
ar
X

iv
:c

s.
S

E
/0

50
20

40
 v

1
 8

 F
eb

 2
00

5

Testing Systems of Concurrent Black-boxes—an Automata-Theoretic
and Decompositional Approach⋆

Gaoyan Xie and Zhe Dang⋆⋆

School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164, USA

{gxie,zdang}@eecs.wsu.edu

Abstract. The global testing problem studied in this paper is to seek a definite answer to whether a
system of concurrent black-boxes has an observable behavior in a given finite (but could be huge) setBad.
We introduce a novel approach to solve the problem that does not require integration testing. Instead, in
our approach, the global testing problem is reduced to testing individual black-boxes in the system one by
one in some given order. Using an automata-theoretic approach, test sequences for each individual black-
box are generated from the system’s description as well as the test results of black-boxes prior to this
black-box in the given order. In contrast to the conventional compositional/modular verification/testing
approaches, our approach is essentially decompositional.Also, our technique is complete, sound, and can
be carried out automatically. Our experiment results show that the total number of tests needed to solve
the global testing problem is substantially small even for an extremely largeBad.

1 Introduction

Testing a concurrent and component-based system is notoriously difficult[16,14]. One difficulty comes from
the system’s nondeterminism and the synchronizations among concurrently running components. Another
difficulty lies in the fact that, in a component-based system, its constituent components could be some ex-
ternally obtained software components (such as COTS products) whose source codes and design details are
usually not available. In that case, traditional white-boxtechniques (like static analysis) are not applicable to
analyzing the system. These components can be readily treated asblack-boxeswhose models (both at code
level and design level) are unknown. In this paper, we study atesting problem for such a system of concurrent
black-boxes.

In our setup, a system of concurrent black-boxes consists ofa host system (called the gluer) and a number
of black-boxes. Each of the gluer and the black-boxes is called aunit (or a component), which is a (possibly
nondeterministic and infinite-state) labeled transition system, each of whose labels represents either an ob-
servable action or an internal action. All the units in the system run concurrently and synchronize on a number
of observable actions. The gluer is a fully specified finite-state unit. For each black-box, however, except for
its interface (i.e., the set of its observable actions), everything else is unknown, while its implementation is
always available and can be black-box tested. Aglobal bad behavioris an observable behavior of the system
in a given finite setBad. Finally, theglobal testing problemstudied in this paper is to verify (with a definite
answer) that, for the given setBad, the system does not have a global bad behavior.

A straightforward approach to solve the global testing problem is to perform integration testing over the
system as a whole and see if the system exhibits a bad behavior. However, there are fundamental difficulties
⋆ The research was supported in part by NSF Grant CCF-0430531.

⋆⋆ Corresponding author (zdang@eecs.wsu.edu).

with this approach. For instance, in some applications [30], integration testing may not be applicable at all.
Even when integration testing is possible in some situations, the system itself is often nondeterministic. The
combinatorial blow-up on the number of the executions caused by nondeterministic interleavings among the
concurrent units in the system generally makes it infeasible to do thorough integration testing, while we are
looking for a definite answer to the global testing problem. Due to the same reason, even when one has a way
to handle the nondeterminism [31], the size of the given setBad (which could be very large, e.g., more than
1024 in some of our experiments shown later) may also make exhaustive integration testing infeasible.

A less straightforward approach is to combine testing with some formal method. For instance, one can
extensively test each black-box alone and try to build [26] apartial model of the black-box from the test
results. Then, one can run a formal method like model-checking on the partial system model built from the
partial models of the black-boxes to solve the global testing problem. However, this approach is also difficult
to implement. For instance, it is hard to choose effective test sequences to build a partial model of a black-box,
and it is also hard to know when the tests over a black-box are adequate. Moreover, the partial (and hence
approximated) system model might not help us obtain a definite answer to the global testing problem. To
avoid the above difficulties, one may also try, using some formal method, to derive an expectation condition
over a black-box’s behaviors such that: when every black-box behaves as expected, the system guarantees
to not have a global bad behavior. Then the expectation conditions can be used to generate test sequence for
the black-boxes. However, the interactions among the concurrent black-boxes make it difficult to derive such
conditions automatically (see Section 2 for related work onthe assume-guarantee style reasoning).

In this paper, we introduce a novel approach (called the “push-in” technique) to solve the problem, which
does not entail any integration testing. Instead, in our approach, the global testing problem is reduced to
testing individual black-boxes in the system one by one in some given order. Using an automata-theoretic
approach, test sequences for each individual black-box aregenerated from the system’s description as well
as the test results of black-boxes prior to the black-box in the given order. Suppose thatB1, . . ., Bk represent
the concurrent black-boxes in a system. The first step of our approach is to compute an auxiliary setA1 of
sequences of observable actions for black-boxesB1, . . ., Bk and a setU1 of test sequences for black-box
B1. Then we test the black-boxB1 with test sequences inU1 and collect all successful test sequences into a
surviving setSUV1. In the second step, from the surviving setSUV1 and the auxiliary setA1, we compute
the auxiliary setA2 (for black-boxesB2, . . ., Bk) and the test sequence setU2 for black-boxB2. Again, after
testing black-boxB2 with test sequences inU2, we collect all successful testing sequences into a surviving
setSUV2. Subsequent steps follow similarly, and eventually, in thelast step (i.e., stepk), the global testing
problem will be decided from the surviving sets. That is, thesystem has no global bad behavior iff, for some
1 ≤ i ≤ k, the surviving setSUVi is empty. We also provide a procedure to recover a global bad behavior
when the answer to the original problem is “no”.

Since the sets (i.e.,Ui andAi) are provably finite and, in many cases, huge, we use (finite) automata that
accept the sets as their symbolic representations, and standard automata operations are used to manipulate
these sets. Also, the global testing problem is decomposed into a series of testing problems over each indi-
vidual black-box in the system. Hence, our approach is an automata-theoretic and decompositional approach.
Moreover, the “push-in” technique is both complete and sound, and can be carried out automatically. In par-
ticular, we show that the technique is “optimal” in the sensethat each test we run over a black-box has the
potential to discover a global bad behavior (i.e., we never run useless tests). In general, exhaustive integration
testing over a concurrent system is infeasible. However, our experiments show that, using the push-in tech-
nique, we can completely solve the global testing problem with a substantially smaller number of tests over
the individual black-boxes, even for an extremely large setof Bad (some of our experiments performed only
about105 unit tests for aBad of size more than1024).

