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Abstract

Component-based design has become a necessity for networked embedded systems where
hardware platforms come in a great variety and evolve extremely rapidly. Operating system
components and higher level middleware services call for modular software construction along
clear interfaces. The way we describe these interfaces and process the captured information is of
crucial importance for exploiting the benefits of component-based design. In this paper we present
a model based approach to the development of embedded applications with a special emphasis on
interface specification. The proposed formalism captures the temporal and type aspects of interfaces
and supports the composition and verification of components. Along with the formal definition
of the proposed interface language and componentcompatibility rules, we present a modeling
environment targeting TinyOS, a representative embedded operating system. Two prototype tools
are also described that check the composabilityof components based on their interface models and
verify that the implementation of a component matches its formal model, respectively.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Component-based design is increasingly viewed as the cornerstone of software en-
gineering. The advantages of using components stem from the fact that they can be
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developed and tested in isolation, and systems can be built and updated incrementally.
When they are designed with adequate generality, components can be reused in different
applications. Component-based design has become especially important for networked
embedded systems where hardware platformsand operating systems are characterized
by a rapid pace of innovation. This is best exemplified by the advent of TinyOS
[7], an operating system specifically designed for sensor networks, and nesC [5], its
programming language. Even the most basic system modules of TinyOS are components
that can be augmented or replaced for differentapplications and/orplatforms. The nesC
language defines a component model that relies on bidirectional interfaces and admits an
efficient implementation that avoids dynamic component creation. TinyOS applications
are statically linked graphs of event-driven components. Typically, the same application
image is executed on all (or most of) the nodes of the network. Full-blown sensor network
systems are built from hundreds of intricately interacting components through thousands
of component interfaces. Manual wiring of components, a tedious and error prone task
in nesC, can be automated by composition tools, such as Gratis [15]. However, the truly
challenging and especially missing ingredient for the development of mission critical, large
scale sensor network applications iscomponent and composition verification.

Verification of embedded systems has an extensive research literature covering formal
verification and model checking methods [2]. Nevertheless, only a selected few approaches
address the special needs of sensor networks, such as the theory of Input Output Automata
[4] and that of InterfaceAutomata [3]. The automata-theoretic approach lends itself
naturally to the study of networked sensor applications, because of their inherent event-
driven nature. Existing methodologies do not exploit the massively componentized and
hierarchical structure of nesC programs. Insuch designs the reactions between moderately
sized software components are restricted by the single flow of control within the application
as opposed to a distributed system with asynchronously scheduled processes [12]. This
work is focused on the modeling and light weight verification of such component systems
and does not claim unrestricted applicability in other domains.

Most programming errors during application composition are either the result of
incorrectly used components or the bad interaction of multiple components, some of
which could be operating system components not even considered by the developer. We
address these sources of programming errors by introducing a hierarchical component
verification formalism based on the Interface Automata language and by extending the
Gratis environment with a prototype verification tool for TinyOS applications.

In the following sections we overview TinyOS and Gratis. Then we formally define
hierarchical interface automata, our formalism for modeling component interfaces. Next
we define the composition and compatibility verification of hierarchical interface automata.
Wedescribe how these automata can be used tovalidate existing hand-written components,
as well as assemblies of components. Finally, we illustrate the use of the proposed
formalism in the extended Gratis environment.

2. TinyOS

TinyOSis a component-based configurable operating system with a very small footprint
specifically designed for severely resource constrained devices such as the nodes in a
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typical sensor network [7]. TinyOS is a large set of software components implementing
the basic functionalities that an application might need from the given device, such as
basic I/O, timers, wireless communication, etc. Components can contain other components
in a hierarchical fashion. Each application consists of application-specific components
written by the application designer and a subset of the TinyOS components. This way
an application-specific TinyOS instance is created for each application providing only the
services the application needs, which conserves precious system resources.

A TinyOS application consisting of a set of interconnected components is scheduled
by a simple FIFO-based non-preemptive scheduler. Components communicate with each
other through commands and events. Commands propagate downward; they are issued by
higher level components to lower level ones. Events propagate upward; they are signaled
by lower level components and handled by higher level ones. Events at the lowest level are
generated by the hardware itself in the form of interrupts.

