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Abstract. The paper attempts to provide a comprehensive view of the
field of software testing. The objective is to put all the relevant issues into
a unified context, although admittedly the overview is biased towards my
own research and expertise. In view of the vastness of the field, for each
topic problems and approaches are only briefly tackled, with appropriate
references provided to dive into them. I do not mean to give here a
complete survey of software testing. Rather I intend to show how an
unwieldy mix of theoretical and technical problems challenge software
testers, and that a large gap exists between the state of the art and of
the practice.

1 Foreword

It is with pleasure that I received the invitation to present my views and per-
spectives on Software Testing at the 10th International Workshop on Abstract
State Machines. The testing of software is the research field I have been involved
in for several years now, and in this talk I will argue the important role of testing
in research and in practice.

On the other hand, I will not hide a little trepidation to talk in front of
the somewhat exclusive ASM “club”, that has been enrolling highly qualified
researchers and practitioners from worldwide for almost 20 years [18]. There is
an underlying motivation: whereby the ASM approach to system analysis and
design preaches very precise abstract models, and a stepwise and throughout
mathematically verifiable refinement from these abstract models down to exe-
cutable code, in contrast testing is intrinsically an empirical, pragmatic activity.

Testing by its nature can never conclude anything mathematically valid, as
it amounts to taking a sample and trying to infer a generally valid judgement
on the whole from the observed part. To complicate things, when the object of
testing includes software, in making the inference we cannot rely on any certain
continuity property [44] as in the testing of physical systems. We can/must work
towards making the sampling less ad hoc, and more systematic. We can/must de-
velop support tools to automate the clerical activities, and to partially automate
the intellectual tasks. We can/must try to incorporate quantitative, measurable
notions within the analysis of test results. Yet, the fact remains that program
testing can be used to show the presence of bugs, but never to show their absence,
as incisively stated by Dijkstra [28] as far as thirty years ago.



Though, testing is a challenging activity, and can greatly contribute to the en-
gineering of quality programs. I contrasted the formal rigor of the ASM approach
to the inherent pragmatism of testing. However, the contrast is only artificial:
on the contrary, it is just within a well formalized process, such as ASM’s, that
testing provides the highest benefits. Indeed, by looking at the constant concern
on putting ASMs to use in industrial applications [18], and at efforts devoted to
exploit ASM models to drive testing [42,43], I feel confident that this talk will
find in the ASM community positive reception and a fertile soil.

1.1 Paper Structure

I introduce a definition of software testing and related terminology in Sect. 2.
I discuss test case selection in Sect. 3 and other relevant issues in Sect. 4. I
overview testing in relation with the development process in Sect. 5. Very brief
conclusions are drawn in Sect. 6.

2 Software Testing

To start with I will re-propose here the definition of Software Testing introduced
in [9]!. That definition was worked out as a reference framework allowing for
both arranging the relevant issues of software testing within a unifying vision,
and tracing the most active research directions.

Definition 1. Software testing consists of the dynamic verification of the behav-
ior of a program on a finite set of test cases, suitably selected from the usually
infinite executions domain, against the specified expected behavior.

The underlined terms identify each a corresponding key concern for software
testers. Let me briefly analyze them:

— dynamic: this term is meant to explicitly signify that testing implies exe-
cuting the program on (valued) inputs. To be precise, the input value alone
is not always sufficient to determine a test, as a system behavior gener-
ally depends on the system state (and non deterministic system might even
react with different behaviors to a same input in the same state). Different
from testing, and complementary with it, are static analysis techniques, such
as peer review and inspection [33,31] (sometimes improperly referred to as
"static testing”); program execution on symbolic inputs, or symbolic eval-
uation [24]; formal verification techniques, such as theorem provers, model
checkers, data-flow analyzers. Yet another practice is to apply traditional test
approaches to “test” the executable specifications: this might be useful to

! This reference is a chapter within the Guide to the Software Engineering Body of
Knowledge (SWEBOK), providing an overview and references to acquire the ba-
sic “generally accepted” notions behind the Software Testing Knowledge Area, and
could serve as a starting point for testing newcomers.



early reveal potential inconsistencies in the model. All these approaches are
important, but are left outside the scope of this paper. I focus here expressly
on testing the implementation. Indeed, while all the above approaches are
useful to evaluate the internal “correctness” of a software system, testing is
the only procedure allowing for the assessment of its behavior when executed
within the target environment.