The rest of this paper is organized as follows. In Section 2, previous work related to this paper is discussed.
In Section 3, the formal definitions for a system of concurrent black-boxes and its global testing problem are
presented. In Section 4, the detail of the push-in techniqueis shown. In Section 5, a set of experiments are
run and the results are analyzed. Finally, Section 6 points out some future work.

2 Related Work

The global testing problem is essentially a verification problem since we are looking for a definite answer.
In the area of formal verification, there has been a long history of research on exploiting compositionality
in system verification, and a common technique is to follow the “assume-guarantee” reasoning paradigm
[21,28,19,7,2,9,8,3]. However, a successful applicationof the paradigm depends on the correct assumptions
for the components in a system, which are, in general, formulated manually. Several authors suggest solutions
to the problem of automated assumption generation [17,18,12,15]. But the solutions require that the source
code and/or the finite-state design is available for a unit, which, unfortunately, is not the case in our setup.
Although our push-in technique relies on black-box testinginstead of an “assume-guarantee” mechanism, it
can be extended to a system where a black-box is associated with environmental assumptions.

In the area of software testing, researchers have long recognized the importance of combining formal
methods (like model-checking) and testing techniques for system verification. Most work (e.g., [6,10,13])
stems from the spirit of specification-based testing, and utilizes model-checkers’ capabilities of generating
counter-examples from a system’s specification to produce test-cases against an implementation. This ap-
proach typically works at the unit level and lacks a “control” over the generated test-cases, since, unlike our
technique, it does not have an overall and analytical characterization over all the useful (i.e., has the potential
to recover a global bad behavior) test sequences. In contrast to our ideas, theoretical work in [26,35] focuses
on complete testing over asingle and finite-stateblack-box with respect to a temporal property. The decom-
positional approaches proposed in [11,22] for model-checking feature-oriented software designs rely totally
on model-checking techniques (no testing) and could cause false negatives. Integration testing of concurrent
programs in [31,20] relies on a specification (unavailable in our model) of a concurrent program.

The quality assurance problem for component-based software has attracted lots of attention in software
engineering. However, most work considers the problem fromcomponent developers’ point of view; i.e.,
how to ensure the quality of components before they are released (e.g., [25,34,33,29]). This view, however,
is fundamentally insufficient: an extensively tested component (by the vendor) may still not perform as ex-
pected in a specific deployment environment, since the deployment environments of a component could be
quite different and diverse such that they may not be thoroughly tried by the vendor. Our push-in technique
approaches this problem from system developers’ point of view: how to ensure that multiple components
function correctly in a host system where the components aredeployed. In our technique, test sequences run
on a component are customized to its specific deployment environment. Unlike our approach, frameworks
like [4] require a complete specification about the component to be incorporated into a system, which is not
always possible.

3 Preliminaries

In this paper, we consider a system of (concurrent) black-boxes, which consists of a host system (called
thegluer) and a collection of black-box components (simply calledblack-boxes). Each of the gluer and the
black-boxes is aunit. In the rest of the section, we will present the model of a unit, the model of the system
of black-boxes, and the global testing problem for the system.

3.1 The Unit Model

A unit is a nondeterministic and labeledtransition systemT that moves from one state to another while
performing an action. Formally,T = 〈S, sinit,∇, R〉, whereS is an (infinite and countable) set of states
with sinit ∈ S being theinitial state,∇ is a finite set of actions, andR ⊆ S × ∇ × S defines the transition
relation. In particular, the action set∇ is partitioned into three disjoint subsets:{ǫ} (an internal action),Π
(input actions), andΓ (output actions). Especially, the setΣ = Π∪Γ , i.e., the set ofobservable actionsin T ,
is called theinterfaceof T . When the setS of states is a finite set,T is called afinite-state transition system.

A behaviorof T is a sequence of actions in∇: a1. . .ah (for someh) such that there is a sequence of
statess0. . .sh with s0 = sinit and(sj , aj , sj+1) ∈ R for each0 ≤ j ≤ h − 1. An observablebehavior of
T is the result of dropping all the internal actions (i.e.,ǫ’s) from a behavior. Trivially, the empty string is an
observable behavior for any unitT .

A (unit) test sequenceα for T is a sequence of observable actions inΣ. A unit T is considered to be a
black-boxif its interface (i.e.,Π andΓ) is the only known part in its definition. In this case, we assume that
T is testable. That is, there is a black-box testing procedureBBtest(T, ·) 1 such that, for any test sequence
α, BBtest(T, α) returns “yes” (i.e.,α is successful) if α is an observable behavior of the unitT , and,
BBtest(T, α) returns “no” (i.e.,α is unsuccessful) if otherwise.

For example, consider the black-boxComm in Figure 1, which has seven observable actions (in the figure,
we use suffixes? and ! to distinguish input and output actions respectively). Assume that the black-box is
implemented as shown in Figure 5. Clearly,send msg ack is a successful test sequence toComm while
send msg fail is not.

Obviously, if one further assumes that the black-box is output deterministic (i.e., an input action sequence
uniquely decides the corresponding output action sequence), then a test sequence for the black-box can be
simply reduced to a sequence of input actions. However, there are testable units that are not necessarily output
deterministic (e.g., [24,32,27]). Therefore, to make our algorithms (presented later) more general, we do not
apply this assumption (under which, obviously, our algorithm still applies). That’s why in our definition, a
test sequence is always a sequence of both input actions and output actions.

3.2 The System Model

A system of concurrent black-boxes consists of a gluerG and a number of black-boxesB1, . . ., Bk, written
Sys = G(B1, . . ., Bk). The gluer and the black-boxes are all units which run concurrently and synchro-
nize on certain actions. More precisely,G is a fully specified and (nondeterministic) finite-state unit G =
〈S0, s

0
init,∇0, R0〉, whose interface isΣ0 = Π0 ∪ Γ0. EachBi is a black-box unitB = 〈Si, s

i
init,∇i, Ri〉,

which is testable and whose interface (the only given part ofthe black-box) isΣi = Πi ∪ Γi. As mentioned
earlier, a black-box is not necessarily a finite-state unit.The state setsS0, . . ., Sk are all disjoint. But the
interfacesΣ0, . . ., Σk may not be disjoint: some units may share some common actions.