Commands are typically handled by updating the state of the component, possibly
posting a task for later execution and possibly issuing commands to lower level
components. An event handler can also modify the state of the component, signal higher
level events or call lower level commands. Notice that commands cannot signal events
to avoid cycles. Tasks are the worker bees of TinyOS. They can issue commands, signal
events and post other tasks. Tasks are intended to do a short amount of processing and
return. They can only be preempted by events, not by other tasks. This task model enables
TinyOS to have a single call stack.

The latest version of TinyOS (version 1.1) is implemented in nesC [5]. nesC, an
extension of C, is a new language developed specifically to support the TinyOS model
of computation. It disallows dynamic memory allocation and dynamic dispatch, making
nesC programs statically analyzable and optimizable.

The three major building blocks of a nesC application are interfaces, modules and
configurations. An interface is a set of related events and/or commands. In other words, an
interface is a set of function declarations. Theprovider of an interface needs to implement
the commands, while the user of the interface needs to implement the events.

Modules and configurations are both components. Modules are the elementary building
blocks; they have actual procedural nesC code associated with them specifying their
functionality. Configurations are the composite components; they contain modules and/or
other configurations and the wiring specification connecting the various interfaces of the
contained components together. Every nesC (and TinyOS) application has a single top level
configuration [5].

3. Gratis

A TinyOS application is a hierarchical component assembly where component con-
figurations, i.e. wiring specifications, interface declarations and module implementations,
are specified in numerous text files. Graphicalrepresentation of the same information
increases the readability and understandability of the application architecture and helps
in avoiding configuration errors, such as the omission of the wiring specification of one or
more interfaces of a component.
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The Graphical Development Environment for TinyOS (Gratis) is a typical application
of Model Integrated Computing (MIC) in general, and the Generic Modeling Environment
(GME) in particular [9]. GME is a metaprogrammable toolkit for creating domain-
specific modeling environments. GME metamodels specify the modeling language of the
application domain. They are used to automatically configure GME for the domain, that is,
to create a modeling environment that has native support of the target modeling language.

GME models take the form of graphical, multi-aspect, attributed entity-relationship
diagrams. Their syntax is defined by the metamodels specified in a UML class diagram-
based notation. The static semantics of a model are specified by OCL constraints [17] that
are also part of the metamodels. They are enforced by a built-in constraint manager during
model building time. The dynamic semantics are applied by the model translators, i.e. by
the process of translating the models to source code, configuration files, database schema
or any other artifact the given application domain calls for.

This approach fits component-based software development very nicely. The interface of
the individual components can be modeled along with a link to their implementation. The
model editor can enforce the composition rules to make sure that only valid component
assemblies are allowed. More sophisticated analysis can be performed by interfacing to
outside tools. Finally, model translators can generate the glue code that ties the final system
together.

The metamodel of Gratis defines the mapping of TinyOS concepts to GME concepts, as
shown inFig. 1. The three basic building blocks of Gratis models areinterfaces, modules
andconfigurations. An interface consists of a set ofeventsandcommands. Both events
and commands are functions. The return type is captured by a textual attribute, while the
argumentsare modeled with contained objects eachhaving its own type declaration. A
module contains a set of interface references (interface_ref) andits nesC code as a textual
attribute. A reference is a graphical object that points to another object contained elsewhere
in the model hierarchy. This is captured in the metamodel by a directed connection pointing
from the interface to the interface_ref metamodel inFig. 1. Interfaces are declared at the
global level and modules do not contain them directly; they just refer to their declaration
through the use of references. This allowsmultiple modules using and/or implementing
the same interface declarations. Also, when an interface needs to be modified, it is done at
one place and all interface references in all components will refer to the updated interface
automatically.

Similarly, configurations contain references to interfaces, modules (module_ref)
and other configurations (configuration_ref). Interface references contained in modules
and configurations appear as ports in higher level configurations. Component wiring
specifications are expressed in Gratis as connections between interfaces and/or interface
ports in configurations. In fact, two different kinds of connections are used in
configurations. ALINK specifies that a component uses an interface that another provides.
An EQUATEconnection specifies that the interface the given configuration uses/provides
is delegated down to a contained component that either implements it or delegates it further
down the component hierarchy.