— finite: for even simple programs, so many test cases are theoretically possible
that exhaustive testing (i.e., exercising it on every input) would require even
years to execute (e.g., Dijkstra [28] calculated that the exhaustive testing
of a multiplier of two 27-bit integers taking “only” -at the time- some tens
of microseconds for a single multiplication would require more than 10000
years). Generally, the whole test set can be considered infinite. In contrast,
the number of executions that can realistically be observed must obviously be
finite (and affordable). Clearly, “enough” testing to get reasonable assurance
of acceptable behavior should be performed. This basic need points to well
known problems of testing, both technical in nature (criteria for deciding test
adequacy) and managerial in nature (estimating the effort to put in testing).
Testing always implies a trade-off between limited resources and schedules,
and inherently unlimited test requirements;

— selected: the many proposed test criteria essentially differ in how they se-
lect the (finite) test suite. Testers should be constantly aware that different
techniques may yield largely different effect, also depending on the context
(kind of application, maturity of the process and the organization, expertise
of testers, tool support are among the influencing factors). How to identify
the most suitable selection criterion under given conditions is a very com-
plex problem [76]; in practice risk analysis techniques and test engineering
expertise are applied;

— expected: it must be possible (although not always easy) to decide whether
the observed outcomes of program execution are acceptable or not, other-
wise the testing would be useless. The observed behavior may be checked
against user’s expectations (commonly referred to as testing for validation)
or against a specification (testing for verification, also said conformance test-
ing). The test pass/fail decision is commonly referred in the testing literature
to as the oracle problem.

2.1 Fault vs. Failure

Although strictly related, fault and failure denote different notions. When a test
is executed and the oracle response is “fail”, this means that the program exposed
an undesired behavior: properly this is called a failure, and can be defined [55] as
the deviation of the delivered service from the function the program was intended
for.

Instead, the originating cause of the failure is said a fault. A fault may remain
dormant long time, until it is activated and brings the program to a state which,
if propagated to the observable output, can lead to a failure: this intermediate
unstable state is indicated as an error. Hence, the chain



fault — error — failure

expresses a causality relationship, which can be iterated recursively, as a fault
itself can be seen as the consequence of a failure of some other system: for
instance a coding fault is a failure of the program developer.

Mechanisms of how faults propagate to failures have been extensively mod-
elled [69, 60, 77] and empirically studied [34, 50], and even specific test techniques
have been devised based on the resulting models, such as for example the weak
mutation approach [51].

Notwithstanding its intuitive meaning, defining formally a fault is extremely
difficult. If, as it is often done, a fault is characterized for practical purposes
as “what must be changed” (in code, specifications, design, ...) to eliminate the
failed behavior, we should then accept the fact that widely different fixes could
be done to remove a same failure. Therefore, the term fault is ambiguous and
should be avoided: in [37], the authors suggest to refer instead to “failure regions”
of the input domain such that when a point within them is executed the program
fails. Having said this, I will anyway refer to “fault” in the following, when it is
necessary to explicitly distinguish between the effect (the failure) and its cause.

Important considerations apply for testers. By testing we can expose failures,
but only subsequent off-line analysis can identify the originating faults. Such
analysis in modern large system can be extremely costly, and some techniques
for automating fault localization in code have been developed, e.g. [22].

Another important difference regards the evaluation of a system through the
test results: counting failures or counting faults may yield quite different results?
and implications. A historical reference in this regard is [1], in which empirical
data showed that most faults are ineffective, as they would never be activated
in the lifetime of a system: probably only ten per cent of design faults are worth
fixing. Although quite obvious, this consideration is ignored in several studies
that base their evaluation of a test selection criterion not on a measure of the
potential impact of failures found (as done in [37]), but just on their number.

3 Test Selection

The problem of test cases selection has been the largely dominating topic in
software testing research to the extent that “software testing” is often taken as
a synonymous for “test case selection”. Researchers creativity seems endless in
proposing novel criteria for picking out a “good” sample of potential program
behaviors. A comprehensive survey until 1997 is [87], but new criteria have been
proposed since.

An important point to always keep in mind is that what makes a test a
“good” one does not have a unique answer, but it changes depending on the

2 Note that the number of faults can be significantly lower from the number of failures
exposed by the tests, as a same fault can stimulate several failures, if the program
is not fixed immediately.



context, on the specific application, and on the goal for testing. The most com-
mon interpretation for “good” would be “able to detect many failures”; but
again precision would require to specify what kind of failures, as it is well known
and experimentally observed that different test criteria trigger different types of
faults [6, 86]. Therefore, it is always preferable to spend the test budget to apply
a combination of diverse techniques than concentrating it on just one, even if
shown the most effective [57].

Moreover, fault removal is only one of the two potential goals for software
testing; the second one is evaluating some specified quality, e.g., reliability test-
ing, usability testing, performance testing, and so on. Indeed, the final result of
a validation process should be to achieve an objective measure of the confidence
that can be put on the software being developed. Test suites that are good for
one purpose, could not be as good for another.