We useΣ = Σ0 ∪ . . . ∪ Σk to denote all the observable actions in the systemSys (this implies that
each unit’s observable actions are also observable in the system), and useSig(a), called thesignatureof a,
to denote the set of all0 ≤ i ≤ k such thata ∈ Σi. Therefore, the signature indicates the units that share
actiona.

The systemSys, which also works as a labeled transition system, is a Cartesian product of its units. That
is,Sys = 〈S, sinit,∇,R〉, whereS = S0 × . . .×Sk is the system’s (global) state setS; each unit starts from
its own initial state; i.e., the initial global statesinit of the system is(s0

init, . . .s
k
init); and∇ = {ǫ} ∪ Σ with

Σ = Σ0 ∪ . . . ∪ Σk is the system’s action set.
1 The black-box testing procedure can be implemented in practice for a variety of transition systems [5].

The system’s (global) transition relationR ⊆ S×∇×S is more complex. A global transition that moves
the system from a global state(s0, . . ., sk) to another global state(s

′

0, . . ., s
′

k) while performing an action
a ∈ ∇ is in R iff one of the following conditions is satisfied:

– a is an internal action (i.e.,ǫ), and exactly one unit in the system performs the internal action while the
remaining units do not move; i.e.,∃0 ≤ i ≤ k. (si, ǫ, s

′
i) ∈ Ri ∧ ∀0 ≤ j 6= i ≤ k. sj = s′j ,

– a is an observable action (i.e.,a ∈ Σ), and all the units whose interfaces contain the observableaction
a synchronize over the action while the remaining units do notmove; i.e.,∀0 ≤ i ≤ k. (i ∈ Sig(a) ∧
(si, a, s′i) ∈ Ri) ∨ (i 6∈ Sig(a) ∧ si = s′i).

In other words, at any moment in the systemSys, exactly one unit performs an internal action, exactly one
unit performs an observable action that is not shared with any other unit, or multiple units synchronize over
a common observable action. It shall be noticed from the above definition that the synchronizations allowed
in our model are quite flexible. Not only can the units in a system synchronize over an output/input pair as
most other system models allow, they can also synchronize over just an output action or an input action, if
only they can perform this (no matter output or input) actionat a certain global state. Also, in our model,
a synchronization can either occur between a pair of units oramong more than two units; thus multi-cast
or broadcast is allowed. Certainly in some systems, multi-cast, broadcast, or synchronizations over only an
output action or input action may be undesirable. In that case, they can be easily eliminated just by renaming
the actions. It shall also be pointed out that, in the systemSys, if a global transition is a synchronization
over a pair of output and input actions among some units, these two actions are considered to be one single
action, and we do not discriminate whether it is output or input but just treat it as an observable action to the
environment.

As defined earlier, a sequenceα ∈ Σ∗ is an observable behavior of the systemSys of black-boxes if the
system, treated as a transition system, has an execution from the initial global state to some global state and,
on the execution,α is the observable behavior.

fire!

resume?pause? serr!data!

fire? msg!

fail!cerr!

ack? nack?

ok!

Timer Sensor Comm

pause! resume!
data?

serr?

send!

cerr?

fail?Gluer

ok?

send?

Fig. 1.A Data Acquisition System

For example, consider a data acquisition system shown in Figure 1, which consists of oneGluer and
three black-box components:Timer, Sensor andComm. The system works as follows. Once started, the
Timer keeps signaling afire event when the time interval set runs out; theTimer can also be paused (resp.
resumed) by an incomingpause(resp.resume) event. TheSensor is supposed to respond to afire event
by signaling adataevent when the sensor’s reading is ready; it also signals aserr event when something is
wrong inside theSensor. TheComm component responds to asendevent to send some data by signaling a
msgevent to some underlying network; it responds to anack(resp.nack) event by signaling anok (resp.fail)

s4

s3s2

s1

s0

cerr?

serr?

serr?

fail?

ok?

data?

pause!

cerr?

send!

data?

s5
ok?

fail?

resume!

send!

Fig. 2.The Gluer

s0

fire!

resume?

s1
pause?

resume?

pause?

Fig. 3. Internal implementation of Timer

event to indicate that the data associated with a previoussendevent has been transmitted successfully (resp.
unsuccessfully) by the underlying network; it signals ancerr event when something is wrong insideComm.
TheGluer (whose transition graph is depicted in Figure 2) simply relays data fromSensor to Comm; it
pauses theTimerwhen something is wrong with theSensor orComm, and after that, it resumes theTimer
when either anok or fail is received fromComm. Together, they constitute a data acquidition system, which
periodically transmits a reading of theSensor throughComm via some underlying communication network.
In this system, theGluer and the three components run concurrently and synchronize with each other by
sending and receiving those events (here, all synchronizations are over output/input pairs between two units).
The internal implementations of the three components are shown in Figure 3, Figure 4, and Figure 5, respec-
tively 2. It can be seen (though not obviously) that the following sequence is an observable behavior of the
system:fire fire serr pause data send msg ack ok resume fire, while sequencefire fire serr data pause sendis
not.

When all the black-boxes are fully specified, our system model is roughly equivalent to the IOTS studied
in [27]. Our model is also closely related to I/O automata [23] (but ours is not input-enabled) and to interface-
automata [9] (but ours, similar to the IOTS, makes synchronizations between units observable at the system
level). These observable synchronizations are the key to testing the behavior of a system of concurrent black-
boxes, where an abstract model (such as design or source code) of each black-box is unavailable.

Let Bad ⊆ Σ∗ be a given set of test sequences that are not supposed to be theobservable behaviors
of the systemSys. The global testing problemis to verify (with a definite answer) that none of the test
sequences inBad is an observable behavior of the system. Clearly, in general, the problem can not be solved
completely since the setBad can be infinite and, for testing, only finitely many test sequences can be run.
Therefore, we assume thatBad is a finite set, which can be given as an explicit list of test sequences (e.g.,

2 Obviously, the push-in technique does not require these transition graphs, which are provided only for readers to
understand the system

s0 s1
fire?

data!
s2

fire?

serr!