Fig. 2 depicts an example application modeled in Gratis illustrating these concepts.
This application periodically samples a photo sensor and sends the measured readings
to a base station. The participating components are Main, the standard entry point of all
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Fig. 1. The simplifiedmetamodel of Gratis.

applications in TinyOS, TimerC, the abstraction layer of hardware timers, Photo, the photo
sensor driver, Comm, the standard wireless communication protocol stack of TinyOS, and
SensorM, the sole application specific module. Module and configuration components are
depicted in dark and light colors, respectively. The ports of the components are provided
and used interfaces. This example will be used throughout the paper.

The only information captured textually in Gratis is the procedural code of module
implementations. The model translator generates all the nesC filescontaining interface,
module and configuration specifications automatically. Keeping the graphical models and
the corresponding nesC files in synch is a challenge, especially because a large code base
of TinyOS components exists in text form only. Therefore, the Gratis model translator
is bi-directional; notonly does it generate the nesC files from graphical models, but it
is also capable of parsing existing source files and building the corresponding models
automatically. The main use of this parsing feature is to automatically generate the
graphical equivalent of the TinyOS system components and to provide them as a library to
the user in the Gratis environment. This library can then be refreshed when new TinyOS
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Fig. 2. Top level model of theSensorapplication in Gratis.

versions become available without any modifications to existing graphical application
models.

4. Temporal models of component interfaces

Traditional programming languages and interface description methods—such as
CORBA IDL—capture only the type aspects of software components. The access points
of a given component are enumerated along with their accepted and returned parameter
types in terms of values and domains. TinyOS and its implementation languagenesC[5] is
no exception to this: component interfaces are defined by a set of function declarations.
Compatibility checking provided by compilers guarantees that the user of a function
provides the required parameters and handles the returned value in a type-safe manner.

Even in trivial applications, the access points of a software component are not isolated;
dependencies and complex relationships might impose additional constraints on the use
of their services. Typical patterns—such asinitialization before use—can be found in
almost every component. A component providing communication services may have more
restrictions that are inherent in the communication protocol. Even if the legal order and
dependencies of the function calls are described in the documentation of the component
as informal rules, automatic tools and formal methods cannot be developed to verify these
constraints.

Graphical models of traditional interfacesenable us to understand and build complex
applications; however, they do not extend the information captured in the textual
representation. Effective composition and reuse of software components demands deeper
understanding and specification of componentinterfaces. Our proposed formalism—based
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Fig. 3. The interface automatonComm.

on the Interface Automata language [3]—captures the dynamic aspects of component
interfaces and enables us to describe more complex behavior.

In the following sections, formal rules of interface compatibility will be given along
with the description of practical methods for verification and validation of component
interfaces and interaction. We have also implemented a proof-of-concept prototype
environment of our interface language that targets the TinyOS platform and augments the
previously described Gratis tool [15].

4.1. Interface automata

Our interface modeling language is based on the definition of Interface Automaton,
which we will reproduce here.

Definition 1. An interfaceautomaton Pconsists of the following elements:

• states(P), a set ofstates,
• inits(P), anonempty subset ofstates(P), known as theinitial states,
• ins(P), outs(P) and internals(P), mutually disjoint sets ofinput, outputand internal

actions. We denote the set of all actions byacts(P) = ins(P)∪outs(P)∪ internals(P),
and

• steps(P), a set of steps, wheresteps(P) ⊆ states(P) × acts(P) × states(P).

A simple example of an interface automaton is given inFig. 3. The model describes
the interface of theCommcomponent, which provides communication services to its
clients. The component accepts theinit and thesendMsginput actions and signals the
sendDoneoutput action. However, these actions are not accepted or generated arbitrarily.
The legal orders are defined with the help of statess0, s1 ands2, wheres0 is the initial
state.