In general, a test criterion is a means of deciding which a “good” set of test
cases should be. A more precise definition is provided below.

Definition 2. A test criterion C is a decision predicate defined on triples (P,
RM, T), where P is a program, RM is a reference model related to P, and T is
a test suite. When C(P, RM,T) holds, it is said that T satisfies criterion C for
P and RM.

This definition refers to a broad category of test approaches referred to as
“partition” testing: the adopted reference model RM induces (directly or in-
directly) a partitioning of the program input domain into subdomains and it
is tacitly assumed (this is the underlying test hypothesis) that for every point
within a same subdomain the program either succeeds or fails. Therefore, thanks
to the test hypothesis only one or few points within each subdomain need to be
checked, and this is what allows for getting a finite set of tests out of the infinite
domain. The basic notion of grouping the inputs into subdomains that constitute
equivalence classes for test purposes were early formalized in [85, 68].

Partition testing is contrasted with “random testing”, by which instead test
inputs are randomly drawn from the whole domain according to a specified dis-
tribution® (most often the uniform or the operational distributions). The relative
merits of these two different test philosophies have been highly debated (see e.g.
the sequence of [30,45,84,37]).

Testers can use a test criterion for guiding in proactive way the selection of
test cases (so that when the selection terminates the criterion is automatically
fulfilled), or for checking after the fact if the executed (and anyhow else selected)
suite is sufficient. In the latter case, the criterion provides a stopping rule for
testing, i.e., for given P and RM a test suite T satisfying C(P, RM,T) is deemed
to be adequate. For instance, a tester could execute a test suite manually derived
from the analysis of the requirements specification document, and use a coverage

3 An approach somewhere in the middle between pure partition testing and random
testing is the statistical testing approach [74], by which the distribution of the inputs
is designed so that the randomly drawn test cases have a high probability to satisfy
a specified criterion.



analyzer tool during test execution for measuring the percentage of program
branches covered, stopping the testing as soon as this percentage reaches a fixed
threshold.

Test criteria can be classified according to the kind of RM [9]: it can be
as informal as “tester expertise”, or strictly formal, as in the case of confor-
mance testing from a formal specification or also of code-coverage criteria. The
advantages of a formal RM are evident: the selection of test cases, or otherwise
adequacy evaluation, can be automatized.

Many are the factors of relevance when a test selection criterion has to be
chosen. A framework within which existing test criteria can be categorized and
compared with regard to their potential utilization in a context has been devel-
oped and empirically evaluated [76].

Paradoxically, test case selection seems to be on the other hand the least
interesting problem for test practitioners. A demonstration of this low interest
is the paucity of commercial automated tools for helping test selection and test
input generation, in comparison with a profusion of support tools for handling
test execution and re-execution (or regression test) and for test documentation,
both in the specification of tests and in the logging and analysis of test results.
Indeed, much progress could be done in this direction, as test criteria that have
been state-of-art for more than twenty years, and could greatly improve test
cost/effectiveness, remain still almost unknown to practitioners (as recently dis-
cussed in [8]). The most practiced test selection criterion in industry probably
is still tester’s expertise, and indeed expert testers may perform as very good
selection “mechanisms”. Empirical investigations [6] showed in fact that tester’s
skill is the factor that mostly affect test effectiveness in finding failures.

3.1 Selection Criteria Based on Code

Code-based testing has been the dominating trend in software testing research
during the late 70’s and the 80’s. One reason is certainly that in those years
in which formal approaches to specification were much less mature and pursued
than now, the only RM formalized enough to hopefully allow for the automation
of test selection or adequacy measurement was the code.

These criteria are also called path-based, because they map each test input
to a unique path p on the flowgraph corresponding to RM. The ideal and yet
unreachable target of code-based testing would be the exhaustive coverage of all
possible paths along the program control-flow. The basic test hypothesis here is
that by executing a path once, potential faults related to it will be revealed, i.e.,
it is assumed that every input executing a same path will either fail or succeed
(which is not necessarily true, of course).

Full path coverage is not applicable, because banally every program with
unbounded loops would yield an infinite number of paths. Even limiting the
number of iterations within program loops, usually practised tactic in testing, the
number of tests would remain infeasibly high. Therefore, all the proposed code-
based criteria attempt to realize cost/effective approximations to path coverage,
by identifying specific (control-flow or data-flow) elements of a program that are



deemed to be relevant for revealing failures, and by requiring that enough paths
to cover all such elements be executed. In particular, in data flow-based testing,
the graph model is annotated with information about how the program variables
are defined and used, and a test is aimed at exercising how a value assigned to
a variable is used along different control-flow paths.

