
Cassandra: Flexible Trust Management, Applied to Electronic Health Records

Moritz Y. Becker Peter Sewell
Computer Laboratory, University of Cambridge

JJ Thomson Avenue, Cambridge, United Kingdom
{moritz.becker, peter.sewell}@cl.cam.ac.uk

Abstract

We study the specification of access control policy in
large-scale distributed systems. We present Cassandra, a
language and system for expressing policy, and the results
of a substantial case study, a security policy for a national
Electronic Health Record system, based on the requirements
for the ongoing UK National Health Service procurement
exercise.

Cassandra policies are expressed in a language based on
Datalog with constraints. The expressiveness of the lan-
guage (and its computational complexity) can be tuned by
choosing an appropriate constraint domain. Cassandra is
role-based; it supports credential-based access control (e.g.
between administrative domains); and rules can refer to re-
mote policies (for automatic credential retrieval and trust
negotiation). Moreover, the policy language is small, and
it has a formal semantics for query evaluation and for the
access control engine.

For the case study we choose a constraint domain C0 that
is sufficiently expressive to encode many policy idioms. The
case study turns out to require many subtle variants of these;
it is important to express this variety smoothly, rather than
add them as ad hoc features. By ensuring only a constraint
compact fragment of C0 is used, we guarantee a finite and
computable fixed-point model. We use a top-down evalua-
tion algorithm, for efficiency and to guarantee termination.

The case study (with some 310 rules and 58 roles) demon-
strates that this language is expressive enough for a real-
world application; preliminary results suggest that the per-
formance should be acceptable.

1. Introduction

In this paper we study the specification and enforcement
of security policy in large-scale distributed systems. Previ-
ous work on trust management and role-based access control
systems has argued that it is desirable to:

• factor out the policy from the application code, so that
it can be easily understood, and changed over time;

• express policy not in terms of individuals, but via the
indirection of roles;

• express policy in a language with a formally defined
semantics, again to ease precise understanding, and also
to support static analysis, to verify sanity properties;

• support distributed access control, basing authorisation
on digital credentials, with policies that express auto-
matic credential retrieval over the network and strate-
gies to establish mutual trust between strangers; and

• be scalable – to large numbers of sites and entities, but
also to cover different administrative domains with in-
dependent policies or local adaptations of a default pol-
icy.

There is a tension in the design of policy languages, how-
ever: they should be expressive (so intended policies can be
written naturally), small and elegant, without ad hoc features
(so policies can be easily understood), and also efficiently
computable in practical examples.

To address this, we have designed a trust management
system, Cassandra, in which the expressiveness of the lan-
guage can be tuned by selecting an appropriate constraint
domain – policies are expressed in an extension of DatalogC ,
or Datalog with constraints. We ground this research by
working out a substantial real-world example, a security
policy for a national Electronic Health Record (EHR) sys-
tem, based on the requirements for the ongoing UK National
Health Service procurement exercise. This is, to the best
of our knowledge, among the most complex policy exam-
ples discussed in the literature. It has some 310 rules and 58
roles and, as we shall see, demands the full expressiveness
of Cassandra.

For the case study we choose a constraint domain C0 that
is sufficiently expressive to encode many policy idioms such
as role hierarchy, separation of duties, role appointment,
cardinality constraints, role validity periods, and distributed
trust negotiation. Interestingly, the case study turns out to
require many subtle variants of these idioms that cannot be
expressed in other languages; it is important that we can ex-
press this variety smoothly, rather than add each one as an ad
hoc feature. By using static groundness analysis we restrict

policies so that only a constraint compact fragment of C0 is
required, guaranteeing a finite and computable fixed-point
model. We use a memoizing top-down evaluation algorithm,
for efficiency and to guarantee termination.

Cassandra is role-based with parameterised roles and ac-
tions (supporting concise policies); it is declarative (making
policies as clear as possible); it can express powerful role re-
vocation policies including cascading revocation; it supports
credential-based access control decisions between adminis-
trative domains; and rules can refer to remote policies (pro-
viding automatic credential retrieval and trust negotiation).
Moreover, the policy language is small, and the system has
a formal semantics for both query evaluation and for the ac-
cess control engine.

Existing trust management systems possess subsets of
these features; it is however the combination of all these fea-
tures, together with Cassandra’s tunable expressiveness, that
makes it unique, and powerful enough for us to express the
policies of the case study.

