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1. INTRODUCTION 
 
As the size and complexity of software systems increase, 
the design, specification, and analysis of overall system 
structure becomes a critical issue. Structural issues include 
the organization of a system as a composition of compo-
nents; global control structures, the protocols for communi-
cation, synchronization, and data access; the assignment of 
functionality to design elements; the composition of design 
elements; physical distribution; scaling and performance, 
and dimensions of evolution. This is the software architec-
ture level of design. 
 
Over the past decade architectural design has emerged as 
an important subfield of software engineering. Practitioners 
have come to realize that having a good architectural de-
sign is a critical success factor for complex system devel-
opment. A good architecture can help ensure that a system 
will satisfy key requirements in such areas as performance, 
reliability, portability, scalability, and interoperability. A 
bad architecture can be disastrous. 
 
Practitioners have also begun to recognize the value of 
making explicit architectural choices, and leveraging past 
architectural designs in the development of new products. 
Today there are numerous books on architectural design, 
regular conferences and workshops devoted specifically to 
software architecture, a growing number of commercial 
tools to aid in aspects of architectural design, courses in 
software architecture, major government and industrial 
research projects centered on software architecture, and an 
increasing number of formal architectural standards. Codi-
fication of architectural principles, methods, and practices 
has begun to lead to repeatable processes of architectural 
design, criteria for making principled tradeoffs among ar-
chitectures, and standards for documenting, reviewing, and 
implementing architectures.  
 
 
 
 
 

2. THE ROLES OF SOFTWARE ARCHITECTURE  
 
What exactly is meant by the term “software architecture?” 
If we look at the common uses of the term “architecture” in 
software, we find that it is used in different ways, often 
making it difficult to understand what aspect is being ad-
dressed. Among the uses are: (a) the architecture of a par-
ticular system, as in “the architecture of system S contains 
components C1… Cn,” (b) an architectural style, as in “sys-
tem S adopts a client-server architecture,” and (c) the gen-
eral study of architecture, as in “there are many books on 
software architecture.” 
 
Within software engineering, however, most uses of the 
term focus on the first of these interpretations. A typical 
definition is: 
 

The software architecture of a program or computing 
system is the structure or structures of the system, 
which comprise software components, the externally 
visible properties of those components, and the rela-
tionships among them [5]. 

 
While there are numerous similar definitions of software 
architecture, at the core of all of them is the notion that the 
architecture of a system describes its gross structure using 
one or more views.  The structure in a view illuminates a 
set of top-level design decisions, including things such as 
how the system is composed of interacting parts, where are 
the main pathways of interaction, and what are the key 
properties of the parts.  Additionally, an architectural de-
scription ideally includes sufficient information to allow 
high-level analysis and critical appraisal. 
 
Software architecture typically plays a key role as a bridge 
between requirements and code (see Figure 1).  
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By providing an abstract description (or model) of a sys-
tem, the architecture exposes certain properties, while hid-
ing others. Ideally this representation provides an intellec-
tually tractable guide to the overall system, permits design-
ers to reason about the ability of a system to satisfy certain 
requirements, and suggests a blueprint for system construc-
tion and composition.  
 
For example, an architecture for a signal processing appli-
cation might be constructed as a dataflow network in which 
the nodes read input streams of data, transform that data, 
and write to output streams. Designers might use this de-
composition, together with estimated values for input data 
flows, computation costs, and buffering capacities, to rea-
son about possible bottlenecks, resource requirements, and 
schedulability of the computations. 
 
To elaborate, software architecture can play an important 
role in at least six aspects of software development. 
 

1. Understanding:  Software architecture simplifies our 
ability to comprehend large systems by presenting 
them at a level of abstraction at which a system’s de-
sign can be easily understood [2, 20, 35]. Moreover, 
at its best, architectural description exposes the high-
level constraints on system design, as well as the ra-
tionale for specific architectural choices. 