Proper clients of this component should reckon with the temporal dependencies between
the input and output actions ofComm. For instance they must not send a second consecutive
sendMsgaction toCommwithout waiting for asendDonemessage before. A detailed
informal description of the compatibility of components is given inSection 4.1along with
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the exact definition inDefinition 6. A trivial compatible componentAppcan be constructed
by replicating the states and steps of componentComm, but inverting the direction of its
actions; thus input actions inCommbecome output actions inAppand vice versa. In their
composition, the two automata are advancing together step by step, always transmitting or
receiving an action that is accepted or sent by the other. A formal definition of composite
automata will be given in4.4.

In general, the cross-product of the set of states in the original components generates
the state space of the composite automaton. A step in the product might be either ashared
step, whichadvances both of the original automata together, as we have seen in the previous
paragraph, or an independent step in one of the components. Actions along shared steps
become internal actions in the product automaton.

Compatibility analysis must focus on composite states, where one of the original
automata initiates a shared step, but the other componentis not prepared for accepting
this action in its respective state. We denote these composite states asillegal states.
There are two basic approaches to classify illegal states with respect to compatibility.
The “pessimistic” approach defines two components incompatible, if any illegal state is
reachable in their composition, i.e. there exists a sequence of steps whose first state is one
of the initial composite states and whose last state is the illegal state. The “optimistic”
approach considers two components compatible if there is some environment—a third
automaton—under which the composite automaton behaves correctly.

The pessimistic approach demands strict compatibility, and it guarantees that
independently of additional components, the inspected modules will work together
correctly. When the product system is closed—i.e. each action is internal—the pessimistic
and optimistic approaches coincide [3]. In this paper we are following the pessimistic
approach; a detailed discussion of the optimistic method can be found in [1].

4.2. Hierarchical interface automata

Interface Automata have similar limitations to Finite State Machines: in their flat form
both languages have scalability problems when describing complex behavior and state
space. We propose additional constructs to the original automata language to overcome
these problems.

In embedded applications external events from the physical environment might arrive
at any moment regardless of the current state of the application. These external events are
propagated through the software components viainterrupts and function calls. Therefore,
to build compatible components, their interface models need to handle these events in all
states, resulting in a potentially large number of steps. Hierarchical states enable us to
simplify these often incomprehensible models.

Fig. 4 shows the hierarchical interface model of a simple data logger component,
Recorder. By receiving astart input signal, the component enters into a loop of data
acquisition (getData, dataRdy) using for example a sensor peripheral and data storage
(saveData). The module must be prepared to receive astopsignal and leave the loop at any
moment.

The flat interface model of the same component is given inFig. 5. Even for this simple
component, the benefits of the hierarchicalmodel are noticeable, not only because we have



P. Völgyesi et al. / Science of Computer Programming 56 (2005) 191–210 199

Fig. 4. Hierarchical interface model ofRecorder.

Fig. 5. Flat interface model ofRecorder.

spared two “arrows” in the model, but because it captures the essence of thestopsignal and
preserves visual clarity. If the logic in the recording loop needs refinement, the hierarchy
ensures that the stop signal will be handled in the new states, as well, which is not true in
the flat scenario.

The original Interface Automata language is a superb formalism for specifying
interfaces in event-driven systems where each component has its own thread of control and
the components engage one another asynchronously via events. However, the concepts of
interface automata cannot be mapped to typical embedded applications easily, where the
software components are linked together and communicate via function calls. Since our
primary goal was to provide interface models for TinyOS components, we had to address
the following issues:
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Fig. 6. Interface model of componentLEDsusing the original automata language.

• What constitutes an action in these applications? Is it only the function call that conveys
information, or its return, as well?

• Interface Automata make decisions based purely on the received actions, unlike in
procedural systems where actions are accompanied by quantitative parameters that have
a strong influence on the control flow.

• In monolithic embedded applications the assumptions of parallel execution and
asynchronous message passing no longer hold. Implicit constraints restrict the execution
of an automaton that are inherent in sequential execution.

To address the first problem, we have chosen the function calls as the sole representation
of actions in the interface model. Our decision was influenced by a feature provided by
the nesCcompiler, which allows us to “fan out” afunction call to multiple components,
that itself raises the question of what the return value of a function means. The second
question may be resolved by introducing multiple actions for a given function; however,
an extension of the interface language with action parameters is an area of further study.