In §2 we discuss the background for the case study, and
outline an example scenario of the use of the EHR system.
In §3 we discuss how policies are specified in Cassandra,
including brief outlines of the semantics and the evaluation
algorithm. For lack of space we omit full technical defini-
tions and theoretical results. Cassandra needs not just a lan-
guage for expressing policies, but an API and operational
semantics for the access control engine; this is given in §4.
We demonstrate how some ‘classic’ policy idioms can be ex-
pressed in §5: particular forms of role hierarchy, separation
of duties, and delegation. In §6 we return to the case study,
outlining its main features, paying careful attention to what
idioms are used and what expressiveness it demands of the
policy language. The full policy is available on-line [5]. In
§7 we describe our prototype implementation (though at the
time of writing it does not cover all aspects); preliminary ex-
periments suggest that performance should be reasonable for
such a policy. Finally we discuss related work and conclude.

2. Background: Electronic Health Records

Electronic Health Record (EHR) schemes are now be-
ing developed in Europe, Canada and Australia to provide
“cradle-to-grave” summaries of patients’ records, linking
clinical information across the entire health system [16]. In
England, the National Health Service (NHS) has been plan-
ning since 1998 to develop a nationwide Integrated Care
Records Service (ICRS) providing health care providers and
patients with 24 hour on-line access to EHRs on a cen-
tral data-spine [36, 19]. The deployment of what is now
one of the largest, most complex and riskiest IT projects
in the public sector world-wide is scheduled for between
2005 and 2010. While the potential benefits of such a sys-
tem are obviously huge, the government’s plans have also

been subject of a fiercely controversial public debate (see
e.g. [41, 15, 13, 39, 14, 17, 22]).

A main issue of concern is the confidentiality of pa-
tient health information. At stake is not just the privacy of
sensitive personal information but the success of the entire
project. Patients will refuse to share their data if they do not
trust the system or do not have sufficient control over the use
of their data. It is equally important to gain clinician buy-in
which will fail if the system is cumbersome to use, if the ac-
cess restrictions are too strict or the response times too high.

Any EHR access control policy will be a compromise
between conflicting interests. The general framework for
any such policy has to comply with relevant legislation and
regulations such as the Data Protection Act, Mental Health
Act, Human Fertilisation and Embryology Act, the Abor-
tion Regulations and the Venereal Diseases Regulations. Ev-
ery health organisation is now required to have a privacy
and data protection officer, also called “Caldicott Guardian”
(named after the recommendation of the committee chaired
by Dame Caldicott in 1997 [35]), who is responsible for
overseeing the organisation’s security policy and investigat-
ing breaches of confidentiality. Anything beyond this is still
highly contentious. As an example, the Caldicott committee
recommended that access to patient-identifiable information
should be on a “strict need-to-know basis”. In contrast, com-
mon medical code of ethics and professional practice goes
further and requires the patient’s consent for accessing per-
sonal information [44]. Anderson [3] stresses the same point
in his security policy commissioned by the British Medical
Association, and further demands that patients should auto-
matically receive notifications when their data are accessed.
It now seems to be current consensus that patient consent
should be the basis for access decisions although it is not
yet clear when explicit consent has to be sought and when
implicit consent can be assumed.

It should be sufficiently clear from this that the access
control policy of the national EHR system will undergo fre-
quent changes as the public debate evolves. Furthermore,
health organisations will likely have customised policies,
compatible with but different from the national one. It is
therefore necessary to be able to specify the policy indepen-
dently of the implementation instead of having it hard-coded
into the access control engine.

2.1. A scenario

The national data spine is expected to hold records for up
to 100 million patients (including deceased patients and pa-
tients who have moved abroad). Given the large scale of the
data spine, we propose a three-level architecture (as recom-
mended in [37]) instead of one single physical database.

At the top level we have the national Master Patient In-
dex (MPI), a central service that only stores bindings linking

patient identifiers with the EHR service (the second level),
that is the location of their EHR. The local NHS health or-
ganisations (e.g. hospitals, doctors’ practices) constitute the
third level. The records kept on this level are called Elec-
tronic Patient Records (EPR). The shared central EHR items
are typically summaries of local EPR items. Registration
Authorities (RAs) issue credentials to NHS clinical and ad-
ministrative staff and health organisations for authentication
purposes.

The following scenario illustrates some of the more chal-
lenging requirements of security policies for our national
EHR architecture. In the discussion of the case study in §6
we discuss how these requirements are met by our example
policy (we use the role and action names from the policy in
the text below).

