
RV 2005 Preliminary Version

Temporal Assertions using AspectJ

Volker Stolz and Eric Bodden

Dept. of Computer Science
Programming Languages and Program Analysis

RWTH Aachen University
52056 Aachen, Germany

Email: {stolz,bodden}@i2.informatik.rwth-aachen.de

Abstract

We present a runtime verification framework for Java programs. Properties can
be specified in Linear-time Temporal Logic (LTL) over AspectJ pointcuts. These
properties are checked during program-execution by an automaton-based approach
where transitions are triggered through aspects. No Java source code is necessary
since AspectJ works on the bytecode level, thus even allowing instrumentation of
third-party applications. As an example, we discuss safety properties and lock-order
reversal.

Key words: Runtime verification, LTL, AspectJ, aspect-oriented
programming, alternating automata.

1 Introduction

To avoid misbehaviour, many software products include assertions which check
that certain states on the execution path satisfy given constraints and other-
wise either abort execution or execute specific error-handling. These assertions
are usually limited to testing the values of variables. However, often it would
be convenient not only to reason about a single state but also about a se-
quence of states. This enables the developer to reason about control flow and
execution paths. In previous work [15], we discussed a symbolic checker for
parametrised LTL formulae over finite paths which allowed us e.g. to reason
about a problem found in multi-threaded applications commonly referred to
as lock order reversal. At runtime, potential problems would be pointed out
to the developer. We have implemented a working prototype with similar
functionality for Java applications using a symbolic checker based on the code
generation approach we describe in the following. The major contribution of
this work is to propose an alternative, automaton-based solution which allows
for even more expressiveness, though yielding better performance.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Stolz and Bodden

A major drawback of the former approach was that annotations driving
the checker had to be inserted into the source code of the application under
test. For practical purposes, we supplied an annotated replacement for the
concurrency-library. Applications wishing to use this framework thus had to
be recompiled.

Also, such source code-based hooks may lead to severe problems with re-
spect to object-oriented properties such as behavioural subtyping: Any speci-
fication which is stated for a certain class should also hold for all its subclasses.
The use of source code annotations within method bodies does not reflect such
implicit rules. Thus we restrict our formalism in such a way that it only al-
lows to reason about well-defined interfaces, meaning method calls and field
accesses. The recent success of the utility Valgrind [11] shows that there is
sufficient demand for better debugging support (in contrast to techniques like
model checking).

In Section 2 we give a short introduction into temporal logic. Instead
of symbolically checking a formula, we use a translation into an alternating
automaton. Section 3 discusses instrumentation of (Java) applications and
focuses on aspect-oriented programming in AspectJ. The combination of LTL
and AspectJ in Section 4 yields a state-machine for each formula to be checked
through a finite automaton where transitions are driven by an aspect. We
discuss an extension to parametrised automata for handling recurring patterns
with state and conclude in Section 5.

2 From LTL to alternating automata

In this section we give a finite path semantics for LTL and remind the reader
on how to translate LTL formulae into alternating automata.

2.1 Path semantics for LTL

Linear-time temporal logic (LTL) [12] is a subset of the Computation Tree
Logic CTL∗ and extends propositional logic with operators which describe
events along a computation path. The operators of LTL have the following
meaning:

• “Next” (X ϕ): The property ϕ holds in the next step

• “Finally” (F ϕ): ϕ will hold at some state in the future

• “Globally” (G ϕ): At every state on the path φ holds

• “Until” (ϕ U ψ): ϕ has to hold until finally ψ holds.

• “Release” (ϕ R ψ): Dual of U; expresses that the second property holds
along the path up to and including the first state where the first property
holds, although the first property is not required to hold eventually.

Usually LTL is defined over infinite paths. For runtime verification, we
assume that the verification process is stopped at some point in time and

2

Stolz and Bodden

correspondingly the LTL formulae have to be evaluated over a finite path.
Thus we declare the semantics as follows.