The landmark paper in code-based testing is [67], in which a family of criteria
is introduced, based on both control-flow and data-flow. A subsumption hierarchy
between the criteria was derived, based on the inclusion relation such that a
test suite satisfying the subsuming criterion is guaranteed to also satisfy the
(transitively) subsumed criterion. This family hierarchy has remained still today
an important reference point: whenever a new criterion is proposed, its place
in this hierarchy is located. Indeed, since 1985, many other criteria have been
added to the Rapps-Weyuker family (e.g., [29, 35]).

To automate path-based testing, the program is modelled as a graph and
the entry-exit paths over the graph are considered. Finding a set of graph paths
fulfilling a coverage criterion thus becomes a matter of properly visiting the
graph (see for instance [12]). However, two though problems immediately arise:

— not all graph paths correspond to actual program paths, i.e., the applied
graph visiting algorithm could select some paths which are not executable.
The unfeasible paths problem is a crux of code-based test automation, and
its incidence grows as we go up in the subsumption hierarchy.

— finding an input that executes a selected graph path is not only an unde-
cidable problem in principle [82], but also a quite difficult one to solve in
practice. Traditionally, symbolic execution [23] was attempted, with scarce
practical success. More recent approaches include dynamic generation based
on optimization [54] or genetic algorithms [653].

In consequence of these problems, code-based criteria should be more prop-
erly used as adequacy criteria. After all, code-based test selection is a tautology:
it looks for potential problems in a program by using the program itself as a
reference model. In this way, for instance, faults of missing functionalities could
never be found. It is hence more sensible to use another artifact as the RM and
measure code coverage while tests are executed, so to evaluate the thorough-
ness of the test suite. If some elements of the code remain uncovered, additional
tests to exercise them should be found, as it can be a signal that the tests do
not address some function that is coded. A warning is worth that “exercised”
and “tested” are not synonymous, and as shown in [35] under most existing
code-based criteria even 100% coverage could even leave untested statements.

3.2 Selection Criteria Based on Specifications

In specification-based testing, the RM is derived in general from the documen-
tation relative to program specifications. Depending on how these are expressed,
largely different techniques are possible. Very early approaches [62] looked at
the Input/Output relation of the program “black-box” and manually derived
equivalence classes, or boundary conditions, or cause-effect graphs.



Lot of researchers have tried to automatize the derivation of test cases from
formal or semiformal specifications. Early attempts include algebraic specifica-
tions [7], VDM [27], and Z [48], while a more recent collection of approaches can
be found in [49]. An influential work is [64], introducing the Category-Partition
(CP) method for the automated generation of functional tests from annotated
semi-formal specifications. CP is a simple, intuitive, yet effective method for
functional testing, and since its appearance its basic principle has been applied
to specifications in several languages, including recently UML [5].

Also in specification based testing a graph model is often derived and some
coverage criterion is applied on this model. A number of methods rely on coverage
of specifications modelled as a Finite State Machine (FSM). A review of these
approaches is given in [17].

LTS-based conformance testing has been the subject of extensive research
[20]: given the LTS for the specification S and one of its possible implemen-
tation I, expressed using LTSs or Input/Output Transition Systems (IOTSs),
some “Implementation relations” (imp) are defined, formalizing the notion of
conformance of I with respect to S [75]. In such a formal setting, test generation
algorithms must produce sound test suites, i.e., such that models passing the
test correspond to conformant implementations. A related approach [53] uses
Input/Output LTS (IOLTS) to formalize the specification, the implementation
and the test purposes (TP). An approach for the automatic, on-the-fly genera-
tion of test cases to verify the TP has been implemented in the Test Generation
and Verification (TGV) [73] tool.

As expectable, specification-based testing nowadays focuses on testing from
UML models. A spectrum of approaches is being developed, ranging from strictly
formal testing approaches based on UML statecharts [56], to approaches trying to
overcome UML limitations requiring OCL additional annotations [19], to prag-
matic approaches using the design documentation as is and proposing automated
support tools [5]. The currently ongoing Agedis [2] project aims at developing a
UML based test tool, based on the already cited TGV environment.

3.3 Other Criteria

Several other test criteria have been proposed, but size limitations do not allow
me to tackle them in detail. I only cite that the RM could be given by expected
or hypothesized faults, such as in Error guessing [62], or Mutation testing [26].
Another criterion is operational testing [59], in which RM is how the users will
exercise a system (see also Section 4.4).

4 Selecting the Test Cases is not the Only Issue

Having derived a test suite is only one piece of the testing puzzle and more
complex pieces have to be put in place before the picture is complete. Other test
related activities present technical and conceptual difficulties that are under-
represented in research (but well present to practitioners): the ability to launch



the selected tests (in a controlled host environment, or worse in the tight target
environment of an embedded system); deciding whether the test outcome is
acceptable or not; if not, evaluating the impact of the failure and finding its
direct cause (the fault) and indirect one (Root Cause Analysis); judging whether
the test campaign is sufficient, which in turn would require having at hand
effectiveness measures of the tests: one by one all these tasks present though
challenges.