Fig. 4. Internal implementation of Sensor

ok!

send?
s0 s1 s2 s4

s3

s5cerr!

msg!

fail!

ack?

send?

nack?

Fig. 5. Internal implementation of Comm

Bad = {fire fire, fire fire data, fire data send fire}) or as a symbolic representation (e.g.,Bad is all
sequences in regular expressionfire data (fire)∗ send whose lengths are between 10 and 30).

4 The Push-in Technique

In this section, we present the “push-in” technique to completely solve the global testing problem, by per-
forming unit testing over each individual black-box in the system. A test sequence is a string or a word. A
finite set of test sequences is therefore a regular language and, in this paper, we use a (finite) automaton that
accepts the finite set as the symbolic representation of the set. Our push-in technique is automata-theoretic.
For each1 ≤ i ≤ k, the technique generates two automata:Ui andAi. AutomatonUi, called aunit test
sequence automaton, accepts words in alphabetΣi; i.e., it represents a set of test sequences for black-boxBi.
AutomatonAi, called anauxiliary automaton, accepts words in alphabetΣi ∪ . . . ∪ Σk (observable actions
for the black-boxesBi, . . ., Bk). Our push-in technique works in the followingk steps, wherei is from 1 to
k:

Stepi. The step consists of two tasks:
(Automaton Generation) This task generates the unit test sequence automatonUi and the auxiliary automaton
Ai. We first generate the auxiliary automatonAi. Initially when i = 1, the generation is based on theSys’s
description (i.e., the gluerG and the interfaces forB1, . . ., Bk) and the given setBad. Wheni > 1, the
generation is based on the auxiliary automatonAi−1 and the surviving setSUVi−1 (see below) obtained
from the previousStepi − 1. If the empty string is accepted by the auxiliary automatonAi, then the global
testing problem (none of observable behaviors of the systemSys is in Bad) returns “no” (i.e., a bad behavior
of the system exists) – no further steps need to run. We then generate the unit test sequence automatonUi

directly from the auxiliary automatonAi constructed earlier. This task is purely automata-theoretic and does
not involve any testing.
(Surviving Set Generation) In this second task, usingBBtest, we perform unit testing over the black-boxBi

for all test sequences accepted by the test sequence automaton Ui (Ui always accepts a finite set). We use
SUVi, called the surviving set, to denote all the successful testsequences. If the surviving set is empty, then
the global testing problem returns “yes” (i.e., none of observable behaviors of the systemSys is in Bad).
Otherwise, ifi < k (i.e., it is not the last step), we goto the followingStepi + 1. If i = k (i.e., it is the last
step and the surviving set is not empty), then the global testing problem returns “no” (i.e., some observable
behaviors of the systemSys is indeed inBad).

In the rest of this section, we will clarify how Automata Generation and Surviving Set Generation in the
k steps can be done. Since our technique heavily depends on automata theory, we would like to first build the
theory foundation of our technique before we proceed further.

4.1 Theory Foundation of the Push-in Technique

Let us first make a pessimistic (the name is borrowed from the discussions in [9]) modification of the original
systemSys by assuming that each black-boxBi, 1 ≤ i ≤ k, can demonstrateanyobservable behavior inΣ∗

i

(recalling thatΣi is the interface of the black-box). The resulting system is denoted by ˆSys. Clearly, every
observable behavior ofSys is also an observable behavior of̂Sys (but the reverse is not necessarily true).

Notice that ˆSys does not have any black-boxes since the original black-boxBi, after the pessimistic
modification, can be considered as a finite state unitB̂i with only one state, where each action inΣi ∪ {ǫ}
is a label on a transition from the state back to the state. According to the semantics definition presented in
Section 3.2, it is not hard to see that̂Sys itself, after the composition of the gluerG with all the one-state
unitsB̂1, . . ., B̂k, is a finite state transition system with|G| (the number of states in the gluer) states and with
actions inΣ ∪ {ǫ}. (Recall thatΣ = Σ0 ∪ . . . ∪ Σk is the union of all observable actions in the gluer and
the black-boxes.) The pessimistic system can also be treated as a pessimistic (finite) automaton by making
each state be an accepting state and eachǫ-transition be anǫ-move. In this way, the language (a subset ofΣ∗)
accepted by the automaton is exactly all the observable behaviors of the pessimistic system.

As we have mentioned earlier, the setBad ⊆ Σ∗ is a finite and hence regular set. Suppose that the
symbolic representation of the set is given as an automatonMBad (whose state number is written|MBad|);
i.e., the language accepted byMBad is exactly the setBad.

Using a standard Cartesian product construction, one can build an automatonMglobal, called the global
test sequence automaton, to accept the intersection of the language accepted by the pessimistic automatonˆSys

and the language accepted by the automatonMBad. That is,Mglobal accepts exactly the bad and observable
behaviors of the pessimistic system. Clearly, the state number inMglobal is at most|G| · |MBad|.

For a wordα ∈ Σ∗, we useα ↓Σi
, 1 ≤ i ≤ k, to denote the result of dropping all symbols not inΣi

from α. That is, ifα is an observable behavior of the systemSys, thenα ↓Σi
is the corresponding observable

behavior of black-boxBi. The theory foundation of our push-in technique can be summarized in the following
theorem, which can be shown using the semantics defined in Section 3.2.

Theorem 1. For any global test sequenceα in Σ∗, the following two items are equivalent:

(1) α is a bad (i.e., inBad) observable behavior of the systemSys of black-boxesB1, . . ., Bk,
(2) α is accepted by the global test sequence automatonMglobal, and each of the followingk conditions

holds:
(2.1) α ↓Σ1

is an observable behavior ofB1,
...

(2.k) α ↓Σk
is an observable behavior ofBk.

We use “class C” to denote all theα’s that satisfy Theorem 1 (2). Obviously, the global testingproblem
(i.e., there is no bad behavior inSys) is equivalent to the emptiness of class C.