Let PROP be a set of atomic propositions and w = w[1]...w[n] ∈ (2PROP)n

a finite path. For each path position w[j] (1 ≤ j ≤ n) and proposition
p ∈ {p1, ..., pm} and formulae ϕ and ψ:

w[j] |= tt, w[j] 6|= ff ,

w[j] |= p iff p ∈ w[j]

|= X ϕ iff j < n and w[j + 1] |= ϕ

|= F ϕ iff ∃k (j ≤ k ≤ n) s.th. w[k] |= ϕ

|= G ϕ iff ∀k (j ≤ k ≤ n) → w[k] |= ϕ

|= ϕ U ψ iff ∃k (j ≤ k ≤ n) s.th. w[k] |= ψ

∧ ∀l (j ≤ l < k) → w[l] |= ϕ

|= ϕ R ψ iff ∀k (j ≤ k ≤ n) → w[k] |= ψ

∨ ∃l (j ≤ l < k) s.th. w[l] |= ϕ

We write w |= ϕ if w[1] |= ϕ. Furthermore we consider formulae in nega-

tion normal form where negations are pushed down to the propositions using
basic equivalences. We call the set of all LTL formulae in this form LTLNN .
Our implementation will be built on Next, Until and Release, so we use the
following equivalences to express Finally and Globally :

F ϕ = tt U ϕ G ϕ = ff R ϕ

2.2 Generating automata

In our previous approach, we successively check all propositions on top-level
of the formula, i.e. those that are not shadowed by temporal operators. Then,
the outer temporal operators are unrolled once. But nested temporal oper-
ators will lead to constantly expanding formulae. It is hard to reason what
set of minimisation steps would be complete in order to counterbalance this
tendency. To eliminate this evaluate-unroll-minimise cycle, we transform the
LTL formulae to alternating automata.

This model allows convenient reasoning about such minimisations. Our
translation works similarly to the one described by Finkbeiner and Sipma [5].
An alternating finite automaton (AFA) is a quintuple A = (Q,Σ, q0, T, F)
with

• Q finite set of states

• Σ finite alphabet

• q0 ∈ Q initial state

• T : Q× Σ → B+(Q) transition function

3

Stolz and Bodden

• F ⊆ Q set of final states,

where B+(Q) is the set of all positive Boolean combinations overQ, recursively
defined as the smallest set such that

• Q ⊆ B+(Q),

• tt,ff ∈ B+(Q) and

• q1, q2 ∈ B+(Q) ⇒ (q1 ∧ q2) ∈ B+(Q), (q1 ∨ q2) ∈ B+(Q).

Note that this set contains equivalent but syntactically distinct formulae.
Our implementation represents Boolean combinations by sets of sets of states.
This leads to automatic identification of equivalent formulae.

A run on an AFA A is a directed acyclic graph over Q. A accepts an input
P = (P1, ...,Pn) ∈ (2PROP)n if there exists a run on P , such that all branches
of the run lead to a final state after reading P .

In our interpretation, the AFA are defined over LTL formulae, thus we have
the following identities for an AFA Aϕ for a given LTL formula ϕ ∈ LTLNN .
Let the closure of a formula cl(ϕ) be the set of all sub-formulae of ϕ. Then

• Q := cl(ϕ) ⊆ LTLNN

• Σ := 2PROP

• q0 := ϕ

• F := {q ∈ Q | q = (Φ R Ψ) for some Φ,Ψ} ∪ {tt}.

F is defined this way because a Release formula is always valid on the empty
path whence an Until formula is not.

Note that all states of the AFA are valid LTL formulae. The reader
should keep this in mind since in the following we use both the words state

and formula in exchange, whatever might be more appropriate for the given
purpose. The transition function T is recursively defined as follows: Let
P ⊆ PROP , p ∈ PROP , ϕ, ψ ∈ LTLNN . Then

• T (p,P) = tt resp. ff if p ∈ P resp. p /∈ P

• T (¬p,P) = tt resp. ff if p /∈ P resp. p ∈ P

• T (tt,P) = tt and T (ff ,P) = ff ,

• T (ϕ ∧ ψ,P) = T (ϕ,P) ∧ T (ψ,P)

• T (ϕ ∨ ψ,P) = T (ϕ,P) ∨ T (ψ,P)

• T (Xϕ,P) = ϕ

• T (ϕ U ψ,P) = T (ψ,P) ∨ (T (ϕ,P) ∧ ϕ U ψ)

• T (ϕ R ψ,P) = T (ψ,P) ∧ (T (ϕ,P) ∨ ϕ R ψ).