These activities have received marginal attention in software testing research.
One argument is that being these issues technological in kind, in contrast with
the more theoretical and intuitive problem of test selection, the approaches pur-
sued are specific to an application context, and are less easily generalizable.

4.1 Test Execution

Forcing the execution of the test cases (manually or automatically) derived ac-
cording to one of the criteria above mentioned might not be obvious. As said,
if a code-based criterion is followed, it provides us with entry-exit paths over
the graph model, and test inputs that execute the corresponding program paths
need be found. If a specification-based criterion relying on coverage of a LTS or
a FSM is adopted, the test cases are paths over them corresponding to sequences
of events, that are specified at the abstraction level of the specifications; more
precisely they are labels within the signature of the adopted language. To derive
concrete test cases, the labels of the specification language must be translated
into corresponding labels at code level, and eventually into execution statements
to be launched on the GUI of the used test tool.

The larger the system, the more desirable to keep the abstraction level of the
specification high enough to preserve an intuitive view of relevant functions on
which the system architect can reason. The translation difficulty also depends on
the degree of formality of the refinement process from the high level specification
to design and to code. In fact, if a strict formal refinement process is adopted,
the translation can be as simple as applying some substitution rules (coded along
development). In real world practice, this is not generally the case, and a heavy
effort for manual translation may be required, as discussed in [11].

In addition to translating the specified test cases into executable runs, an-
other requirement is the ability to put the system into a state from which the
specified tests can be launched. This is sometimes referred to as the test pre-
condition. In synchronous systems before a specific command can be executed,
several runs in sequence are required to put the system in the suitable test pre-
condition. An effective way to deal with this is to arrange the selected test cases
into suitable sequences, such that each test leaves the system into a state that is
the precondition for the subsequent test in the sequence. The problem has been
early formalized and tackled (for VDM specifications) in [27]. This approach can-
not easily scale up to the integration testing of large, complex systems, in which
the specified tests involve actions specific to exercise a subsystem. It can be al-
leviated by always defining the tests at the external interfaces, i.e., as complete
I/O sequences.



A new dimension to the problem is added in concurrent systems allowing
for nondeterminism. In this case, the system behavior not only depends on the
internal status, but also on the interleaving of events with system tasks and
other concurrently running systems. When testing reveals a failure, the task of
recreating the conditions that made it occur is termed test replay. Exact replay
requires mechanisms for capturing the happening of synchronization events and
memory access, and for forcing the same order of events when a test is replayed.
The deterministic approach was originally introduced in [21] for the Ada lan-
guage. More recent algorithms and tools have been proposed for Java [32]. The
approach is highly intrusive, as it requires to heavily instrument the system. A
more pragmatic approach otherwise is to keep repeating a test until the desired
sequence is observed (fixing a maximum number of iterations).

An orthogonal problem arises during integration testing, when testing only
parts of a larger system. Indeed, the testing task itself requires a large program-
ming effort: to be able to test a piece of a large system we need to “simulate”
the surrounding environment of the piece under tests (e.g., the caller and called
methods). This is done by developing ad hoc drivers and stubs; some commercial
test tools exist than can facilitate these tasks.

4.2 Test Oracles

An important component of testing is the oracle. Indeed, a test is meaningful
only if it is possible to decide about its outcome. The difficulties inherent to this
task, often oversimplified, had been early articulated in [83].

Ideally, an oracle is any (human or mechanical) agent that decides whether
the program behaved correctly on a given test. The oracle is specified to output
a reject verdict if it observes a failure (or even an error, for smarter oracles), and
approve otherwise. Not always the oracle can reach a decision: in these cases the
test output is classified as inconclusive.

Different approaches can be taken. In a scenario in which a limited number of
test cases is executed, sometimes even derived manually, the oracle is the tester
himself/herself, who can either inspect a posterior the test log, or even decide a
priori, during test planning, the conditions that make a test successful and code
these conditions into the employed test driver.

When the tests cases are automatically derived, and when their number is
quite high, in the order of thousands, or millions, a manual log inspection or
codification is not thinkable. Automated oracles must then be implemented. But,
of course, if we had available a mechanism that knows in advance and infallibly
the correct results, it would not be necessary to develop the system: we could
use the oracle instead! Hence the need of approximate solutions.