Anson Arkwright goes to see Dr Zoe Zimmer, his fam-
ily’s General Practitioner (GP), for an HIV test. Dr Zimmer
records the visit in a local EPR item by performing an Add-

record-item action (with suitable parameters) but does not
send information to the EHR data spine on Anson’s request.
Some time later, Bob Arkwright, Anson’s father, visits Dr
Zimmer because of heart problems. During the visit he also
tells her that he believes his son Anson may be a hypochon-
driac. Dr Zimmer adds a record item to Bob’s EPR about
his heart condition and an item in Anson’s EPR about his
father’s comments. The latter item is marked as containing
third party information about his father, so as long as his
father (or the Caldicott Guardian on his behalf) does not ac-
tivate a matching Third-party-consent role, Anson will
not be able to read it. (Note that we use roles not just to
model job positions within an organisation but also to indi-
cate state changes, e.g. giving third-party consent.)

Dr Zimmer also attempts to submit a summary of Bob’s
new EPR item to his shared EHR. She does not need to
query the MPI because she already knows the location of
his EHR. She first activates her Clinician role on this
EHR service by submitting an RA-issued NHS-clinician-

cred role credential along with the activation request. Sub-
sequently, her Add-EHR-record-item action succeeds be-
cause the EHR service can deduce she is Bob’s Treating-
clinician (Bob has explicitly consented to treatment years
ago and has not withdrawn his Consent-to-treatment

role). Dr Zimmer also decides to refer Bob to a local hospi-
tal’s cardiologist, Dr Hannah Hassan. As Bob’s treating clin-
ician on the EHR service, Dr Zimmer can enter a Referrer
role enabling Dr Hassan to also become a treating clinician.
Bob’s consent is not needed but he has the power to deacti-
vate the referral.

At the hospital, a Receptionist registers Bob as a pa-
tient by activating a Register-patient role. After his out-
patient visit with Dr Hassan, the receptionist registers him
with a surgical team in the same hospital for a heart bypass
operation. For this purpose, the receptionist activates ap-

propriate Register-team-episode and Register-ward-
episode roles, thereby establishing a legitimate treating
clinician relationship between Bob and the surgical team and
the ward nurses. During surgery, abnormal liver values are
found. Years ago, Bob activated an Access-denied-by-

patient role to conceal the contents of all items in his EHR
concerning an alcohol-related liver problem from everybody
except clinicians treating him as GP. The head of the surgical
team, Dr Lily Littlewood, decides to “break the seal” to view
Bob’s restricted EHR item by performing the action Force-

read-EHR-item. This can be done by any clinician with a
legitimate relationship but will be marked in the audit to be
investigated by the hospital’s Caldicott Guardian.

Unfortunately, the team encounters further complications
during the operation and Bob needs to be kept in artificial
coma. Dr Zimmer agrees to appoint Bob’s wife, Carol, to be
his agent by activating a Register-agent role on the EHR
service. Carol then requests to activate the Agent role on the
hospital’s service. This succeeds after some trust negotiation
between the hospital and the EHR service: the hospital re-
sponds to Carol’s request by requesting an agent registration
credential from Bob’s EHR service; the EHR service replies
by requesting a health organisation credential; the hospital
agrees by sending an RA-issued health organisation creden-
tial to the EHR service; and finally the EHR service sends
the originally requested Register-agent credential to the
hospital certifying that Carol is indeed Bob’s agent.

When Bob is woken and released, he attempts to revoke
the agent registration for his wife but fails because it was Dr
Zimmer who registered Carol. On Bob’s request, Dr Zimmer
deactivates her Register-agent role for Carol. If Carol is
active with an Agent role on the EHR service at that mo-
ment, cascading revocation causes that role to be deactivated
immediately as well.