 
2. Reuse:  Architectural design can support reuse in 

several ways.  Current work on reuse generally fo-
cuses on component libraries.  Architectural design 
supports, in addition, both reuse of large components  
(or subsystems) and also frameworks into which 
components can be integrated. Such reusable frame-
works may be domain-specific software architectural 
styles [4, 27], component integration standards [43], 
and architectural design patterns [8]. 

 

3. Construction: An architectural description provides 
a partial blueprint for development by indicating the 
major software components and dependencies be-
tween them. For example, a layered view of an ar-
chitecture typically documents abstraction bounda-
ries between parts of a system’s implementation, 
clearly identifying the major internal system inter-
faces, and constraining what parts of a system may 
rely on services provided by other parts [2]. 
 

4. Evolution: Software architecture can expose the di-
mensions along which a system is expected to 
evolve.  By making explicit the "load-bearing walls" 
of a system, system maintainers can better under-
stand the ramifications of changes, and thereby more 
accurately estimate costs of modifications.  More-
over, architectural descriptions separate concerns 
about the functionality of a component from the 
ways in which that component is connected to (in-
teracts with) other components, by clearly distin-
guishing between components and mechanisms that 
allow them to interact.  This separation permits one 
to more easily change connection mechanisms to 
handle evolving concerns about performance and re-
use. 

 
5. Analysis:  Architectural descriptions provide new 

opportunities for analysis, including system consis-
tency checking [3, 25], conformance to constraints 
imposed by an architectural style [1], conformance 
to quality attributes [9], dependence analysis [42], 
and domain-specific analyses for architectures built 
in specific styles [10, 15, 26]. 

 
6. Management:  Experience has shown that successful 

projects view achievement of a viable software ar-
chitecture as a key milestone in an industrial soft-
ware development process.  Critical evaluation of an 
architecture typically leads to a much clearer under-
standing of requirements, implementation strategies, 
and potential risks [7]. 

 
7. Communication: An architectural description often 

serves as a vehicle for communication among stake-
holders. For example, explicit architectural design 
reviews allow stakeholders to voice opinions about 
relative weights of features and quality attributes 
when architectural tradeoffs must be considered [9].  

 
3. PRECURSORS 
The notion of providing explicit descriptions of system 
structures goes way back. In the 1960’s and 1970’s there 
were active debates about criteria on which to base modu-
larization of software [12, 45]. Programming languages 
began to provide new features for modularization and the 
specification of interfaces. 

Figure 1: Software Architecture as a Bridge 
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In 1975 DeRemer and Kron [11] argued that creating pro-
gram modules and connecting them to form larger struc-
tures were distinct design efforts. They created the first 
module interconnection language (MIL) to support that 
connection effort. In an MIL, modules import and export 
resources, which are named programming-language ele-
ments such as type definitions, constants, variable, and 
functions. A compiler for an MIL ensures system integrity 
using inter-module type checking. Since DeRemer and 
Kron’s proposal, other MILs have been developed for spe-
cific programming languages such as Ada and Standard 
ML, and have provided a base from which to support soft-
ware construction, version control, and system families 
[33,46]. Enough examples are available to develop models 
of the design space [47]. 
 
These early efforts to develop good ways to talk about sys-
tem structures and to provide criteria for software modu-
larization focused primarily on the problem of code organi-
zation, and relationships between the parts based on inter-
actions such as procedure call and simple data sharing. The 
key question was how to partition the software into units 
that could be implemented separately by software develop-
ers, and that would provide downstream benefits in support 
of extensibility, maintenance, and system understandability. 
 
Today’s view of software architecture builds on the insights 
and concepts from the early days of software structuring, 
but goes much further by also considering architectural 
representations that capture a system’s run-time structures 
and behavior. By representing architectures as interacting 
components (viewed as actual run-time entities), these rep-
resentations more directly facilitate reasoning about system 
properties such as performance, security, and reliability. 
Additionally, modern views of software architecture pro-
vide a much richer notion of interaction (than procedure 
call and simple data sharing), permitting new abstractions 
for the “glue” that allows components to be composed. 
 