In particular it should be noted that the calculation of T (ϕ,P) is well-founded
and the leaves are labelled with a formula, tt, or ff .

Figure 1 (a) shows how the successor state of (G p) U q = ((ff R p) U q)
for the input {p} (where p holds, but q does not hold in the current state)

4

Stolz and Bodden

is calculated. Solid nodes represent states while dashed nodes represent in-
termediate steps in the recursive calculation according to the definition of T .
Edges sharing the same origin represent conjuncts. The final result is shown
in Figure 1 (b). It is derived by Boolean evaluation of the transition structure
with respect to idempotency and commutation.

(a) recursive calculation (b) final result

Fig. 1. Calculation of T (((ff R p) U q), {p})

The generated AFA are known to be weak, meaning that there exists a
partial order on Q. Thus there can be no non-singular loops. This is an
important property since it means that when reading an input, states can only
be switched to states “further down” in the automaton or remain unchanged.
As a result, it suffices to evaluate the transition relation without taking nested
Boolean combinations into account: Cases such as ϕ1∧ (ϕ2∧ (ϕ1∧ϕ3)), where
ϕ1 reoccurs on a deeper level, are impossible.

In order to calculate the full AFA for a given formula and a given input,
one has to calculate all successors of all states in this way. The calculation
of one successor is linear in |cl(ϕ)|. For a set Pϕ of propositions in ϕ with
|Pϕ| = n, there are 2n possible successors of each state. Thus, full calculation
of the full transition function leads to an exponential blowup. This might not
be desired, especially taking into account that not all states (sub-formulae) are
reachable on a given input. At runtime, the input is known and it suffices to
calculate the successor states under this given input. Hence, there is a natural
trade-off between on-the-fly generation of successor states as the input is read
and static pre-calculation of the whole transition table for the full state space.

2.3 Determinisation

The AFA can be determinised as follows:

For a given AFA Aϕ = (cl(ϕ), 2PROP , ϕ, T, F), we define the deterministic
finite automaton (DFA) Bϕ as Bϕ := (QB, 2

PROP , ϕ, δ, FB) where

• QB := {ϕ} ∪ {b ∈ B+(cl(ϕ)) | b = T (ψ,P) for some ψ ∈ cl(ϕ),P ⊆ PROP}
the set of positive Boolean combinations of sub-formulae of ϕ occurring in
the transition relation of Aϕ,

• FB := {q ∈ QB | final(q) = true} where for all ϕ1, ϕ2 ∈ QB:
· final(ϕ1 ∧ ϕ2) = final(ϕ1) ∧ final(ϕ2),
· final(ϕ1 ∨ ϕ2) = final(ϕ1) ∨ final(ϕ2),

5

Stolz and Bodden

· final(ϕ1) =

{

true if ϕ1 ∈ F

false else

• and δ(q,P) = T (q,P) for all q ∈ QB.

The definition of δ makes clear that essentially the DFA takes the very same
transition as the corresponding AFA. The only difference is that a transition
of the AFA results in a Boolean combination of states. In the corresponding
DFA, this Boolean combination itself is defined as the deterministic successor
state for this input. Since the AFA is weak, there can only be a finite set of
such positive Boolean combinations. Hence, the state set of the DFA is finite.

2.4 Soundness on finite paths

When initially evaluating the topic and possible implementations, we consid-
ered modelling LTL using Büchi automata. A Büchi automaton is a natural
concept from the point of view of model checking, where traces are usually
infinitely long and the automaton correspondingly accepts infinite traces. As
we found out in experiments and as Havelund mentions in [13], Büchi au-
tomata are difficult to adapt to reason about finite traces, because of their
accepting condition. In particular there may be several minimal Büchi au-
tomata all recognising the same language and even with the same transition
table but with different sets F of accepting states. Depending on the LTL
to Büchi automata translation, the resulting automaton might or might not
be suited for evaluation of finite paths, where it is essential which states ex-

actly are final. Thus we opted for alternating finite automata, which provide
a sound model and can, as presented, easily be transformed to ordinary DFA
over finite words.