The last problem has driven us to introduce another extension to the original language.
Fig. 6 depicts the interface automata of a common embedded component that provides
access to the display LEDs of the hardware. Our driver is fairly simple: it allows us to turn
off or on both of its supervised LEDs (red and green). Using the original interface automata
language and the pessimistic compatibility rules,the interface becomes incomprehensible,
since it needs to handle incoming requests disregarding its current state. In practice, this
component would turn on or off all of the LEDs by using a simple sequence of commands
in an atomic way. Therefore, we have introducednon-preemptable states, whichenable us
to specify atomic action sequences as shown inFig. 7. Upon entering a non-preemptable
state—designated by solid circles—multiple output actions are allowed to be sent before
entering a regular state again. Non-preemptable states can be implemented in several ways:
the most trivial approach is interrupt masking or the use of mutexes. ThenesClanguage and
the TinyOS concurrency model have similar constructs, which make a distinction between
asynchronous and synchronous code.
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Fig. 7. Interface model of componentLEDswith non-preemptable states.

The hierarchical representation of interfaces can be transformed automatically to
the traditional flat notation, thus the original rules of compatibility are applicable to
hierarchical models. The introduction of non-preemptable states, however, needs a slight
modification to these formulae. The formal definition of compatibility in Hierarchical
Interface Automata is given in the next section. The definition of hierarchical interface
automata with non-preemptable states follows.

Definition 2. A hierarchical interface automaton Pconsists of the following elements:

• Elements of regular interface automata as defined inDefinition 1.
• hstates(P), a set ofhierarchical states, each of which is a subset ofstates(P) or

hstates(P). Stepsoriginating from hstates are implicitly defined for each contained
sub-state. Steps entering intohstates are implicitly defined for the contained initial
sub-state.

• npstates(P), aset of non-preemptable states,npstates(P) ⊆ states(P). The automaton
does not accept input actions in non-preemptable states.

Adding hierarchy to traditional finite automata is a well known and widely used
extension in the domain of reactive systems. Themost renowned formalism is Statecharts,
presented by Harel [6]. He introduced concurrency and communication along with
hierarchy to be able to handle more complex systems. Extended Hierarchical Automata
[10], which can be regarded as a kind of abstract syntax of Statecharts, address similar
weaknesses of traditional FSMs. An Extended Hierarchical Automaton is composed
of a set of sequential automata, whose states can be mapped to a set of automata
which refine it. A different approach results in a similar structure in [11], where
Hierarchical Automata are constructed from elementary automata using the operati-
ons restricted-product (communicating parallel composition),free-product (parallel
composition with no communication) andrestricted-sum(sequential composition). The
components are hierarchically structured into super-components in [14], where the input
and output behavior are separately modeled with the help of finite state machines while
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Fig. 8. The metamodel of the Hierarchical Interface Automata language.

the internal control flow is described in UML sequence charts. This is in contrast to our
notation, where input,output and internal transitionsare blended in one automaton.

Hierarchical Interface Automata, as introduced in this section, also employ hierarchy to
cope with complexity. Non-preemptable states are the other extension of our formalism,
which reflect a unique property—single thread of control—of our target domain. Another
distinct, though theoretical, feature is that a HIA, like the original interface automaton,
never tries to capture the entire state space of the components. Its use is restricted to
describe the temporal dependencies among requests and responses.

The operational semantics of a HIA can be defined by a labeled transition system (LTS)
[16] after hierarchy is eliminated with an automatic transformation. The transformation
builds a flat model by collecting all leaf states and inserting additional transitions based on
Definition 2.

4.3. Visual language specification

Temporal interface models complementthe traditional interfaces of TinyOS
components; thus integrating these automaton concepts into the existing Gratis language
is the natural choice. The metamodel of the hierarchical interface automata language is
shown inFig. 8. Themodule, interfaceandFunctionBasemeta objects arejoint concepts
in the original Gratis and the automata language; they connect the type based and temporal
models. The multi-aspect capability [9] of the modeling environment enables the separate
visualization of the alternative representations of component interfaces. The apparent
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symmetry in the metamodel stems from the fact that the language can capture the temporal
models of both components and interfaces.