In the push-in technique, the jobs ofStep 1, . . ., Stepk are to establish the emptiness of class C using
both automata theory and black-box testing. One naive approach for the emptiness is to use Theorem 1 (2)
directly: repeatedly pick a global test sequenceα accepted byMglobal (note thatMglobal accepts a finite
language) and, using black-box testing, make sure that one of the conditions (2.i), 1 ≤ i ≤ k, is false. This

naive approach works but inefficiently. This is because, when Mglobal accepts a huge set (such as more than
1024 in our experiments shown later), trying every such element is not only infeasible but also unnecessary.
Our approach of doing the job aims at eliminating the inefficiency. First, we do not pick a global test sequence
α. Instead, wecomputethe test sequences run on black-boxBi from the testingresultson black-boxBi−1 in
the previousStepi − 1. As we have mentioned at the beginning of this section, eachStepi has two tasks to
perform: Automata Generation and Surviving Set Generation, which are presented in detail as follows.

4.2 Automata Generation in Stepi

This task inStep i is to generate two automata: the unit test sequence automaton Ui and the auxiliary au-
tomatonAi.

Initially when i = 1, A1 is constructed asA1 = Mglobal ↓Σ1∪...∪Σk
, i.e., the result of dropping every

transition inMglobal that is labeled with an observable action not inΣ1 ∪ . . . ∪ Σk. U1 is constructed as the
automatonU1 = A1 ↓Σ1

(i.e., the result of dropping every transition inA1 that is labeled with an observable
action not inΣ1). Observe thatA1 accepts the languageA1 = {α ↓Σ1∪...∪Σk

: α accepted byMglobal} and
U1 accepts the languageU1 = {α ↓Σ1

: α is in A1}. The state number in either of the two automata, in worst
cases, is|Mglobal|.

Wheni > 1, the two automataAi andUi are constructed from the auxiliary automatonAi−1 and the
surviving setSUVi−1 obtained in the previous step. To constructAi, we first build an automatonsuvi−1 to
accept the finite setSUVi−1. Then, we build an intermediate automatonMi−1 that works as follows: on an
input word in(Σi−1 ∪ . . .Σk)∗, Mi−1 starts simulatingAi−1 andsuvi−1 on the word, in parallel. During
the simulation, wheneversuvi−1 reads an input symbol that is not inΣi−1 (note thatsuvi−1 only accepts
words inΣ∗

i−1), it skips the input symbol.Mi−1 accepts the input word when bothAi−1 andsuvi−1 accept.
Finally, the auxiliary automatonAi is constructed asAi = Mi ↓Σi∪...Σk

. The unit test sequence automaton
Ui is constructed asUi = Ai ↓Σi

.
One can show that each of the two automataAi andUi has, in worst cases, a state number of|Ai−1| ·

|suvi−1|. Also,Ai accepts the languageAi = {α ↓Σi∪...∪Σk
: α ∈ (Σi−1∪. . .∪Σk)∗ is in Ai−1 andα ↓Σi−1

is in SUVi−1} andUi accepts the languageUi = {α ↓Σi
: α ∈ (Σi ∪ . . .Σk)∗ is inAi}.

As we have mentioned earlier, when the empty string is accepted by the auxiliary automatonAi (a stan-
dard membership algorithm can be used to validate the acceptance), our push-in technique will return a “no”
answer on the global testing problem (i.e., the system does have a bad observable behavior) and no further
steps need to run.

4.3 Surviving Set Generation in Stepi

The surviving setSUVi is the set of all successful unit test sequencesα ∈ Ui; i.e.,SUVi = {α ∈ Σ∗
i : α ∈

Ui andα is an observable behavior of black-boxBi}.
A straightforward way to obtain the set is to run the black-box testing procedureBBtest over the black-

box Bi with every test sequence inUi. This is, however, not efficient, in particular when the setUi is huge.
Observable behaviors of a unit are prefix-closed: ifα is not an observable behavior ofBi, then, for anyβ, αβ

can not be (i.e., test sequenceαβ need not be run). With prefix-closeness andBBtest, we use the following
automata-theoretic procedure to generate the surviving set SUVi.

Recall thatUi is a finite set of unit test sequences and, as a regular language, accepted by the unit test
sequence automatonUi. Let m be the maximal length of all test sequences inUi (the length can be obtained
using a standard longest path algorithm over the transitiongraph of automatonUi). Our procedure consists

of the followingm jobs. EachJobj , wherej is from 1 tom, is to identify (using black-box testing) all the
successful test sequences (with lengthj) which are prefixes (which are not necessarily proper) of some test
sequences inUi. In order to do this efficiently, the job makes use of the previous testing results inΘj−1. More
precisely, eachJobj has two parts (by assumption, letΘ0 contain only the empty word.):

– DefinePj to be the set of all the prefixes with lengthj of all the unit test sequences inUi. Calculate the
setP̂j ⊆ Pj such that each element in̂Pj has a prefix (with lengthj − 1) in Θj−1. To implement this
part, one can first construct an automaton (from automatonUi) to accept the languagePj . Then, construct
another automaton to accept the setΘj−1. Finally, an automatonM can be constructed from these two
automata to accept the languageP̂j . All the constructions are not difficult and do not involve testing.

– Using BBtest, generate the setΘj that consists of all the successful test sequences over black-box Bi

in P̂j . Hence, one only runs test sequences inP̂j instead of the entirePj , thanks to the previous testing
results inΘj−1.

It is left to the reader to verify that, after the jobs are completed, the surviving setSUVi can be obtained as
Ui ∩ (∪0≤j≤mΘj). Again, this set can be accepted by an automaton, treated as asymbolic representation of
the set, constructed from automatonUi and the automata built in the above jobs to acceptΘj , 1 ≤ j ≤ m.
One can choose the procedure to output the explicit setSUVi or its symbolic representationsuvi.

4.4 Correctness and Bad Behavior Generation

Since the global testing problem is equivalent to the emptiness of class C, we only need to show that the
emptiness is answered correctly with the push-in technique. Clearly, the technique always terminates with a
yes/no answer. It returns “yes” only at someStep i, 1 ≤ i ≤ k, whose surviving setSUVi = ∅. It returns
“no” only

CASE1. at someStepi, 1 ≤ i ≤ k, when the auxiliary automatonAi accepts the empty word, or
CASE2. at the lastStepk whenSUVk 6= ∅.