3 Instrumenting the program with AspectJ

Aspect-oriented programming in general has the aim of separating crosscut-

ting concerns into separate modules of development and deployment. Such
concerns typically build a logical and functional unit but are still scattered
throughout the whole application due to limitations of expressiveness of the
base programming language. Aspect-oriented languages typically come as an
extension to such a base language, adding a layer of quantification, that al-
lows code to be modularised into a single unit by employing special declarative
constructs telling the runtime when and where to apply the code as the ap-
plication runs.

AspectJ is today the most widely used aspect-oriented programming (AOP)
language, based on the core language Java. It was originally developed by Xe-
rox PARC in the late 90’s. Various companies and researchers contributed
to its development. AspectJ is widely used today in large-scale production
environments, for instance IBM Websphere.

6

Stolz and Bodden

In the aspect-oriented notion a core application exposes a set of identifiable
points in its dynamic control flow at runtime, called joinpoints. An aspect
in the AspectJ language employs pointcuts, which can be seen as second-
order predicates over those joinpoints. The language provides the following
pointcuts as well as their Boolean combinations (other pointcuts match e.g.
on the static structure or on exceptions, but are not of interest for us):

pointcut matches

execution(MethodSignature) execution of a method

call(MethodSignature) call to a method (caller side)

set/get(FieldSignature) field accesses

cflow(Pointcut) control flow of any joinpoint matched
by the inner pointcut

if(BooleanExpression) whenever the expression is satisfied;
the expression has generally access to
static Java members as well as values
exposed by the formula

Pointcuts allow to pick out points in the dynamic control flow. We employ
them simply as the propositions of our logic: A pointcut proposition is valid
at a given point in time iff this pointcut matches the current joinpoint.

The cflow pointcut provides a quasi-temporal notion: For another point-
cut p, cflow(p) matches all joinpoints which occur between entering a join-
point matched by p and leaving this joinpoint. E.g. cflow(execution(void
C.f())) matches all joinpoints between start and end of the execution of f().

Pointcuts can contain wildcards to abstract from certain parts of a signa-
ture that are to be matched. Thus, any pointcut is able to pick out entire sets
of joinpoints as the application runs. In order to actually contribute behav-
iour to the core application, pieces of advice can be attached to each pointcut.
The semantics state that whenever the pointcut matches a joinpoint in the
dynamic control flow of the application, the piece of advice is to be executed
at the specified time: either before, after or in substitution of (around) the
original joinpoint. Figure 3 gives an example for logging authentication events.

pointcut auth(User u):

call(* Authentication.login(User)) && args(u);

after returning(): auth(User user) {

SecurityLog.log("User " + user.getId() + " logged in"); }

Fig. 2. AspectJ pointcut and advice logging authentication events

As the example shows, the additional pointcuts this, target and args expose
runtime state to a piece of advice. Our approach is also capable of handling

7

Stolz and Bodden

such runtime state. The focus of this paper however is the general approach.
We will explain handling of such state in future work.

AOP implementations like AspectJ are weaving compilers. This means
that they implement an aspect by statically weaving it into the core application
using bytecode transformations. Runtime checks for dynamic type checking
etc. are automatically inserted where necessary.

4 Putting it all together

In the following, we describe how we interpret LTL over a Java application
and how the aforementioned model leads to a complete implementation.

4.1 LTL in the state space of a Java program

Each run of a Java program defines an execution trace where each state on
the trace corresponds to a virtual machine state. The state includes e.g. the
program counter, the current stack, and heap (for a detailed discussion of
the Java Virtual Machine see [10]). Each bytecode instruction (field access,
method invocation, etc.) triggers a state transition.

This model is too fine-grained (e.g. usually there is no need to reason
about the value of the program counter) and we limit ourselves to states
in the execution addressable through AspectJ. Pointcut expressions select a
(possibly non-contiguous) set of states from the trace, e.g. through Boolean
composition of pointcuts. In general, there is no one-to-one correspondence
between joinpoints and neither bytecode-instructions nor source code. This
fine distinction however is not detrimental to our approach.

We assume that the corresponding pieces of advice do not alter the original
control-flow of the application except when triggering assertions, although as-
pects may be (ab-)used to alter the behaviour of the application substantially.