TinyOS interfaces and modules can contain states (mStateand iState) that can be
nested, and actions (actionRefand FunctionBase, that can be used to connect states.
Special boolean attributes of the state object may designate it as an initial (IsInit) or non-
preemptable (IsPreemptable) state.

4.4. Composition rules

We considertwo hierarchical interface automata composable if there is no conflict
between their actions; thus they only possess common actions which move the product
automaton along shared steps.

Definition 3. Two interface automataP andQ arecomposableif

states(P) ∩ states(Q) = ∅,

internals(P) ∩ acts(Q) = ∅,

internals(Q) ∩ acts(P) = ∅,

outs(P) ∩ outs(Q) = ∅, and

ins(P) ∩ ins(Q) = ∅.

ConsideringDefinition 3, one might notice that we made a very important assumption
on the state space of the primary automata. Our rules for composition prohibit state
interference (i.e. composition of components with shared variables or channels). Although
states are defined as abstract artifacts inDefinition 2, this assumption is inherent
and justified in the domain of TinyOS applications, where shared data areas among
components are not allowed [7]. This limitation—enforced by the nesC compiler
[5]—is a trade-off for supporting the isolated development and testing of TinyOS
components.

As we have seen previously, the composite automaton consists of the product of the
original (leaf) states and the conjunction of actions reduced by the set of joint actions.
Composite steps are defined as for normal interface automata; the only difference is in
the special treatment of intermediate states: input actions in the original automata are not
accepted while the other component resides in a non-preemptable state.

Definition 4. If two interface automataP andQ are composable, theirproduct P× Q is
defined by

states(P × Q) = states(P) × states(Q),

npstates(P × Q) =
{ (s, t) ∈ states(P × Q) | s ∈ npstates(P) ∨ t ∈ npstates(Q) },

inits(P × Q) = inits(P) × inits(Q),

ins(P × Q) = ins(P) ∪ ins(Q) \ S,

outs(P × Q) = outs(P) ∪ outs(Q) \ S,

internals(P × Q) = internals(P) ∪ internals(Q) ∪ S,
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steps(P × Q) =
{

((s, t), a, (s′, t)) |
(
(s, a, s′) ∈ steps(P) ∧ a /∈ S∧ t ∈ (states(Q) \ npstates(Q))

)

∨(
(t, a, t ′) ∈ steps(Q) ∧ a /∈ S∧ s ∈ (states(P) \ npstates(P))

)

∨(
(s, a, s′) ∈ steps(P) ∧ (t, a, t ′) ∈ steps(Q) ∧ a ∈ S

) }
,

whereS = acts(P) ∩ acts(Q).

Based on the informal description of illegal states in4.1, their precise definition is
the key step towards understanding compatibility between components.Compared to the
informal description of illegal states given earlier, we had to alter the definition because
non-preemptable states are excluded from the analysis.

Definition 5. The set ofillegal statesin the product of hierarchical interface automataP
andQ is defined by

illegals(P × Q) =
{

(s, t) | (s, t) ∈ states(P × Q) ∧ ∃a ∈ S
((

a ∈ outs(P) ∧ t /∈ npstates(Q)

∧ ∃(s, a, s′) ∈ steps(P) ∧ �(t, a, t ′) ∈ steps(Q)
)

∨(
a ∈ outs(Q) ∧ s /∈ npstates(P)

∧ ∃(t, a, t ′) ∈ steps(Q) ∧ �(s, a, s′) ∈ steps(P)
)) }

.

According to thepessimistic approach one has to traverse the composite interface
automaton from its initial state to decide on compatibility between the components.

Definition 6. We considertwo hierarchical interface automata,P andQ, compatibleif no
illegal states in the product automata can be reached from the initial states.

5. Compatibility checking

Based on theprevious definitions, several algorithms can be developed using graph or
game theoretical [3] foundations. Collecting reachable states and analyzing each of them
suggests graph traversing logic, while the interaction of two interface automata might be
easily solved by a game between the components.