3. Policy Specification in Cassandra

Access control in large-scale heterogeneous distributed
computing environments is fundamentally different from ac-
cess control in a single administrative domain. In the latter
case, all users are known, so authorisation can be based on
identity authentication. In the former case, entities (from
single users to entire organisations) wish to share their re-
sources with previously unknown entities. In the trust man-
agement approach [9], credentials asserting attributes about
their holders are used as the basis of access control decisions:
for example, a clinician may be granted access to an EHR
service on the basis of a clinician employment credential is-
sued by a registration authority. As access control policies in
such environments can be complex, they are best described
in a high-level policy specification language. The Cassandra
language is summarised in Figure 1; this section gives an
informal introduction to the language, the query semantics,

Predicate names p ::= canActivate | hasActivated | permits | canDeactivate |
isDeactivated | canReqCred, and user-defined predicate names

Policy rule: Eloc@Eiss.p0(~e0) ← loc1@iss1.p1(~e1), ... , locn@issn.pn(~en), c
Credential (rule): Eloc@Eiss.p0(~e0)← c
Aggregation rule: Eloc@Eloc.p(agg-op〈x〉, ~y)← Eloc@iss.q(~x), c

where agg-op is group or count

Ceq expressions: e ::= x | E
Ceq constraints: c ::= true | false | e = e′ | c ∧ c′ | c ∨ c′.
C0 expressions e ::= x | E | N | C | () | (e1, .., en) | πni (e) | R(e1, .., en) | A(e1, .., en) |

f(e1, .., en) | ∅ | Ω | {e1, .., en} | e− e′ | e ∩ e′ | e ∪ e′
C0 constraints c ::= true | false | e = e′ | e 6= e′ | e < e′ | e ⊆ e′ | c ∧ c′ | c ∨ c′
and derivable constraints: c ::= ... | e ∈ e′ | e /∈ e′ | e ∈ [e1, e2] | [e1, e2] ⊆ [e′1, e

′
2]

C0 types τ ::= entity | int | const | unit | τ1 × ...× τn | role(τ) | action(τ) | set(τ)

Access-control operations:
doAction(A(~e)), activate(R(~e)), deactivate(Ev, R(~e)), reqCred(Es@Eiss.p(~x)← c)

Figure 1. Collected Syntax

and the evaluation algorithm (the language has a formal def-
inition but for lack of space we do not give it, or the support-
ing theorems, in this paper). Section 4 describes the seman-
tics of the access control operations, defining it precisely in
terms of the query semantics.

Roles and actions The Cassandra policy language is role-
based to make access control administration simpler and
more scalable. Our roles and actions (generalised privi-
leges) are parameterised for higher expressiveness [24, 34]:
e.g. the role Clinician(org, spcty) has parameters for the
health organisation and the specialty of the clinician; the ac-
tion Read-record-item(pat, id) has parameters specifying
the item identifier of a patient pat’s health record. Note that
Cassandra’s notion of role is more general than e.g. in the
RBAC96 model [42], where a role is typically a job posi-
tion within an enterprise’s hierarchy; for example, entering a
parameterised Access-denied-by-patient role may in-
dicate that a record item is concealed by the patient, depend-
ing on the surrounding policy.

Predicates In role-based access control (RBAC), relations
are used to define role membership, session activations and
role permissions. In Cassandra, these and other access con-
trol relations are specified implicitly by rules defining six
special predicates (their precise operational semantics is for-
malised in §4):

1. canActivate(e, r) expresses the fact that the entity e can
activate role r (i.e., e is a member of r).

2. hasActivated(e, r) indicates that the entity e has acti-
vated role r. The distinction between the predicates

canActivate and hasActivated corresponds to the dis-
tinction between role membership and session activa-
tion in traditional RBAC.

3. permits(e, a) says that the entity e is permitted to per-
form action a. This differs from the standard notion
of role-permission assignment in two ways. Firstly, the
parameter e allows constraints to refer directly to the
subject of the activation. Secondly, permits has no pa-
rameter for a role associated with the action, thus al-
lowing more flexible permission specifications, e.g. a
permission that is conditioned on the activation (or per-
haps merely membership) of more than one single role.

4. Cassandra rules can also specify role deactivation: if
canDeactivate(e1, e2, r) holds, the entity e1 has the
power to deactivate e2’s role activation r.

5. The deactivation of one role can trigger deactivations of
other (local) roles. This form of cascading revocation is
especially important in the context of delegated or ap-
pointed roles. The deactivation of a role can make pred-
icates of the form isDeactivated(e, r) become true, in-
dicating the triggered deactivation of the entity e’s role
r.

6. Finally, access control across different administrative
domains is based on attribute-asserting credentials.
In Cassandra, these attributes are simply constrained
Cassandra predicates. To protect the information con-
tained in predicates, we use canReqCred(e1, e2.p(~e))
to say that the entity e1 is allowed to request credentials
issued by the entity e2 and asserting the predicate p(~e).