Let us consider the following example for a temporal property: Every call
to a method C.f() is finally followed by a call to C.g(). In LTL we would
express this in the following way:

G (call(C.f()) −→ F call(C.g()))

The outer Globally assures that this formula is verified indeed for every oc-
curring call to C.f(), since otherwise we would only match the trace where
exactly the first state corresponds to the method invocation.

A solution using pure AspectJ must instrument both method invocations
and introduce a new variable which tracks if we are looking for a call to C.g().
A cflow-pointcut does not help here, because the call to C.g() does not have
to be within the control flow of C.f().

Instead of programming the state transitions manually, our implementa-
tion of an LTL-checker gives the developer a way of deriving a verification
aspect from the formula. The state-tracking variables are implicitly contained

8

Stolz and Bodden

in the generated automaton. By combining aspects with temporal reasoning,
we obtain a powerful way of expressing temporal inter-dependencies.

4.2 Can we see the code, please?

Consider the following example: The method requiresInit() shall not be
called unless the method init() has been invoked before:

(!call(void SomeClass.requiresInit()))

U (call(SomeClass.init()))

We employ the abc compiler [3] to parse each such formula. When generating
the abstract syntax tree (AST) we can statically check for syntax- and type-
errors. We then transform this AST into an aspect in the AspectJ language.
This aspect consists of two major parts:

(i) A state variable holding the current state. This is first assigned the initial
state of the DFA, which is represented by the original formula.

(ii) A transition table implemented by n + 1 pieces of advice where n is the
number of different propositions (pointcut definitions) employed in the
formula. In particular we have
• one such piece of advice for any pointcut proposition recording that this

pointcut matches (the proposition is then active at the current state)
• one advice that matches any joinpoint where one of the former matches,

triggering the state change for the recorded set of propositions.

It is important to note that in the case where several pieces of advice match
a single joinpoint, they are executed in the textual order in which they occur
in the AspectJ compilation unit.

Figure 3 shows an outline of the aspect we would generate for the example
from above. First we label pointcuts as propositions. Then we define the
initial state as the given formula. Two pieces of advice gather all valid propo-
sitions for a given joinpoint. The last piece of advice is executed whenever
the pointcuts p1 or p2 match, and importantly after all other pieces of ad-
vice, since it is the last one in the textual order. It finally triggers the state
transition of the automaton. Here we demonstrate the approach employing
lazy state-space generation. A state (sub-formula) is capable of determining
its own successor state under a given set of valid propositions.

The generated aspects are then woven into the application, resulting in
a version instrumented for runtime verification. Figure 4 gives a graphical
overview of the different steps involved.

4.3 Running the application

In order to have the specification checked, it is only necessary to run the instru-
mented application. The instrumentation/weaving does not have to take place
prior to load time. AspectJ generally supports load-time weaving through a

9

Stolz and Bodden

aspect InitPolicy {

pointcut p1(): call(void SomeClass.requiresInit());

pointcut p2(): call(SomeClass.init());

int p1 = 1; int p2 = 2;

Formula state = Until(Not(p1), p2);

Set<int> currentPropositions = new Set<int>();

after(): p1() { currentPropositions.add(p1); }

after(): p2() { currentPropositions.add(p2); }

after(): p1() || p2() {

state = state.transition(currentPropositions);

if(state.equals(Formula.TT)) {

// report formula as satisfied

} else if(state.equals(Formula.FF)) {

// report formula as falsified

}

state.clear(); //reset proposition vector

}

}

Fig. 3. Aspect implementing the initialisation example from page 9

Fig. 4. Instrumentation steps

special classloader. This allows instrumentation of classes as they are loaded
into the system, which may affect classes that were not available at specifi-
cation time. In particular, formulae can also reason about interfaces. This
implies that all loaded classes implementing such an interface will automati-
cally be checked for compliance with the given formulae at runtime.

