As such, the ADCs in both devices generate CM events.

Step (RS5): Upon receiving the CM event from the ADC, the R-ORB in the robot
broadcasts the following ODD messages:

{192.168.0.12, MB, receive_noise_data, {data, string}, none} 9)
{192.168.0.12, MB, receive_motion_data, {data,string}, none} (10)

Here, we assume the robot’s IP address is 192.168.0.12. Note that the robot broadcasts
two ODD messages—one for each method in the Object MB, since both methods can be



58 YAU AND KARIM

activated in the current context according to Object MB’s interface specification. The
R-ORB in the motion detector also broadcasts an ODD message as follows:

{192.168.0.14, M, exchange_motion_data, {data, string}, none} (11)

Here, we assume the motion detector’s IP address is 192.168.0.14.

Steps (R6)—(R8) in the mobile robot: After the receiving the ODD broadcast message
in (11) from the motion detector, the R-ORB in the mobile robot compares the
information in the ODD message with the information in Table 9. Since according to the
table, the receive_noise_data is compatible with an exchange_motion_data method, R-
ORB generates an OM event to indicate that a compatible object is found. Since the
receive_noise_data is the local method and is of type incoming, R-ORB in the robot
follows Steps (a), (b), (c), (e), and (g) in Section 8.2 to receive the motion data for the
Object MB.

Steps (R6)—(R8) in the motion detector: After the receiving the ODD broadcast
messages in (9) and (10) from the mobile robot, the R-ORB in the motion detector
compares the information in these ODD messages with the information in Table 10. Since
according to the table, the exchange motion_data is only compatible with a
receive_motion_data method, R-ORB stops in Step (b) of Section 8.2 when it analyzes
the message in (9). However, when R-ORB analyzes the information in the message in
(10), it generates an OM event to indicate that a compatible object is found. Since the
exchange_motion_data is the local method and is of type outgoing, R-ORB in the motion
detectors follows Steps (a)—(f) in Section 8.2 to send the motion data to the mobile robot.

When the robot is near a noise sensor, similar procedure is followed except Table 11 is
used instead of Table 9.

10. Discussion

In this paper, we have presented RCSM, an adaptive and object-based middleware to
facilitate context-sensitive communications among real-time applications in ubicomp
environments. RCSM’s OMA-compliant architecture allows application software
developers to interoperate RCSM with other industry-standard middleware technologies.
We also presented RCSM’s support for development- and run-time facilities for real-time
ubicomp applications. Specifically, we discussed RCSM’s context-sensitive object-based
development process using its CA-IDL and the mechanism for providing application-
specific context-processing support using ADCs. RCSM’s R-CAP framework provides
the low-level context acquisition and propagation services to isolate the difficult task of
context collection from context-awareness. We also presented R-ORB, which is the
communication backbone in RCSM to provide both client—server and context-sensitive
communications in ad hoc networks. The effect of high-frequency changes in the
contexts on the deadlines of real-time objects needs to be explored further to provide
context-sensitive real-time scheduling support in RCSM. Additional work needs to be
done to make R-ORB more energy efficient for ad hoc object communication in
constantly mobile environments. It is also our plan to develop a bridge between the R-
ORB and the CORBA-IIOP to enable seamless interoperability with RT-CORBA objects.
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We are evaluating different features of RCSM in an ubicomp test bed, called Smart
Classroom, which provides a middleware infrastructure for university classrooms to
facilitate collaborative learning among students. The test bed consists of various types of
PDAs, short-range radio transceivers, and sensors connected through RCSM over an
integrated ad hoc network and fixed network environments.
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