In these two cases, in order to demonstrate a global bad behavior of the system, we first define an operation
called selectj(·), 1 ≤ j ≤ k. Given a sequenceαj , the operation returns a sequenceαj−1 (when j =
1, it simply returnsαj) satisfying the following conditions:αj−1 ∈ Aj−1, αj−1 ↓Σj−1

∈ SUVj−1 and
αj−1 ↓Σj∪...Σk

= αj . The returned sequenceαj−1 may not be unique. In this case, any sequence (such as a
shortest one) satisfying the conditions will be fine. Now, wedefine another operation calledBadGenj(·),
1 ≤ j ≤ k, as follows. Given a sequenceαj , we first calculateαj−1 = selectj(αj). Then, we calculate
αj−2 = selectj−1(αj−1), and so on. Finally, we obtainα1. At this time, the operationBadGenj(αj)
returns any sequenceα satisfying the following conditions:α is accepted byMglobal andα ↓Σ1∪...Σk

= α1.
All these operations can be easily implemented through automata constructions.

Coming back to bad behavior generation, in CASE1, we returnBadGeni(λ) (whereλ is the empty
sequence) as a global bad behavior. In CASE2, we simply pick any sequenceαk from SUVk and return
BadGenk(αk) as a global bad behavior.

One can show that our technique is indeed correct:

Theorem 2. If the class C is empty then the push-in technique returns “yes”, otherwise it returns “no”.
When the technique returns yes, it shows that the system doesn’t have any of the global bad behaviors in
BAD, otherwise it indicates that the system does exhibit bad behaviors inBAD.

In each step of our algorithm, one can use standard algorithms in automata theory to make the obtained
automata likeUi’s andAi’s smaller. The algorithms include eliminating unreachable states and/or minimiza-
tion. Additionally, the algorithms as well as all the automata constructions mentioned in the push-in technique
can be implemented using existing automata manipulation tools like Grail [1].

From the correctness theorem, we know that the push-in technique is sound and complete. However,
one question still remains unsolved: Are test sequences (for black-boxBi) in eachUi more than necessary
(in solving the global testing problem)? We can show that each Ui derived from our push-in technique is
“optimal” in the following sense. Suppose that we have completed the firsti − 1 Steps (i.e., the black-
boxesB1, . . ., Bi−1 have been tested) and have obtainedUi to start the subsequent steps (i.e., the remaining
black-boxesBi, . . ., Bk are not tested yet). Each test sequenceαi in Ui has to be run, since one can show the
following two statements: There are black-boxesB∗

i , . . ., B∗
k, such thatαi is a successful (resp. unsuccessful)

test sequence forB∗
i and the systemG(B1, . . ., Bi−1, B

∗
i , . . ., B∗

k) has (resp. does not have) a global bad
behavior.

maxlength=10 maxlength=20 maxlength=30
stepi #Ai #Ui #SUVi TCi #Ai #Ui #SUVi TCi #Ai #Ui #SUVi TCi

step
1

1.06X107 148 47 68 7.16X1015 8.06X104 3533 4572 2.16X1024 4.14X107 2.23X105 2.87X105

case 1step
2

3.05X106 548 12 41 6.92X1014 4.62X105 177 393 1.13X1023 2.43X108 1331 2940

step
3

4.78X104 4.78X104 7 39 1.15X1012 1.15X1012 58 297 1.81X1019 1.81X1019 274 1577

step
1

1.38X107 386 73 121 5.90X1015 2.61X105 6697 9384 1.59X1024 1.42X108 4.74X105 6.30X105

case 2step
2

3.12X106 142 13 25 4.94X1014 5.91X104 93 203 6.99X1022 2.53X107 645 1356

step
3

7.25X105 7.25X105 0 47 1.11X1013 1.11X1013 0 277 1.48X1020 1.48X1020 0 1259

step
1

1.38X107 386 73 121 5.90X1015 2.61X105 6697 9384 1.59X1024 1.42X108 4.74X105 6.30X105

case 3step
2

3.12X106 142 13 25 4.94X1014 5.91X104 93 203 6.99X1022 2.53X107 645 1356

step
3

7.25X105 7.25X105 0 47 1.11X1013 1.11X1013 13 359 1.48X1020 1.48X1020 129 2577

step
1

1.30X106 178 32 76 3.51X1015 2.20X105 5507 8197 1.65X1024 1.36X108 4.44X105 6.00X105

case 4step
2

1.02X105 97 0 14 9.54X1013 1.70X105 0 128 2.39X1022 1.22X108 0 906

step
3

0 0 0 0 0 0 0 0 0 0 0 0

Table 1.Experiment Results: Counts of Test Sequences

5 Experiments

All the experiments were performed on a PC with a 800MHz Pentium III CPU and 128MB memory. The Grail
[1] tool was used to perform almost all the automata operations3. The entire experiment process was driven
by a Perl script and carried out automatically. Our experiments were run on the system of black-boxes shown
in Figure 1. In the experiments, we designated black-boxesTimer, Sensor andComm asB1, B2, andB3,
respectively. The internal implementations of the black-boxes are shown in Figures 3, 4 and 5, on which the
unit testing in the experiments was performed. We have totally run twelve experiments (each experiment is
a complete execution of the push-in technique), which are divided into four cases. Each of the four cases
consists of three experiments, which are illustrated in detail as follows.

Case 1Firstly, we wish that whenever apause event takes place, there should be no moresend un-
til a resume occurs. The corresponding bad behaviors are specified as a regular expression,Σ∗p(Σ −
{r})∗sΣ∗, whereΣ is the set of all the twelve events in the system;p, r, and s stand for thepause,
send, andresume, respectively (such abbreviation will be used throughout this section). For the first ex-
periment run in this case, we chose theBad to be all words in the regular expression that are not longer
than 10 (denoted by “maxlength=10”). The remaining two experiments were run with “maxlength=20” and

3 We implemented (in C) three additional operations to manipulate automata withǫ-moves and to count the number of
words in a finite language accepted by an automaton, which arenot provided in Grail.