4.4 Overhead

Runtime Verification in general must introduce some kind of overhead in the
instrumented application because of the hooks that trigger the evaluation of
the assertions. This overhead is linear to the number of formulae, and lin-
ear to their length. call, execution, and set pointcuts are triggered only
when necessary by the AspectJ implementation. An if(expensiveFunc())

pointcut may result in an arbitrarily large overhead. Thus, such expensive

10

Stolz and Bodden

evaluations should not be performed within formulae. As long as if point-
cuts are restricted to field matches like if(User.loggedIn), the overhead is
considerably low.

By making use of AspectJ as an implementation strategy, we automat-
ically inherit all the powerful optimisations which come with the AspectJ
implementation. In particular and opposed to earlier approaches, there is no
overhead at all for joinpoints which do not lead to a further evaluation of one
of the given formulae. For instance, a formula G(!call(C.f())) will only be
evaluated when C.f() is ever really called.

We believe that our implementation is efficient, given the expressiveness of
our formalism, except the usual overhead introduced by the usage of aspect-
oriented programming, which is known to be in the region of not more than
two percent compared to an implementation based on non-modular instru-
mentation 1 . This overhead might still be reduced by ongoing improvements
in the abc compiler.

The AspectJ weaver makes sure that necessary code is only inserted at
those places which require instrumentation in order to trigger the evaluation.
With respect to this, the implementation has an optimal low overhead. When
statically precomputing the full transition table, the cost we pay at each such
instrumentation point can be split into

• the cost of a virtual method call to the aspect instance,

• a state change of the associated automaton, consisting of one integer com-
parison and one integer assignment.

The former is likely to be eliminated as the weaver implementation improves.
As soon as inlining is fully supported, even this virtual method call will disap-
pear. The latter is unavoidable. When formulae require state, some additional
bookkeeping has to take place. This is the topic of the next section.

4.5 Lock-order reversal

We use a more complicated example to motivate the need for parametrised
formulae: To avoid the problem of lock-order reversal (cf. [6], [15]), we would
like to assert through an LTL formula that if two locks are taken in a specific
order (with no unlocking in between), the system should warn the user if he
also uses these locks in swapped order because in concurrent programs this
would mean that two threads could deadlock when their execution is scheduled
in an unfortunate order.

Notice that we do not want to abort the execution in this example: we are
here also interested in mere warnings, as a violation of the formula might not
coincide with a deadlock. To observe the behaviour of the whole execution-
path (of which the erroneous behaviour might only be a sub-path), we wrap
the formula into the temporal Globally.

1 Personal communication with M. Webster, IBM Hursley Performance Labs, 2003

11

Stolz and Bodden

Thus, if we consider a class Lock with explicit lock and unlock methods
like we might find them in any programming language, we obtain for two
threads pi, pj and two locks lx, ly the formula (it is arguable if LTL is an
appropriate specification language):

¬lock(pi,ly) U (lock(pi,lx) ∧ (¬unlock(pi,lx) U lock(pi,ly)))

→ G¬(¬lock(pj ,lx) U (lock(pj ,ly) ∧ (¬unlock(pj ,ly) U lock(pj ,lx)))), i 6= j, x 6= y

Notice that the formula has four parameters: two locks and two threads.
Using the current implementation, this means that we would have to pre-
generate all possible formula-instantiations. This pre-generation could either
be based on a fixed maximum number of locks and threads or on lock/thread
creation at runtime. Both approaches have drawbacks. The first one will ob-
viously miss anything with values larger than the specified upper bounds. The
latter requires additional instrumentation of object-creation and the current
trace, which for memory reasons will usually be limited to a suffix of the run.

In the example, the thread-identifier shall be passed as an argument, al-
though in a typical implementation it might be implicit (e.g. stored in a special
variable or obtainable through an API). In order to express this specification
in our formalism, we employ variable bindings. The implementation of this
additional feature is work in progress and will be presented in a future publi-
cation. Bindings can easily be modelled by constraints (additional conjuncts)
in the AFA where the updating and checking of constraints is closely tied to
the on-the-fly evaluation. Translating the above formula into a new variant of
the LTL-syntax allowing variable bindings results in the following expression
(we distinguish between logical operators in LTL and AspectJ for clarity):

pointcut lock(Thread t, Lock l):

call(Lock.lock(Thread)) && args(t) && target(l);

pointcut unlock(Thread t, Lock l):

call(Lock.unlock(Thread)) && args(t) && target(l);