4. A NEW DISCIPLINE EMERGES 
Initially architectural design was largely an ad hoc affair.  
Architectural definitions relied on informal box-and-line 
diagrams, which were rarely maintained once a system was 
constructed.  Architectural choices were made in an idio-
syncratic fashion – typically by adapting some previous 
design, whether or not it was appropriate.  Good architects 
– even if they were classified as such within their organiza-
tions – learned their craft by hard experience in particular 
domains, and were unable to teach others what they knew. 
It was usually impossible to analyze an architectural de-
scription for consistency or to infer non-trivial properties 
about it.  There was virtually no way to check that a given 
system implementation faithfully represented its architec-
tural design. 
 

However, despite their informality, architectural descrip-
tions were central to system design.  As people began to 
understand the critical role that architectural design plays in 
determining system success, they also began to recognize 
the need for a more disciplined approach.  Early authors 
began to observe certain unifying principles in architectural 
design [36], to call out architecture as a field in need of 
attention [35], and to establish a working vocabulary for 
software architects [20].  Tool vendors began thinking 
about explicit support for architectural design.  Language 
designers began to consider notations for architectural rep-
resentation [30]. 
 
Within industry, two trends highlighted the importance of 
architecture.  The first was the recognition of a shared rep-
ertoire of methods, techniques, patterns, and idioms for 
structuring complex software systems. For example, the 
box-and-line-diagrams and explanatory prose that typically 
accompany a high-level system description often refer to 
such organizations as a "pipeline,'' a "blackboard-oriented 
design,'' or a "client-server system.''  Although these terms 
were rarely assigned precise definitions, they permitted 
designers to describe complex systems using abstractions 
that make the overall system intelligible. Moreover, they 
provided significant semantic content about the kinds of 
properties of concern, the expected paths of evolution, the 
overall computational paradigm, and the relationship be-
tween this system and other similar systems. 
 
The second trend was the concern with exploiting com-
monalities in specific domains to provide reusable frame-
works for product families. Such exploitation is based on 
the idea that common aspects of a collection of related sys-
tems can be extracted so that each new system can be built 
at relatively low cost by "instantiating'' the shared design. 
Familiar examples include the standard decomposition of a 
compiler (which permits undergraduates to construct a new 
compiler in a semester), standardized communication pro-
tocols (which allow vendors to interoperate by providing 
services at different layers of abstraction), fourth-
generation languages (which exploit the common patterns 
of business information processing), and user interface 
toolkits and frameworks (which provide both a reusable 
framework for developing interfaces and sets of reusable 
components, such as menus and dialogue boxes). 
 
Much has changed in the past decade.  Although there is 
wide variation in the state of the practice, broadly speaking, 
architecture is much more visible as an important and ex-
plicit design activity in software development. Job titles 
now routinely reflect the role of software architect; compa-
nies rely on architectural design reviews as critical staging 
points; and architects recognize the importance of making 
explicit tradeoffs within the architectural design space. 
 



  

In addition, the technological basis for architectural design 
has improved dramatically. Three of the important ad-
vancements have been the development of architecture de-
scription languages and tools, the emergence of product 
line engineering and architectural standards, and the codifi-
cation and dissemination of architectural design expertise. 
 
5. ARCHITECTURE DESCRIPTION LANGUAGES 

AND TOOLS 
The informality of most box-and-line depictions of archi-
tectural designs leads to a number of problems.  The mean-
ing of the design may not be clear.  Informal diagrams can-
not be formally analyzed for consistency, completeness, or 
correctness. Architectural constraints assumed in the initial 
design are not enforced as a system evolves. There are few 
tools to help architectural designers with their tasks. 
 
To alleviate these problems there have been number of im-
portant developments. First has been the emergence of 
practitioner guidelines [2] and published standards for ar-
chitectural documentation [44, 48].  These have helped to 
codify best practices and provide some uniformity to the 
way architectures are documented. 
 