In some cases, the oracle can be an earlier version of the system that we are
going to replace with the one under test. A particular instance of this situation
is regression testing, in which the test outcome is compared with earlier version
executions (which however in turn had to be judged correct). Generally speak-
ing, an oracle is derived from a specification of the expected behavior. Thus,



in principle, automated derivation of test cases from specifications have the ad-
vantage that by this same task we get an abstract oracle specification as well.
However, the gap between the abstract level of specifications and the concrete
level of executed tests only allows for partial oracles implementations, i.e., only
necessary (but not sufficient) conditions for correctness can be derived.

In view of these considerations, it should be evident that the oracle might not
always judge correctly. So the notion of coverage * of an oracle is introduced. It
could be measured by the probability that the oracle rejects a test (on an input
chosen at random from a given probability distribution of inputs), given that it
should reject it [15].

A recent survey of approaches to automated test oracles is [4]. The authors
overview the use of assertions embedded into the program and providing run-
time checking capability; the use of conditions expressly specified to be used
as test oracles, in contrast with using the “pure” specifications (i.e., written
to model the system behavior and not for run-time checking); and finally the
analysis of execution traces.

4.3 Analysis of Test Results

Starting to talk of test case selection, I mentioned that researchers continu-
ously strive for finding “good” criteria. But what makes a criterion better than
another? In general terms a notion of effectiveness must be associated with a
test case or an entire test suite, but test effectiveness does not yield a univer-
sal interpretation. Some people misconceive the meaning of coverage measures
and confuse coverage with effectiveness. More properly, coverage is relative to
the tests themselves and measure their thoroughness in exercising RM . Being
systematic and trying of not leaving elements of code or of the specification
untested is certain a prudent norm, but should be properly understood for what
it is. A real measure of test effectiveness should be relative to the program and
should allow testers to quantify the effect of testing on the program’s attribute
of interest, so that the test process can be kept under control.

We have already mentioned that one intuitive and diffuse practice is to count
the number of failures or faults detected. The test criterion that founds the high-
est number could be deemed the most useful. Even this measure has drawbacks:
as tests are gathered and more and more faults are removed, what can we infer
about the resulting quality of the tested program? for instance, if we continue
testing and no new faults are found for a while, what does this imply? that the
program is “correct”, or that the tests are ineffective?

The most objective measure is a statistical one: if the executed tests can
be taken as a representative sample of program behavior, than we can make a
statistical prediction of what would happen for the next tests, should we continue
to use the program in the same way. This reasoning is at the basis of software
reliability.

* It is just an unfortunate coincidence the usage with a quite different meaning of the
same term adopted for test criteria.



Documentation and analysis of test results require discipline and effort, but
form an important resource of a company for product maintenance and for im-
proving future projects.

4.4 The Notion of Software Reliability

Reliability is one of the several factors, or “ilities”, into which the quality of
software has been decomposed to be able to measure it, and by far it is the factor
for which today the most developed theory exists. Strictly speaking, software
reliability is the probability that the software will execute without failure in a
given environment for a given period of time [59]. In particular, to assess the
reliability “in a given environment”, this input distribution should approximate
as closely as possible the operational distribution for that environment.

The extreme difficulty of identifying an operational distribution for software
systems is one of the arguments brought by opponents of software reliability
[45]. However, the practical approach proposed by Musa to define even a course
operational profile by grouping different typologies of users and functionalities
has demonstrated great effectiveness ([59] Chapt. 5).

After the tests have been executed, a reliability measure is obtained by an-
alyzing the test results against a selected reliability model. Reliability growth
models are used to model the situation that as a program is tested and failures
are encountered, the responsible faults are found and fixed, and the program is
again submitted to testing; this process continues until it is evaluated that an
adequate reliability measure has been reached. These models are in fact called
reliability growth models, understanding that as the software undergoes testing
and is repaired, its reliability increases.

The first software reliability growth models appeared in the early 1970’s.
Today, tens of models are in use (see [59], Chapt. 3). No “universally best”
model can be individuated; studies have shown that although a few models can
be rejected because they perform badly in all situations, no single model always
performs well for all potential users. However, at the current state of the art, it
is usually possible to obtain reasonably accurate reliability predictions.

Reliability, or statistical, models are used instead after the debugging process
is finished to assess the reliability one can expect from the software under test,
which is also called life testing. If a set n of test cases randomly drawn from
the operational distribution is executed, and f is the number of test inputs that
have failed, then an estimate of reliability is very simply given by

_ f
R=1-1

When there are not enough observed failures against which the predicted
reliability can be checked, we could evaluate the probability that the reliability
is high enough by using a purely statistical estimate. Assuming that the proba-
bility of failure per input 1 is constant over time, and that each test outcome is
independent from the others, an upper bound for the failure probability can be
estimated with confidence (1-C), where:
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In safety critical applications the reliability requirements are so high that
no feasible test campaign can ever be sufficient to demonstrate they have been
reached. This is known as the “ultra-high reliability” problem, and only the
combined usage of different means for getting evidence of correct behavior can
have some hope to attack the problem [58].