Similarly to the extended interface language, the rules of compatibility have been
evolved gradually, thus implementing and re-implementing custom algorithms for these
changing rulesets would have burdened our work. We wanted to create a rapid prototyping
framework by reducing the time and effort needed to map formal rules into executable
algorithms. Note that similar motivations led us to the development of the Generic
Modeling Environment. By analyzing the nature of our formulae, we concluded that logic
programming languages provide ideal ground to implement and execute these formal rules
and statements.
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Based on thevisual interface specifications created in the modeling environment, the
following logical predicates are automatically generated:

• state (p,s): s is a state in automatonp.
• npstate (p,s): s is anon-preemptable state in automatonp.
• init (p,s): s is an initial state in automatonp.
• in(p,a), out(p,a), internal (p,a): a is an input, output or internal action in

automatonp, respectively.
• step (p,s,a,t): there isa step in automatonp from states to statet on action a.

The generated predicates capture the same information that is described in the graphical
model. The advantage of logic program statements is undeniable after translating our
definitions to logic program rules.

To demonstrate the effectiveness of this approach the Prolog version ofDefinition 3 is
given:

% The intersection of internals(p) and actions(q) is empty
internal_fault(P,Q) :- internal(P,A), action(Q,A).
internal_fault(P,Q) :- internal(Q,A), action(P,A).
% The intersection of outs(p) and outs(q) is empty
out_fault(P,Q) :- out(P,A), out(Q,A).
% The intersection of ins(p) and ins(q) is empty
in_fault(P,Q) :- in(P,A), in(Q,A).
% Final rule
compose_fault(P,Q) :- internal_fault(P,Q).
compose_fault(P,Q) :- out_fault(P,Q).
compose_fault(P,Q) :- in_fault(P,Q).

After merging the translated rules and the automatically generated predicates in aProlog
[13] interpreter, one can check whether two automatap andq are compatible by asking
the following question:

?- compose_fault(p,a).

The remaining definitions can be easily mapped as well; the entire toolset for
compatibility checking consists of a few lines of logic program code and a trivial model
translator.

The current implementation applies basic reachability analysis on the composite
automata by searching for illegal state configurations. One of the main benefits of this
approach is the extremely simple implementation of the model translator. The relatively
primitive structure of TinyOS interfaces allowed us to utilize this method. However, when
more complex designs have to be verified or other intricate properties must be checked,
employing a model checker might be a more appropriate choice. For these reasons, we
have implemented a different translator for GRATIS recently, which targets SPIN [8], a
well known verification tool.

Each automaton in GRATIS is mapped to a PROMELAproctypeby transforming
automata actions tosend and receivestatements and state transitions to flow control
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elements. For each pair of components separatechannelsare generated. The built-in rule
for detecting invalid end states in SPIN will find all reachable illegal state configurations
in the design. Other interesting properties—like liveliness or arbitrary assertions—can
also be checked by labeling certain states. More sophisticated requirements can be
formalized inlinear time temporal logic (LTL) or by usingneverclaims in the PROMELA
language.

SPIN was created for detecting conceptual defects in distributed reactive systems.
Considering the characteristics of our domain andcomparing SPIN to our original
approach, we should note the following difficulties:

• Interacting TinyOS components are not scheduled asynchronously; therefore, SPIN’s
proctypefeature seems to be an overkill here.

• Our definition of compatibility can easily handle open compositions (i.e. component
configurations with unbound input and output actions). All unbound actions must be
manually closed during model extraction, sinceSPIN is unable to handle open systems.
This makes the GRATIS model translator for SPIN more complex.

6. Model verification

Interface automata capture only the surface of software components; hence, these de-
scriptions are not sufficient for automatic code synthesis or simulation. They can be con-
structed even after the implementation phase of the component, as is the case when dealing
with existing TinyOS modules. Therefore, some kind of automatic verification is needed,
assuring consistency between the formal model and the implementation of components.

Model verification with existing source code—especially if the code was not created
with a model centric approach—is a cumbersome ifnot impossible task. Analyzing sources
written in traditional procedural languages, such as C, implies heuristic methods. Their
dependency on the target implementation language makes the effort hard to justify.