Apart from these six predicates with a special access control
meaning, policy writers can introduce further user-defined
auxiliary predicates.

Rules Many existing policy languages are based on Dat-
alog [1] (Horn clauses without function symbols) because
it is a rule-based, declarative language and widely under-
stood. However, standard Datalog is not very expressive, so
many systems extend the language with ad hoc features. We
take a different approach and base our language on recursive
DatalogC in which the expressiveness – and conversely, the
computational complexity – is parameterised on the chosen
constraint domain C [27]. The language can thus be adapted
to a wide range of applications without changing its base se-
mantics.

DatalogC extends Datalog rules with a constraint from
some fixed constraint domain, which may contain variables
occuring in the head predicate or the body predicates of the
rule (but may not contain any predicate names). A constraint
domain C is a language of first order formulae containing at
least true, false and the identity predicate “=” between C-
expressions (variables, entities and possibly other constructs,
including function symbols). Furthermore, it must be closed
under variable renaming, conjunction (∧) and disjunction
(∨).

The policy rule language in Cassandra extends
DatalogC’s predicates for the purpose of credential-
based trust management. A credential can be seen as a
constrained predicate, vouched for by an issuing entity and
stored at a location entity. Correspondingly, Cassandra
predicates are therefore prefixed with a location and an
issuer. A policy rule is therefore of the form

Eloc@Eiss.p0(~e0) ←
loc1@iss1.p1(~e1), ... , locn@issn.pn(~en), c

where the pi are predicate names and the ~ei are (possibly
empty) expression tuples (that may contain variables) match-
ing the parameter types of the predicate. c is a constraint
from some fixed constraint domain, and may contain vari-
ables occurring in the head predicate or the body predicates
of the rule (but may not contain any predicate names). The
location and the issuer of the rule,Eloc andEiss, are entities,
and the loci and issi are entities or entity typed variables.

A policy rule of the simple form

Eloc@Eiss.p0(~e0)← c

is called a credential rule or just a credential. If it is sent
over the network, it can be thought of as a certificate assert-
ing p0(~e0), signed and issued by Eiss, and belonging to and
stored at Eloc. The location and the issuer of a rule are usu-
ally identical; only in the case of a credential rule can they be
different, as Eloc may hold a “foreign” credential signed by
a different entity Eiss. A Cassandra policy of an entity Eloc
is a finite set of rules (including credentials) with location
Eloc.

In standard DatalogC , a predicate can be deduced if there
is a rule with a matching head, such that the rule’s body pred-

icates can be deduced while satisfying the constraint of the
rule. In Cassandra, a body predicate B@C.p(~e) can refer to
a remote location, if B is not equal to the local entity, say A.
To deduce the predicate, A will contact B over the network
and delegate authority to B to deduce the predicate. Such a
remote query amounts to a credential request: B will first try
to deduce B@B.canReqCred(A,C.p(~e)) before attempting
to deduce the requested predicate.

To illustrate this, consider the following example where
likes is some user-defined predicate. Suppose A’s policy
contains the rules

R1 ≡ A@A.likes(A, x)← x@y.likes(y, x), x 6= y
R2 ≡ A@B.likes(B,A)← true

(so R2 is a foreign credential from B), and C’s policy con-
tains

R3 ≡ C@D.likes(D,C)← true

(so R3 is a foreign credential from D). Intuitively, R1

means: A likes an entity x if x’s policy proves that
some other entity y says that he likes x. More formally,
we can deduce A@A.likes(A, x) on A if we can deduce
x@y.likes(y, x) on the service x provided that x is not equal
to y. If, in the context of evaluation, x turns out to beA, then
the body becomes

A@y.likes(y,A)← A 6= y,

to be deduced locally on A, by finding a matching credential
(foreign since A 6= y). R2 is such a credential, thus A has
proved A@A.likes(A,A). Otherwise, if x turns out to be
different from A, say x = C, A automatically requests a
credential from C of the form

C@y.likes(y, C)← C 6= y.

At this point, Cassandra’s trust negotiation mechanism
comes into play: C first tries to prove

C@C.canReqCred(A, y.likes(y, C))← C 6= y

on its own policy to see whetherA is allowed to request such
a credential. The result of this deduction is either false (A
cannot request such a credential) or some constraint on the
variable y, say y 6= E (A is allowed to get such a credential
provided y 6= E). In the latter case, C will then try to prove

C@y.likes(y, C)← C 6= y ∧ y 6= E.