A second development has been the creation of formal no-
tations for representing and analyzing architectural designs. 
Sometimes referred to as "Architecture Description Lan-
guages'' or “Architecture Definition Languages” (ADLs), 
these notations usually provide both a conceptual frame-
work and a concrete syntax for characterizing software 
architectures [19, 30].  They also typically provide tools for 
parsing, displaying, compiling, analyzing, or simulating 
architectural descriptions.   
 
Examples of ADLs include Acme[18], Adage [10], Aesop 
[15], C2 [28], Darwin [26], Rapide [25], SADL [32], Uni-
Con [39], Meta-H [6], and Wright [3].  While all of these 
languages are concerned with architectural design, each 
provides certain distinctive capabilities: Acme supports 
interchange of architectural descriptions, Adage supports 
the description of architectural frameworks for avionics 
navigation and guidance; Aesop supports the use of archi-
tectural styles; C2 supports the description of user interface 
systems using an event-based style; Darwin supports the 
analysis of distributed message-passing systems; Meta-H 
provides guidance for designers of real-time avionics con-
trol software; Rapide allows architectural designs to be 
simulated, and has tools for analyzing the results of those 
simulations; SADL provides a formal basis for architectural 
refinement; UniCon has a high-level compiler for architec-
tural designs that supports a mixture of heterogeneous 
component and connector types; Wright supports the for-
mal specification and analysis of interactions between ar-
chitectural components. 
 

Although these languages (and their tools) differ in many 
respects, a number of key insights have emerged through 
their development. 
 
The first insight is that good architectural description bene-
fits from multiple views, each view capturing some aspect 
of the system [2, 24, 44, 48]. Two of the more important 
classes of view are:  
 

• Code-oriented views, which describe how the 
software is organized into modules, and what 
kinds if implementation dependencies exist be-
tween those modules. Class diagrams, layered dia-
grams, and work breakdown structures are exam-
ples of this class of view; and 

• Execution-oriented views, which describe how 
the system appears at run time, typically providing 
one or more snapshots of a system in action. These 
views are useful for documenting and analyzing 
execution properties such as performance, reliabil-
ity, and security. 

 
A second insight is that architectural description of execu-
tion-oriented views, as embodied in most of the ADLs 
mentioned earlier, requires the ability to model the follow-
ing as first class design entities:  
 

• Components represent the computational ele-
ments and data stores of a system.  Intuitively, 
they correspond to the boxes in box-and-line de-
scriptions of software architectures. Examples of 
components include clients, servers, filters, black-
boards, and databases.  Components may have 
multiple interfaces, each interface defining a point 
of interaction between a component and its en-
vironment.  A component may have several inter-
faces of the same type (e.g., a server may have 
several active http connections). 

• Connectors represent interactions among compo-
nents.  They provide the “glue” for architectural 
designs, and correspond to the lines in box-and-
line descriptions. From a run-time perspective, 
connectors mediate the communication and coor-
dination activities among components. Examples 
include simple forms of interaction, such as pipes, 
procedure call, and event broadcast. Connectors 
may also represent complex interactions, such as a 
client-server protocol or a SQL link between a da-
tabase and an application.  Connectors have inter-
faces that define the roles played by the partici-
pants in the interaction. 

• Systems represent graphs of components and con-
nectors. In general, systems may be hierarchical: 
components and connectors may represent subsys-
tems that have their own internal architectures. We 
will refer to these as representations. When a sys-



  

tem or part of a system has a representation, it is 
also necessary to explain the mapping between the 
internal and external interfaces.  

• Properties represent additional information (be-
yond structure) about the parts of an architectural 
description. Although the properties that can be 
expressed by different ADLs vary considerably, 
typically they are used to represent anticipated or 
required extra-functional aspects of an architec-
tural design. For example, some ADLs allow one 
to calculate system throughput and latency based 
on performance estimates of the constituent com-
ponents and connectors. In general, it is desirable 
to be able to associate properties with any archi-
tectural element in a description (components, 
connectors, systems, and their interfaces).  For ex-
ample, a property of an interface might describe an 
interaction protocol. 