We have chosen a different approach, which “interrogates” the existing modules and
instead of trying to understand the source files, it generates additional code based on the
interface models. The generated software behaves like a wrapper around the component to
be tested; it generates each signal which isaccepted by the component, and it is prepared
to receive all of the events coming from the module. The wrapper code reckons with
the specified order of events, it executes the interface automata by transmitting actions
in proper states and catchingunexpected incoming messages.Fig. 9 demonstrates the
model verification process. This simple, yet powerful approach treats existing TinyOS
modules as black box components; therefore, it can handle even the most obfuscated source
code. Although this approach is not adequate for exploring the entire state space of an
arbitrary software component, we succeeded in discovering interdependencies of interface
primitives in real-life TinyOS components.

The prototype implementation of our black box testing approach targets the TinyOS
platform. It requires manual intervention in those interface states where alternative output
steps can be made by the tester, though automatic exhaustive testing could be easily
achieved, as well. This tool has been integrated into the Gratis environment.
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Fig. 9. The model verification process.

Fig. 10. Top level model of theSensorcomponent. Non-preemptable states are used extensively.

7. Case study

To demonstrate the expressiveness of the hierarchical interface automata language and
the benefits of automatic composition checks, we further refine the visual model of the
Sensor application introduced inFig. 2. In addition to presenting compatible temporal
models of the central and communication components, an alternative implementation will
be shown where a small design flaw renders the application unreliable.

The top level model of theSensorcomponent is given inFig. 10. The lengthy
action sequences perform initialization, startup and stop procedures. Upon receiving
initialization/startup/stop requests the sensor component initializes/starts/stops the lower
components subsequently. Note how non-preemptive states, denoted by filled circles,
prevent the model from growing complicated and unreadable. Thestartedstate is refined
in Fig. 11. Without the use of hierarchical modeling, thestd_stopaction would have to be
handled separately in each sub-state ofstarted. In thestartedstate theautomaton repeatedly
waits for timer events, requests data from the A/D converter, sends samples through the
communication channel and then waits for the message buffer to be cleared.

The temporal model of the corresponding communication component is shown in
Fig. 13. Although only the inner service loop is shown, the model presents the restriction
of the communication stack clearly: it is not prepared to process multiple messages
simultaneously.

The sensor component overcomesthis limitation by waiting for asendDoneevent before
completing the iteration, thereby facilitating trivial flow control in the system.

The erroneous implementation of the sensor component shown inFig. 12differs exactly
in this regard. The automaton depicts a typical mistake; it essentially discards an event
coming from the communication component. After its first iteration the sensor component
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Fig. 11. Model of theSensorcomponent’s busy loop.

Fig. 12. Model of the faultySensorcomponent’s busy loop.

Fig. 13. Model of theCommcomponent’s service loop.

may acquire a new sample from the A/D module, while the communication component is
still in its sendingstate, where thecomm_sendevent is not accepted. This application is
unreliable; its operation dependson the timing properties of the data acquisition, periodic
timer and task scheduling. This error—a reachable illegal state—is caught by the automatic
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verification tool. In contrast, manual debugging of similar problems may easily become a
time consuming task.

8. Conclusions

The presented model-based approach to the component-based development of sensor
network applications places special emphasis on interface specification. The proposed
formalism captures the temporal and type aspects of interfaces and supports the
composition and verification of components. The implementation of the prototype
modeling environment and the corresponding verification tools provided valuable feedback
and influenced the design of the representation methodology.

The sensor example clearly demonstrated the benefits of our extensions to the traditional
interface automata language, namely the hierarchical representation of states and the
introduction of non-preemptable conditions. Compatibility checks with logic programs—
although unconventional—prove to be extremely simple and straightforward to implement,
ensuring consistency with the formal definitions. The presented extended Gratis
environment significantly enhanced our TinyOS application development capabilities.

The nature of communication between components through function calls requires
future study, since it does not fit the automata model perfectly: return values and constraints
inherent in sequential flow of control are not captured by the current language.

Our current approach of compatibility checking suffers from scalability issues; the
composition ofn components requires O(n2) checks among these components. This is not
a serious limitation considering the complexity of typical TinyOS applications; however, it
might prove to be a real problem in the modeling of entire sensor networks.
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