“maxlength=30”, respectively. To understand the results shown in Table 4.4, we go through the third exper-
iment (i.e., “maxlength=30”). The results of the experiment are shown in the box at the right upper corner
in the table (i.e., under the four columns associated with “maxlength=30” and in the three rows (“step1”,
“step2”, “ step3”) associated with “case 1”). The three steps in the experiment correspond to the three
Steps (since there are three black-boxes) in the push-in technique. The auxiliary automatonA1 calculated
in Step 1accepts totally#A1 = 2.16 × 1024 test sequences. The unit test sequence automatonU1 accepts
#U1 = 4.14 × 107 test sequences. Using the black-box testing procedure in Section 4.3, we actually only
performedTC1 = 2.87 × 105 unit tests overB1 (theTimer), among which#SUV1 = 2.23 × 105 tests
survived. InStep 2andStep 3, we obtained#A2, #U2, #A3, #U3 similarly as shown in the table. In par-
ticular, we actually performedTC2 = 2940 unit tests over theSensor in Step 2andTC3 = 1577 unit tests
over theComm in Step 3. Since the last surviving setSUV3 is not empty (#SUV3 = 274), the experiment
detects a global bad behavior specified in this case.

Notice that the total number of unit tests run in this experiment isTC1 + TC2 + TC3, which is not more
than2.92 × 105. This number essentially indicates the actual “cost” of theexperiment in deciding whether
there is a global bad behavior specified in the case and whose length is bounded by 30. This number is quite
good considering the astronomical number#A1 = 2.16 × 1024 which would be the number of integration
test sequences if one run integration testing, sinceMglobal = A1 in the system. The other two experiments
(“maxlength=10” and “maxlength=20”) also detected a global bad behavior and results are shown in the first
three rows under “maxlength=10” and “maxlength=20” in Table 4.4 (the costs of these two experiments,
which are 148 and 5262 respectively, become much smaller).

Case 2The detected bad behaviors are due to the concurrency natureof these black-boxes: afire was
issued before thepause is sent toTimer, which eventually leads to anothersend. For instance, a global
bad behavior could be like the following:fire data send msg fire data send cerr fire data pause send.
From this observation, we believed that the system might also have other bad behaviors: after acerr takes
place, there could be anothercerr coming before aresume occurs. Such bad behaviors are encoded by
Σ∗c(Σ − {r})∗cΣ∗. The three experiments in this case, however, did not detectsuch bad behaviors (i.e.,
#SUV3 = 0 for all lengths, shown in the third row “step3” associated with “case 2” in Table 4.4).

Case 3Based upon the experiments in the previous case, we carefully studied the system and realized that
the implementation ofComm might be wrong: after an error occurs (i.e., acerr outputs),Comm is supposed
to retain its state prior to the output of thecerr, while it does not. After correcting this bug (by making the
internal implementation ofComm, shown in Figure 5, move to states2 instead ofs0 after acerr is output), in
this case, we run the three experiments again. The experiments detected bad behaviors only with length more
than10 (i.e.,#SUV3 = 0 when maxlength is 10 and#SUV3 > 0 when maxlength is20 and30, shown in
Table 4.4).

Case 4Now we want to test that: after an error occurs inSensor (i.e., aserr is issued), there will be
at most one morefire issued before aresume occurs. The corresponding bad behaviors are encoded by
Σ∗serr(Σ − {r})∗f(Σ − {r})∗f(Σ − {r})∗rΣ∗, wheref stands forfire. Our experiments did not detect
any of such behaviors for all the three choices of maxlength:10, 20, 30. In fact, in the experiments, no testing
overComm was needed. This is because, shown in the last three rows of Table 4.4,#SUV2 is 0 for all the
three choices.

We measured the total time that our script used for automata manipulations in each of the twelve exper-
iments, shown in Table 2. In the table, the “result” shows whether a global bad behavior was detected in an
experiment; i.e., “×” (resp. “

√
”) indicates “detected” (resp. “not detected”). As shown inthe table, the total

time is within a minute for all the four experiments with “maxlength=10”. For “maxlength=20”, the time is
still acceptable (within an hour). When the maxlength is increased to 30, the time is still within our patience

(which was set to be 24 hours). Yet, our script could not finishwithin the patience for any experiment when
we tried to push maxlength to 40. Even though determinization and minimization are optional in our push-in
technique, we made them mandatory in our experiments. In this way, we can cross-compare the sizes of the
automata obtained in each step of the experiments. The largest size of all the automata constructed in the
twelve experiments, after determinization and minimization, is with 726 states and 2138 transitions. In an
experiment with maxlength=40, the script tried to make an automaton (with 1182 states) deterministic and
failed to do so within our patience.

Exhaustive integration testing over a concurrent system isin general infeasible. However, the experi-
ments show that, using the push-in technique, we can completely solve the global testing problem with a
substantially smaller number of tests over each individualblack-box only, even for an extremely large set
of Bad. For instance, the total number of unit tests (TCi’s) performed in each of the four experiments with
“maxlength=30” is in the order of105, while eachBad is in the order of1024 (notice that eachBad is always
larger than each#A1, shown in Table 4.4).

maxlength=10maxlength=20maxlength=30
Cases time result time result time result

Case 1∼25s × ∼40m × ∼19h ×
Case 2∼34s

√ ∼58m
√ ∼18h

√

Case 3∼36s
√ ∼56m × ∼18h ×

Case 4∼17s
√ ∼22m

√ ∼5h
√

Table 2.Experiment Results: Time Efficiency

6 Future Work

This paper presents an automata-theoretic and decompositional technique to testing a system of concurrent
black-boxes, which is automatic, sound, and complete. Our technique can be generalized to many other forms
of bad behavior specifications (i.e., the finite setBad). For instance, we may that specify thatBad consist of
all observable sequences not longer than 40, each of which can make the gluer enter a given (undesired) state.
But the exact formalisms for bad behavior specifications need further investigation. Our model of the system
is based on synchronized communications. Therefore, it would be interesting to see whether the approach can
be generalized to some forms of asynchronous (e.g., shared-variable) systems. Black-boxes in our model are
event-driven; it is also worthwhile to study other decompositional testing approaches for data-driven black-
boxes. Sometimes, our push-in technique fails to complete,due to an extremely large bad behavior setBad

(e.g., our experiments with “maxlength=40” shown earlier,whose global test sequences deduced fromBad

are roughly as many as1033). In this case, we need study methods to (symbolically) partition the set into
smaller subsets such that the push-in technique can be run over each smaller subset. In this way, a global bad
behavior could instead be found. In our definition of the push-in technique, there is not a pre-defined ordering
in testing the black-boxes. For instance, in our experiments, the ordering wasTimer,Sensor,Comm, based
on the size of a black-box’s interface. Clearly, more studies are needed to clarify the relationship between the
efficiency of our technique and the choices of the ordering.