This is satisfied by R3, so C will reply to A with the an-
swer C@D.likes(D,C), upon which A can finally prove
A@A.likes(A,C).

In the remainder of the paper, we will omit the rule loca-
tion Eloc if it is clear from the context. We will also omit
location and issuer prefixes loci and issi from body predi-
cates if they are equal to the rule location.

Constraint domains All Cassandra entities on the net-
work must agree on a common constraint domain C. For
example, the least expressive constraint domain Ceq is the
one where the only atomic constraints are equalities between
variables and entities. Choosing this trivial constraint do-
main reduces the expressiveness of the language to standard
Datalog or Horn clauses without function symbols.

The design of the much richer constraint domain C0 was
guided by the EHR case study. In C0, atomic expressions can
be variables, entities, integers, constants of various types,
the empty set ∅ and the universal set Ω. Compound ex-
pressions are built from the atomic ones recursively: tuples
(e1, .., en), tuple projections πni (e), roles R(e1, .., en), ac-
tions A(e1, .., en), function applications f(e1, .., en), and
the set expressions {e1, .., en}, e − e′, e ∩ e′ and e ∪
e′. C0-constraints include equalities e = e′, inequali-
ties e 6= e′, integer orders e < e′, set containments
e ⊆ e′ and, of course, finite conjunctions and disjunc-
tions of these. The function symbols are interpreted by
a fixed set of side-effect-free functions that may return
environment-dependent data. For example, for our case
study we have functions to access data fields of health record
items such as Get-EHR-item-author(pat, id), and a func-
tion Current-time() that returns the current time.

A type system for C0 where the types τ are of the form
int, entity, const, unit, τ1 × ... × τn, role(τ), action(τ)
and set(τ) ensures that expressions and constraints are well-
formed. Moreover, without typing one could trivially encode
undecidable properties, with policies that perform arithmetic
on unary-encoded integers.

We also allow constraints that can be defined in terms
of the existing ones, such as non-membership e /∈ e′, in-
teger ranges e ∈ [e1, e2] and range containments [e1, e2] ⊆
[e′1, e

′
2].

Aggregation rules Policies often require negative condi-
tions in the premise of a rule, e.g. that an entity has not ac-
tivated a particular role, or that no entity has activated the
role. The former example can be expressed by introducing
negated body predicates; this method however cannot ex-
press the latter example, which implicitly involves universal
quantification. Instead, we introduce rules with aggregation
operators [40] with which both examples can be expressed.
Aggregation is also useful for grouping and cardinality con-
straints, e.g. constraints on the set of all role activations of
a particular entity, or on the number of all such activations.
For aggregation, the constraint domain C is required to con-
tain equalities over set and integer constants and variables.
An aggregation rule is of the form

Eloc@Eloc.p(agg-op〈x〉, ~y)← Eloc@iss.q(~x), c

where the aggregation operator agg-op is either group or
count. The predicate Eloc@iss.q(~x) must be one that can be

satisfied with only finitely many different parameters, and ~x
must contain x. The first argument of p is instantiated to the
(finite) set of all different values of x that satisfy the body.
If agg-op = count, it is instantiated to the cardinality of that
set. For example,

group-active-doctors(group〈x〉, spcty)←
hasActivated(x, Doctor(spcty))

finds the set of all active doctors with specialty spcty. Simi-
larly,

count-specialties(count〈spcty〉, x)←
hasActivated(x, Doctor(spcty))

counts the number of different specialties in which x is active
as a doctor.

The restriction that the body predicate of an aggrega-
tion rule must be local (its location must be equal to Eloc)
is necessary because aggregation requires complete knowl-
edge of the predicate. Answers from remote entities are al-
ways sound but may be incomplete as they are subject to
canReqCred restrictions. The restriction that the body predi-
cate can only be satisfied with finitely many different param-
eters and that x is mentioned in it ensures that aggregation is
finite. In terms of negation, this corresponds to semi-positive
policies, thus avoiding negation-related issues such as unde-
cidability and semantic ambiguity.

The separation-of-duties example in §5 shows how aggre-
gation can be used to express universally quantified negation.
Note that the kind of negation we can express via aggrega-
tion can only occur in the body of a rule and never in the
head. In particular, we cannot express explicit prohibitions
(as in e.g. Halpern and Weissman’s logic [25], Ponder [18] or
in FAF [28]); rather, we assume that everything is prohibited
unless it is explicitly permitted (closed world assumption).