• Styles represent families of related systems. An 
architectural style typically defines a vocabulary 
of design element types as a set of component, 
connector, port, role, binding, and property types, 
together with rules for composing instances of the 
types. We will describe some of the more promi-
nent styles later in this article. 

 

To illustrate the use of these modeling constructs, consider 
the example shown in Figure 2. The system defines an exe-
cution-oriented view of a simple string-processing appli-
cation that extracts and sorts text. The system is described 
in a pipe-filter style, which provides a design vocabulary 
consisting of a filter component type and pipe connector 
type, input and output interface (port) types, and a single 
binding type. In addition, there would likely be constraints 
(not shown) that ensure, for example, that the reader/writer 
roles of the pipe are associated with appropriate in-
put/output ports. The system is described hierarchically: 
MergeAndSort is defined by a representation that is itself a 
pipe-filter system. In complementary documentation, prop-
erties of the components and connectors might list, for ex-

ample, performance characteristics used by a tool to calc-
ulate overall system throughput. 
 
6. PRODUCT LINES AND ARCHITECTURAL 

STANDARDS  
As noted earlier, an important trend has been the desire to 
exploit commonality across multiple products. Two spe-
cific manifestations of that trend are improvements in our 
ability to create product lines within an organization and 
the emergence of domain-specific architectural standards 
for cross-vendor integration. 
 
With respect to product lines, a key challenge is that a 
product line approach requires different methods of devel-
opment. In a single-product approach the architecture must 
be evaluated with respect to the requirements of that prod-
uct alone. Moreover, single products can be built independ-
ently, each with a different architecture. 
 
However, in a product line approach, one must also con-
sider requirements for the family of systems, and the rela-
tionship between those requirements and the ones associ-
ated with each particular instance.  Figure 3 illustrates this 
relationship. In particular, there must be an up-front (and 
on-going) investment in developing a reusable architecture 
that can be instantiated for each product. Other reusable 
assets, such as components, test suites, tools, etc., typically 
accompany this. 
 
Although product line engineering is not yet widespread, 
we are beginning to have a better understanding of the pro-
cesses, economics, and artifacts required to achieve the 
benefits of a product line approach. A number of case stud-
ies of product line successes have been published [22, 13].)  
Moreover, organizations such as the CMU Software Engi-
neering Institute are well on their way towards providing 
concrete guidelines and processes for the use of a product 
line approach [37]. 

Figure 2.  A system in the pipe-filter style 
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Like product line approaches, domain-specific architectural 
standards for cross-vendor integration provide frameworks 
that permit system developers to configure a wide variety 
of specific systems by instantiating that framework. But 
more importantly, such standards support the integration of 
parts provided by multiple vendors. A number of these 
have been sanctioned as formal international standards 
(such as those sponsored by IEEE or ISO), while others are 
ad hoc or de facto standards promoted by one or more in-
dustrial leaders. 
 
A good example of the former is the High Level Architec-
ture (HLA) for Distributed Simulation [4].  Initially pro-
posed by the US Defense Modeling and Simulation Office 
as a standard to permit the integration of simulations pro-
duced by many vendors, it now has become an IEEE Stan-
dard (IEEE P1516.1/D6). The HLA prescribes interface 
standards defining services to coordinate the behavior of 
multiple semi-independent simulations. In addition, the 
standard prescribes requirements on the simulation compo-
nents that indicate what capabilities they must have, and 
what constraints they must observe on the use of shared 
services. 

 
An example of an ad hoc standard is Sun’s Enterprise Java-
BeansTM  (EJB) architecture [27].  EJB is intended to sup-
port distributed, Java-based, enterprise-level applications, 
such as business information management systems. Among 
other things, it prescribes an architecture that defines a 
vendor-neutral interface to information services, including 
transactions, persistence, and security.  It thereby supports 
component-based implementations of business processing 
software that can be easily retargeted to different imple-
mentations of those underlying services. 
 