References

1. Grail homepage. http://www.csd.uwo.ca/research/grail/.
2. Martn Abadi and Leslie Lamport. Composing specifications. TOPLAS, 15(1):73–132, 1993.
3. Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K. Rajamani, and Serdar Tasiran.

MOCHA: Modularity in model checking. InCAV’98, volume 1427 ofLNCS, pages 521–525. Springer, 1998.
4. A. Bertolino and A. Polini. A framework for component deployment testing. InICSE’03, pages 221–231. IEEE

Press, 2003.
5. Ed Brinksma and Jan Tretmans. Testing transition systems: An annotated bibliography. InProc. 4th Summer School

on Modeling and Verification of Parallel Processes, pages 187–195. Springer-Verlag, 2001.
6. J. Callahan, F. Schneider, and S. Easterbrook. Automatedsoftware testing using modelchecking. WVU Technical

Report #NASA-IVV-96-022.
7. E. Clarke, D. Long, and K. McMillan. Compositional model checking. InLICS’89, pages 353–362. IEEE Press,

1989.
8. A. Coen-Porisini, C. Ghezzi, and R. A. Kemmerer. Specification of realtime systems using ASTRAL.TSE,

23(9):572–598, 1997.
9. Luca de Alfaro and Thomas A. Henzinger. Interface automata. InFSE’01, pages 109–120. ACM Press, 2001.

10. A. Engels, L.M.G. Feijs, and S. Mauw. Test generation forintelligent networks using model checking. InTACAS’97,
volume 1217 ofLNCS, pages 384–398. Springer, 1997.

11. Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-based software designs. In
ESEC/FSE’01, pages 152–163. ACM Press, 2001.

12. C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN’03, volume 2648 ofLNCS, pages 213–225.
Springer, 2003.

13. Angelo Gargantini and Constance Heitmeyer. Using modelchecking to generate tests from requirements specifica-
tions. InESEC/FSE’99, volume 1687 ofLNCS, pages 146–163. Springer, 1999.

14. S. Ghosh and P. Mathur. Issues in testing distributed component-based systems. InFirst ICSE Workshop on Testing
Distributed Component-Based Systems, 1999.

15. Dimitra Giannakopoulou, Corina S. Pasareanu, and Jamieson M. Cobleigh. Assume-guarantee verification of source
code with design-level assumptions. InICSE’04, pages 211–220. IEEE Press, 2004.

16. Mary Jean Harrold. Testing: a roadmap. InProceedings of the conference on the future of software engineering,
pages 61–72. ACM Press, 2000.

17. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, , andShaz Qadeer. Thread-modular abstraction refinement.
In CAV’03, volume 2725 ofLNCS, pages 262–274. Springer, 2003.

18. Ralph D. Jeffords and Constance L. Heitmeyer. A strategyfor efficiently verifying requirements. InFSE’03, pages
28–37. ACM Press, 2003.

19. C.B. Jones. Tentative steps towards a development method for interfering programs.TOPLAS, 5(4):596–619, 1983.
20. Pramod V. Koppol, Richard H. Carver, and Kuo-Chung Tai. Incremental integration testing of concurrent programs.

TSE, 28(6):607–623, 2002.
21. Leslie Lamport. Specifying concurrent program modules. TOPLAS, 5(2):190–222, 1983.
22. Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Verifying cross-cutting features as open systems.ACM SIGSOFT

Software Engineering Notes, 27(6):89–98, 2002.
23. N. Lynch and M. Tuttle. An introduction to input/output automata.CWI-Quarterly, 2(3):219–246, 1989.
24. Lev Nachmanson, Margus Veanes, Wolfram Schulte, Nikolai Tillmann, and Wolfgang Grieskamp. Optimal strategies

for testing nondeterministic systems. InISSTA’04, pages 55–64. ACM Press, 2004.
25. Alessandro Orso, Mary Jean Harrold, and David S. Rosenblum. Component metadata for software engineering tasks.

In EDO’00, volume 1999 ofLNCS, pages 129–144. Springer, 2000.
26. Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. InFORTE/PSTV’99, pages 225–240.

Kluwer, 1999.
27. Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo. Testing transition systems with input and output testers. In

TestCom’03, volume 2644 ofLNCS, pages 129 – 145. Springer, 2003.

28. A. Pnueli. In transition from global to modular temporalreasoning about programs, 1985. In K.R. Apt, editor, Logics
and Models of Concurrent Systems, sub-series F: Computer and System Science.

29. D. Rosenblum. Adequate testing of componentbased software. Department of Information and Computer Science,
University of California, Irvine, Technical Report 97-34,August 1997.

30. C. Szyperski. Component technology: what, where, and how? In ICSE’03, pages 684–693. IEEE Press, 2003.
31. C. Tai and R. H. Carver. Testing of distributed programs.In Parallel and Distributed Computing Handbook, pages

955–978. McGraw-Hill, 1996.
32. Jan Tretmans and Ed Brinksma. Torx: Automated model-based tesing. InFirst European Conference on Model-

Driven Software Engineering, pages 31–43, 2003.
33. J. Voas. Developing a usage-based software certification process.IEEE Computer, 33(8):32–37, August 2000.
34. John Whaley, Michael C. Martin, and Monica S. Lam. Automatic extraction of object-oriented component interfaces.

In ISSTA’02, pages 218–228. ACM Press, 2002.
35. Gaoyan Xie and Zhe Dang. Model-checking driven black-box testing algorithms for systems with unspecified com-

ponents. InFATES’04, LNCS, (to appear).

	 Testing Systems of Concurrent Black-boxes---an Automata-Theoretic and Decompositional Approach