5 Putting It Altogether in a Seamless Process

While several problems have been discussed so far, the real big challenge ahead is
to work out a unified process within which all these test tasks are gracefully com-
plementing each other, and testing as a whole is not an activity detached from
construction (and posterior to it), but the two things, building and checking,
become two faces of the same coin, two seamlessly integrated activities. What
does this mean? For instance, that there is not anymore in the Laboratory a
CASE tool from vendor X for modelling and design using methodology A, and
another tool from vendor J for testing according to technique B, but a unique
environment for modelling, design and testing, relying on the same notation,
terminology, and reference framework. As obvious as this sounds, reality is yet
quite far from it.

Detachment between development and testing has been the key cause for
leaving testing as a second-class activity, something that is recognized as impor-
tant but that anyway one can get rid of in emergency. Researchers have their
responsibility in this, as software testing research has not liaised with research
in formal methods and modelling notations, and results itself fragmented into
specialized sectors. A notable example in this sense is the separation between
the two communities addressing the test of general applications, and the more
specialized test of communication systems and protocols. Until very recently re-
search in these two sectors has been carried out with almost no interactions, but
an interesting initiative is now attempting to coordinate researchers throughout
Europe into the Testnet Network [72].

Another evidence is given by the UML: while a big emphasis has been devoted
to how to use UML for modelling and how the notation expressiveness and
precision could be improved, relatively little attention has been focused on how
UML could advance testing.

5.1 (Specify/Design for) Testability

What are the properties that enhance the capability to test a program? How
should we model/specify/design a system during development so that testing: i)
requires less effort, and ii) is more effective? Clearly, practical answers to such
questions would have a great impact in software industry, as testing continues to
be very expensive. The term ”testability” captures this intuitive notion of “ease”
to test a program and is included in the ISO/TEC 9126 [52] list of software quality
attributes.



Research has addressed the two questions i) and ii) above along two separate
tracks. For example, in [3] the authors define a notion of “testability” linked to
the effort needed to accomplish the coverage required by various testing methods,
e.g., branch coverage. In [38] the testability of a component is evaluated through
the I/O mapping structure and the fan-in/fan-out measure. This deterministic
notion of testability attempts to base the evaluation of the effort to be put in
testing on measurable properties of program, with the aim to suggest design
approaches that can eventually make testing less expensive. This is useful work
towards addressing question i), but this measure of testability has no necessary
relationship to the ability to detect faults (which was question ii).

A different, probabilistic notion of testability is that in [78,15]. Program
"testability” is here taken as the probability that a program will fail under test,
if it is faulty. Having a knowledge of the testability of a program in this sense
would permit to interpret with higher precision the results of testing and obtain
more favorable predictions than allowed by “black-box” based inference alone.

5.2 Test Phases

Testing of large systems is organized into phases, i.e., the testing task is parti-
tioned into a phased process, addressing at each step the testing of a subsystem.
Integration testing refers to the testing of the interactions between subsystems
along system composition. An incremental systematic approach should be taken,
as opposed to a big-bang approach. The aim is to keep complexity under control
and to eventually arrive at the final stage of system testing with all the compos-
ing subsystems extensively tested. At each stage test selection is closely related
with the object under test.

Some white-box approaches propose to derive integration test cases based on
the call structure among modules and measure inter-procedural coverage [47]. In
0O systems, integration tests consist of interleaved sequences of module paths
and messages, and they are derived considering the interaction patterns between
objects, for instance the collaborations or the client-server hierarchy [16].

Until very recently, specification- or design-based integration testing has been
performed ad hoc. With the emergence of Software Architecture (SA) as a dis-
cipline to describe and analyze large, complex systems, several authors have
advocated the use of architectural models also to drive testing, and in particular
to select relevant behaviors of interactions between system components. The key
issue would be to use the SA not only to derive a set of test cases, but also to
drive the decomposition of a system into subsystems, thus identifying a suitable
integration test process. There is not much work on this. In [10,11], we derive
from a formal SA model the LTS, on which graph coverage techniques can be ap-
plied. The added value of working at the architectural level of description is that
the tester can single out relevant sequences by operating a (trace-preserving)
abstraction (called an observation-function) over the complete LTS and thus de-
riving an abstract ALTS. By applying different observation-functions, different
system configurations can be tested.



It should be emphasized that most practical testing actually corresponds
to regression testing, i.e., after software modification or evolution already a set
of already passed tests are re-executed to verify that no new faults have been
introduced. As regression testing might be very expensive, lot of research has
been devoted to select an optimal subset of tests [70].