7. CODIFICATION AND DISSEMINATION 
One early impediment to the emergence of architectural 
design as an engineering discipline was the lack of a shared 
body of knowledge about architectures and techniques for 
developing good ones. Today the situation has improved, 
due in part to the publication of books on architectural de-
sign [5, 8, 22, 36, 40, 44] and courses [21]. 

 
A common theme in these books and courses is the use of 
standard architectural styles. An architectural style typically 
specifies a design vocabulary, constraints on how that vo-
cabulary is used, and semantic assumptions about that vo-
cabulary [1]. For example, a pipe-filter style might specify 
vocabulary in which the processing components are data 
transformers (filters), and the interactions are via order-
preserving streams (pipes). Constraints might include the 
prohibition of cycles. Semantic assumptions might include 
the fact that pipes preserve order and that filters are in-
voked non-deterministically. 
 
Other common styles include blackboard architectures, 
client-server architectures, event-based architectures, and 
object-based architectures. Each style is appropriate for 
certain purposes, but not for others. For example, a pipe-
and-filter style would likely be appropriate for a signal 
processing application, but not for an application in which 
there is a significant requirement for concurrent access to 
shared data [38]. Moreover, each style is typically associ-
ated with a set of associated analyses. For example, it 
makes sense to analyze a pipe-filter system for system la-
tencies, whereas transaction rates would be a more appro-
priate analysis for a repository-oriented style. 
 
The identification and documentation of such styles (as 
well as their more domain-specific variants) enables others 
to adopt previously-defined architectural patterns as a start-
ing point. In that respect, the architectural community has 
paralleled other communities in recognizing the value of 
established, well-documented patterns, such as those found 
in [14]. 
 
While recognizing the value of stylistic uniformity, realities 
of software construction often force one to compose sys-
tems from parts that were not architected in a uniform fash-
ion. For example, one might combine a database from one 
vendor, with middleware from another, and a user interface 
from a third.  In such cases the parts do not always work 
well together – in large measure because they make con-
flicting assumptions about the environments in which they 
were designed to work [16]. This has led to a recognition of 
the need to identify architectural strategies for bridging 
mismatches.  Although we are far from having well under-
stood ways of detecting such mismatch, and of repairing it 
when it is discovered, a number of techniques have been 
developed, some of which are illustrated in Figure 4 (due to 
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Mary Shaw). 
 
8. RELATED AREAS 
There are a number of closely related areas. 
 
9.1 Software Development Methods 
 
One of the hallmarks of software engineering progress has 
been the development of methods and processes for soft-
ware development. Like software architecture, methods 
attempt to provide a path from requirements to code that 
eliminates some of the ad hoc development practice of the 
past. 
 
Methods complement software architecture: the former 
attempt to provide a set of regular steps for software devel-
opment, while the latter attempts to provide a basis for de-
veloping and analyzing certain design models along that 
path.  
 
To the extent that they support conceptual design of sys-
tems, they also address architectural concerns. On the other 
hand, most methods tend to favor a particular architectural 
style. For example, object-oriented methods naturally favor 
architectural designs based on interacting objects, while 
other methods favor other styles. 
 
 
9.2 Object-Oriented Design and Modeling 
 
There are a number of parallels between the evolution of 
object-oriented design techniques and the trends of soft-
ware architecture, outlined above. 
 
�� Description Languages and Tools: Object-oriented 

systems have long had design languages and tools to 
support their use. Recently UML has emerged as a 
standard notation, unifying many of its predecessors 
[31]. Increasingly vendors are developing tools that 
take advantage of this technological standardization. 

 
�� Product Lines and Standards: Object-oriented 

frameworks have long been an important point of lev-
erage in system development. In particular, compo-
nent-oriented integration mechanisms, such as 
CORBA, DCOM, and JavaBeans have played an im-
portant role in supporting integration of object-oriented 
parts. In other more domain-specific ways, frameworks 
like Enterprise JavaBeansTM, VisualBasicTM, and 
MFCTM, have helped improve productivity in specific 
areas. 