3.1. Semantics and Evaluation

Cassandra provides direct support for access control de-
cisions: the access control engine issues policy queries
and bases decisions on the query answers, as specified
in §4. A typical query issued by the access control en-
gine (queries are never made directly by users) would be
hasActivated(x, Doctor(spcty)) ← spcty 6= GP. The an-
swer of a query is a C-constraint describing all (potentially
infinitely many) variable instantiations that satisfy the query
according to the policy. In this example, the answer would
be a constraint specifying all non-GP doctors and their asso-
ciated specialties. For a completely ground query (all vari-
ables forced to a unique value), the answer constraint would
be either true or false. In general, a query has the same form
as a credential rule, i.e. Eloc@Eiss.p0(~e0)← c. The answer
constraint to such a query may depend on policies of several
different entities, as the rules can refer to remote policies.

A policy evaluation algorithm takes a query as input and
returns the answer constraint. We require such an algorithm
to terminate for all queries and policies, to be efficient, and of
course to be sound and complete with respect to the language
semantics.

We define the language semantics by an immediate con-
sequence operator TC,P where C is the global constraint do-
main and P the (naturally disjoint) union of the policy rules
of all entities. TC,P is an extension of the immediate conse-
quence operator for standard Datalog with which the deduc-
tive closure, the set of all deducible ground facts, of a Data-
log program can be computed [1]. In Cassandra, credential
rules correspond to Datalog facts, hence the deductive clo-
sure contains the set of all deducible credentials rules. TC,P
is thus a function between sets I of credential rules: TC,P(I)
is the set of all credential rules that can be deduced from I
in one single step. We omit the formal definition [6] due to
lack of space but point out that TC,P assumes of C only the
existence of certain operations, satisfiability test, subsump-
tion (implication) test and an existential quantifier elimina-
tion procedure, and is otherwise independent of C.

The deductive closure or fixed-point model of P is the
unique least fixed-point of TC,P(I), which can be computed
in the usual iterative bottom-up fashion if it is finite. How-
ever, it is not obvious whether the fixed-point model is fi-
nite. Indeed, it is easy to show that many simple looking
constraint domains, such as one that supports untyped tu-
ple constructors, or one with negative gap-order constraints
(x − c < y, where c is a positive integer constant), enable
the construction of undecidable policies.

Constraint compactness [45] is a sufficient condition on
constraint domains to guarantee a finite and hence com-
putable fixed-point model for any finite global policy set P .
A constraint domain C is said to be constraint compact if
any infinite set of C-constraints in which only finitely many
variables and constants occur has a finite subset subsuming
the entire set, that is, for every constraint c in the infinite set
there is a constraint c′ in the finite set such that c implies c′.

Unfortunately, constraint compactness severely restricts
the expressiveness of the constraint language and is also of-
ten hard to prove. We use static groundness analysis [4] to
restrict policies in such a way that variables occuring in spe-
cific constructs will always have been grounded (so a unique
value can be deduced for each) by the time existential quan-
tifier elimination is performed on them, given the query pat-
terns from §4, so these constructs can be ignored. In the
case of C0 we require that variables occuring in function ar-
guments or in set expressions are ground at quantifier elimi-
nation time. This reduces C0 to a constraint domain that we
have proved to be constraint compact.

Static groundness analysis is also used to ensure that the
location prefix of body predicates becomes ground by the
time we evaluate it: otherwise the evaluator would have to

query many different entities (all, in the worst case), which
is clearly unpractical.

In the context of constraint logic databases, queries are
usually evaluated against the complete fixed-point model,
pre-computed iteratively in a bottom-up fashion. This would
not be an acceptable evaluation strategy for Cassandra:
firstly, the constraints may contain (side-effect free) function
calls that depend on the environment, for example for get-
ting the current time, and therefore cannot be pre-computed;
secondly, the fact that rule bodies can refer to remote pred-
icates would require a distributed form of bottom-up eval-
uation which would be highly unpractical; and thirdly, the
model would have to be re-computed after every activation
or deactivation of roles as role activation and deactivation
modify policies.