5.3 Test Patterns

A practical instrument to the design of complex systems are patterns. A design
pattern is an abstract description of a recurring problem, together with a general
arrangement of elements and procedures that has proved to be useful to solve
it. Patterns have always been used by expert designers and engineers: they form
their cultural expertise. The famous book from Gamma et al. [39] was the first
methodical attempt to document and catalogue design patterns for OO design.

Symmetric to design patterns comes the idea of identifying and logging inter-
esting and recurrent patterns in the testing of complex systems. Unfortunately,
there is not much work in this sense. The encyclopedic Binder’s book [16] col-
lects patterns for test design in the context of OO systems, organized into class
test patterns, subsystem test patterns and system test patterns, with each pat-
tern offering a stand-alone solution for a scope-specific test plan. Certainly more
research and empirical work towards the definition of test patterns is desirable,
and an eventual catalogue would testify a more mature status of the discipline
of testing.

5.4 Testing in Component-oriented Development

The emerging paradigm of development is Component Based (CB), in which
a complex system is built by assembling simpler pieces, similarly to what is
routine practice in any traditional engineering domain. Ideally, by adopting a
CB approach, production times and costs can be greatly reduced, while at the
same time more manageable and reliable systems can be obtained. However, the
real take-up of a CB approach requires to solve a lot of still open questions (see
[25] for a possible list).

Certainly a revision of development processes is necessary, and this revision
also involves the testing stage. In particular [13], the traditional three phases
of the testing process (unit, integration and system test) can be revisited in
terms of three corresponding new phases, respectively referred to as component,
deployment and system test. Indeed, the tests performed by the developer are
clearly inadequate to guarantee a dependable usage of the component in the
target application environment (that of the system constructor). The testing
should be repeated also in the final environment, while the component interacts
with the other components.

Component testability [40] has been hence identified as an important quality
to make easier the evaluation of components by means of testing. Four different
perspectives on testability are identified:



— Component Observability: this defines the ease with which the behaviour of
a component can be observed in term of its in/out parameters

— Component Traceability: this defines the capability to trace its behavior and
the state of its attributes

— Component Controllability: this defines the ease with which the behaviour
of the component can be controlled on its in/out, operations and behaviour

— Component Understandability: this refers to how much component informa-
tion is provided and how well it is presented

In particular, to increase the Understandability of a component, some au-
thors have proposed to augment the components themselves with additional
information, in form of meta-data [63, 71].

A new challenge that arises from the inherently distributed nature of CB pro-
duction is the so-called component trust problem, which refers to the difficulty to
understand what a component really does. The trust problem is strongly related
to the customer capability to validate the adequacy of a candidate component
to his/her specific purposes. Different approaches are under study; in particular
some authors support the constitution of independent agencies that act as a
software certification laboratory (SCL), performing extensive testing in different
usage domains [79,80]. Another approach proposes a form of self certification,
in which the component developer releases to the component user a set of test
cases, in the form of a XML file, to retest the component in the final application
environment [61].

Regarding testing, in our knowledge there is not much work addressing the
problem. A first approach proposes to embed test cases in the component itself
(Built-In Tests) in the form of methods externally visible and specifically as-
signed to the execution of tests [81]. A disadvantage of this approach is the size
growth of components. To overcome this problem, another approach introduced
the concept of a testable architecture. This architecture foresees that the com-
ponents implement a particular interface for testing purposes, that permits to
execute pre-built tests without the necessity to include them in the component
code [41].

In this context, we are currently developing a framework for facilitating the
deployment testing of components [14]. In this framework the specification of
functional tests by the system assembler and the implementation details of com-
ponents are decoupled thanks to the use of generic test wrappers. These dy-
namically adapt the component interfaces, permitting to easily reconfigure the
subsystem under test after the introduction/removal/substitution of a compo-
nent, and to optimize test reuse, by keeping trace of the test cases that directly
affect the wrapped component.

6 A Brief Conclusive Remark

I hope this general overview has showed the several complex facets of the of-
ten undervalued testing task, and has moved the curiosity of some ASM scien-
tists while challenging them to put in place this visionary dream of a seamless



build&test process within ASM. About the references provided, they span a pe-
riod of over than 20 years. Not always the citations are the most recent entries
for a topic, but sometimes have been chosen as the most representative. A recent
look to future research perspectives is provided in [46].

Although there is much room for automation in each of the involved activi-
ties, the tester’s expertise remains essential as much as a need for approximate
solutions under constrains remains. Again, testing is a challenging and important
activity. After having opened with the famous Dijkstra aphorism that highlights
its limitations, let me conclude with the as famous quotation from Knuth®: Be-
ware of bugs in the above code; I have only proved it correct, not tried it.
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