Thread i,j; Lock x,y;

¬lock(i,y) U (lock(i,x) && ¬lock(i,y) ∧ (¬unlock(i,x) U lock(i,y)))

→ G ¬ ((¬lock(j,x) && ¬lock(i,x))

U (lock(j,y) ∧ (¬unlock(j,y) U lock(j,x))))

Variable binding works similar to Prolog: The first invocation of an aspect
containing target or args will bind the variable to the current value. All other
occurrences referring to the same variable are then turned into predicates. New
bindings for different matching parts of the trace will cause a new incarnation
of the related subformulae. This has the desired effect of generating a separate
formula for each behaviour observed by the left-hand-side of the implication.

12

Stolz and Bodden

5 Related work

JavaPathExplorer [7] due to Havelund and Roşu reasons about traces and
uses a similar approach of specifying runtime behaviour. They use similar
semantics of LTL over finite paths, although their approach is not AOP based.

Walker and Viggers [16] proposed a language extension to AspectJ, trace-

cuts. Tracecuts do not match on events in the execution flow as pointcuts
do, but instead match on traces of such events. Those traces are specified by
means of context-free expressions over pointcuts. Since this approach provides
a language extension, it cannot be used in combination with ordinary Java
compilers. Tracecuts do not provide automatic tracking of state. Inspired by
this work, Allan et al. [1] extended the abc compiler with tracematches which
allow to bind free variables in pointcut expressions. This solves the problem of
binding the above formula for every valid combination of parameters strictly
on the basis of those values actually occurring during execution. The imple-
mentation in abc follows similar thoughts as the approach we proposed in [15].
Allan et al. however do not employ alternating automata in their model. We
have the feeling that using AFA as underlying representations, bindings can
be integrated in a very natural way.

Klose and Ostermann [9] discuss how temporal relations can be expressed
in Gamma, an aspect-oriented language on top of a minimal object-oriented
core language. Pointcuts are specified in a Prolog-like language and include
timestamps that can be compared using the predicates isbefore/after. Their
prototype requires an already existing trace to apply aspects to and is not ap-
plicable to an existing language.

Java-MaC [8] is a runtime-assurance tool for Java. The Meta Event De-
finition Language (MEDL) is used to specify safety properties. As the MaC
architecture should be language-independent, a Primitive Event Definition
Language (PEDL) provides the binding to the target language, here Java.
While Java-PEDL has been designed to closely correspond to Java, it is not
as comfortable to use as AspectJ where expressions are not modelled after

Java, but in fact are Java expression. Also, state in MEDL seems to be lim-
ited to primitive types.

Valgrind [11] is a system for profiling x86 programs by instrumenting them
at runtime. Tools for detecting memory management and threading bugs are
provided. Extending Valgrind should be the natural choice if applications
compiled to native code (e.g. from C or C++) should be instrumented. In
fact, an earlier version contained a tool implementing the Eraser-algorithm
which detects data-races in multi-threaded programs [14].

Temporal Rover [4] is a commercial product by Time Rover, Inc. It handles
LTL assertions embedded in comments by source-to-source transformation.

13

Stolz and Bodden

6 Conclusion and future work

We have presented a runtime verification framework based on aspect-oriented
programming with AspectJ. LTL formulae with pointcuts as properties are
translated into automata. By means of aspects we “walk” through the au-
tomaton during execution, detecting violations by entering an error-state.
Our current implementation supports the full formalism, yet without access to
runtime state. We discuss the improvement to parametrised formulae which
overcome this issue. Once this implementation is finished, the resulting tool
will provide a formalism which is more expressive and more natural to object-
oriented reasoning than any former approach we are aware of.

One limitation of LTL is that it restricts us to reason about regular prop-
erties only, while often context-free properties are interesting as well. Recon-
sider the example from Section 4.1 with the variation of wanting to specify
that “every call of C.f() is finally followed by a matching call to C.g()”. I.e.
it should no longer be possible for a single C.g() to release multiple “wait-
ing” calls to C.f(). Raising the expressiveness to the power of context-free
properties is non-trivial, though [2]. Although our approach should be able to
handle such issues by tracking state, we yet lack a suitable language-extension
to LTL to be able to take advantage of this.