 
�� Codification and Dissemination: There has been 

considerable work and interest in object-oriented 
patterns, which serve to codify common solutions to 
implementation problems [14]. 

 
Given these similarities it is worth asking the question: 
what are the important differences between the two fields? 
To shed light on the issue, it is helps to view the relation-
ship between architecture and object-oriented methods 
from at least three distinct perspectives.  
 
1. Object-oriented design as an architectural style: This 

perspective treats the part of object-oriented develop-
ment that is concerned with system structure as the 
special case of architectural design in which the com-
ponents are objects and the connectors are procedure 
calls (method invocation). Some ADLs support this 
view, providing built-in primitives for inter-component 
procedure call. 

2. Object-oriented design as an implementation base: 
This perspective treats object-oriented development as 
a lower-level activity, more concerned with implemen-
tation. Viewed this way, object modeling becomes one 
viable implementation target for any architectural de-
sign. 

3. Object-oriented design as an architectural modeling 
notation: This perspective treats a notation such as 
UML as a suitable notation for all architectural de-
scriptions [8, 24]. Proponents of this perspective have 
advocated various ways of using object modeling, in-
cluding class diagrams, collaboration diagrams, and 
package diagrams [17, 24, 29]. From this perspective, 
architecture is viewed as a sub-activity of object-
oriented design. 

 
Elaborating on the relationship between ADLs and object-
oriented modeling notations, such as UML, Figure 5 shows 
some of the paths that might be followed. Path A-D is one 
in which an ADL is used as the modeling language. Path B-
E is one in which UML is used as the modeling notation. 
Path A-C-E, is one in which an architecture is first repre-
sented in an ADL, but then transformed into UML before 
producing an implementation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Code 

Requirements 

Architecture 
in an ADL 

Architecture 
in UML 

  Figure 5:  ADLs versus Object Modeling 

C

A B 

D E 



  

 
Using a more general modeling language such as UML has 
the advantages of providing a notation that practitioners are 
more likely to be familiar with, and providing a more direct 
link to object-oriented implementations and development 
tools. But general-purpose object languages suffer from the 
problem that the object conceptual vocabulary may not be 
ideally suited for representing architectural concepts, and 
there are likely to be fewer opportunities for automated 
analysis of architectural properties. 
 
9.3 Component-Based Systems 
 
Component-based systems are closely related to object-
oriented systems insofar as both are based on the construc-
tion of systems from encapsulated entities that provide 
well-defined interfaces to a set of services. However, most 
component-based systems have a strong intrinsic architec-
tural flavor in that they are usually coupled with an integra-
tion framework that prescribes what kinds of interfaces the 
components must have, and ways in which components can 
interact at run-time [43].  
 
From an architectural perspective component-based sys-
tems such as DCOM, CORBA, and JavaBeans define archi-
tectural styles that are predominantly object-oriented. In 
addition, they may support other forms of interaction such 
as event publish-subscribe. However, component integra-
tion standards typically go beyond architectural modeling 
by providing run-time infrastructure and (in many cases) 
considerable support for generating code from more ab-
stract descriptions. 
 
9. FUTURE PROSPECTS 
The field of software architecture is one that has experi-
enced considerable growth over the past decade, and it 
promises to continue that growth for the foreseeable future. 
As architectural design matures into an engineering disci-
pline that is universally recognized and practiced, there are 
a number of significant challenges that will need to be ad-
dressed. Many of the solutions to these challenges are 
likely to arise as a natural consequence of dissemination 
and maturation of the architectural practices and technol-
ogy that we know about today. Other challenges arise be-
cause of the shifting landscape of computing and the needs 
for software: these will require significant new innovations. 
This article has attempted to provide a high-level overview 
of the terrain – illustrating where software architecture has 
come over the past few years, and outlining relationships 
between software architecture and other aspects of software 
engineering. 
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