In the context of concurrent systems, synchronisation points are crucial to
the behaviour of the application and accordingly our logic should provide a
convenient way to reason about those. AspectJ already allows matching of
synchronized methods, although not of synchronized(obj){...}-blocks.
Unfortunately, it is not generally possible to statically determine matching
monitorenter and monitorexit instructions at the bytecode level after com-
pilation. This can be addressed dynamically, though. Our prototype of the
Java Logical Observer JLO is available from
http://www-i2.informatik.rwth-aachen.de/JLO/.

References

[1] C. Allan, P. Avgustinov, A.S. Simon, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittamplan, and J. Tibble. Adding trace matching to
AspectJ (submitted to OOPSLA’05). abc Technical Report abc-2005-01, McGill
University, 2004.

[2] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In K. Jensen and A. Podelski, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture
Notes in Computer Science. Springer, 2004.

[3] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc: an extensible
AspectJ compiler. In AOSD’05: Proceedings of the Fourth international
conference on Aspect-oriented software development. ACM Press, 2005.

14

http://www-i2.informatik.rwth-aachen.de/JLO/

Stolz and Bodden

[4] D. Drusinsky. The Temporal Rover and the ATG Rover. In K. Havelund,
J. Penix, and W. Visser, editors, SPIN Model Checking and Software
Verification (7th International SPIN Workshop), volume 1885 of Lecture Notes
in Computer Science, pages 323–330, Stanford, CA, USA, August/September
2000. Springer.

[5] B. Finkbeiner and H.B. Sipma. Checking Finite Traces using Alternating
Automata. Formal Methods in System Design, 24(2):101–127, 2004.

[6] K. Havelund. Using Runtime Analysis to Guide Model Checking of Java
Programs. In K. Havelund, J. Penix, and W. Visser, editors, SPIN Model
Checking and Software Verification (7th International SPIN Workshop), volume
1885 of Lecture Notes in Computer Science, Stanford, USA, 2000. Springer.

[7] K. Havelund and G. Roşu. An Overview of the Runtime Verification Tool Java
PathExplorer. Formal Methods in System Design, 24(2):189–215, 2004.

[8] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O.V. Sokolsky. Java-MaC: A
Run-time Assurance Approach for Java Programs. Formal Methods in System
Design, 24(2):129–155, 2004.

[9] K. Klose and K. Ostermann. Back to the future: Pointcuts as predicates over
traces. In Foundations of Aspect-Oriented Languages workshop (FOAL’05),
Chicago, USA, 2005.

[10] T. Lindholm and F. Yellin. The Javatm Virtual Machine Specification.
Addison-Wesley, 1997.

[11] N. Nethercote and J. Seward. Valgrind: A Program Supervision Framework.
In Third Workshop on Runtime Verification (RV’03), volume 89 of Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers, 2003.

[12] A. Pnueli. The Temporal Logics of Programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, 1977.

[13] G. Roşu and K. Havelund. Synthesizing dynamic programming algorithms from
linear temporal logic formulae. Technical Report 01-15, Research Institute for
Advanced Computer Science (RIACS), 2001.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions
on Computer Systems, 15(4), 1997.

[15] V. Stolz and F. Huch. Runtime Verification of Concurrent Haskell Programms.
In K. Havelund and G. Roşu, editors, Fourth Workshop on Runtime Verification
(RV’04), volume 113 of Electronic Notes in Theoretical Computer Science,
Barcelona, Spain, 2004. Elsevier Science Publishers.

[16] R.J. Walker and K. Viggers. Implementing protocols via declarative event
patterns. In R.N. Taylor and M.B. Dwyer, editors, Twelfth International
Symposium on the Foundations of Software Engineering (SIGSOFT FSE).
ACM, 2004.

15

	Introduction
	From LTL to alternating automata
	Path semantics for LTL
	Generating automata
	Determinisation
	Soundness on finite paths

	Instrumenting the program with AspectJ
	Putting it all together
	LTL in the state space of a Java program
	Can we see the code, please?
	Running the application
	Overhead
	Lock-order reversal

	Related work
	Conclusion and future work
	References