Instead, Cassandra uses a modified version of Toman’s
top-down CLP evaluation algorithm [45] based on SLG res-
olution, a memoization strategy [11]. The usual top-down
algorithms based on SLD resolution as used in Prolog sys-
tems are unsuitable because they do not guarantee termi-
nation even in cases where the fixed-point model is finite.
The SLG algorithm, on the other hand, preserves the termi-
nation properties of the bottom-up evaluation method. We
have extended the algorithm in [45] to deal with goals refer-
ring to remote entities [6]. The evaluation algorithm is sound
and complete with respect to the fixed-point semantics and
is far more efficient than the bottom-up method, especially
when queries are fully instantiated as is often the case in
Cassandra.

4. Access Control Semantics

The only way to query the policy is through the interface
of the access control engine. We define an operational se-
mantics for the four operations that an entity Er can request
from an entity Es acting as a Cassandra service: perform-
ing an action, activating a role, deactivating a role, and re-
questing a credential. As these four operations may have
side-effects on the policies, their semantics is most naturally
specified by a labelled transition system with transitions be-
tween global policy sets P . The labels of the transition sys-
tem are parameterised by the requester Er, the service Es,
the requested operation, and a set of credentials Cr belong-
ing to the requester that are submitted to Es along with the
request. (In an implementation, these would be signed cer-
tificates.) The fact that these credentials now belong to Es is
expressed by renaming their location to Es. We write

SubmitEs(Cr) =
{Es.Eiss@p← c | E′.Eiss@p← c ∈ Cr}

for the renamed set of credentials.

Performing an action Er attempts to perform the
(ground) action A(~e) on a service Es.

P Er,Es,doAction(A(~e)),Cr−−−−−−−−−−−−−−−→ P

is a valid transition if Es@Es.permits(Er, A(~e)) is de-
ducible from P ∪ SubmitEs(Cr). (Note that deduction may
involve This transition has no effect on the state.

Role activation Er attempts to activate the (ground) role
R(~e) on a service Es.

P Er,Es,activate(R(~e)),Cr−−−−−−−−−−−−−−−→ P ′

(where P ′ = P] {Es@Es.hasActivated(Er, R(~e))}) is
a valid transition if the role has not already been acti-
vated and if Es@Es.canActivate(Er, R(~e)) is deducible
from P ∪ SubmitEs(Cr). As a result of this transition, a
new hasActivated credential rule is added to Es’s policy.

Role deactivation Er requests to deactivate the “victim”
Ev’s role R(~e) on a service Es. This transition rule also
implements cascading deactivation.

P Er,Es,deactivate(Ev,R(~e)),Cr−−−−−−−−−−−−−−−−−−→ P −Victimss

is a valid transition if Ev has actually activated R(~e)
and if Es@Es.canDeactivate(Er, Ev, R(~e)) is deducible
from P ∪ SubmitEs(Cr). The set Victimss is the
set of all hasActivated credential rules in Es’s pol-
icy for which a corresponding isDeactivated credential
can be derived under the assumption that the predicate
Es@Es.isDeactivated(Ev, R(~e)) holds. As a result of the
transition, all role activations in Victimss are removed from
Es’s policy. Note that Victimss contains only role acti-
vations with location Es; Cassandra does not support dis-
tributed cascading revocation across the network, as is pro-
posed in Oasis [26, 48]. Such a mechanism would be very
hard to implement on a wide scale as it would require a reli-
able event infrastructure and the management of a much big-
ger state recording which entities have to be notified about
which deactivation events.

Requesting Credentials Er requests the credential
Es@Eiss.p(~x) ← c from a service Es. If Eiss and Es are
identical, Es computes an exact answer of the requested
predicate p and sends a freshly signed certificate to Er.
Otherwise, Es sends all foreign certificates matching the
request to Er. (Note that the credentials that Er receives as
a result have constraints that are in general more restricted
than the requested constraint c.) More formally:

P Er,Es,reqCred(Es@Eiss.p(~x)←c),Cr−−−−−−−−−−−−−−−−−−−−−−−→ P ∪ Creds

is a valid transition provided the following: let c0 be the sat-
isfiable answer of the query

Es@Es.canReqCred(Er, Eiss.p(~x)← c)

against P ∪ SubmitEs(Cr). If Es = Eiss, Creds only
contains the credential Er@Es.p(~x) ← c′ where c′ is the
satisfiable answer of the query Es@Es.p(~x) ← c0 against
P ∪ SubmitEs(Cr). Otherwise, Es 6= Eiss, in which case
Creds is the set of all foreign p(~x)-credentials belonging to
Es but issued by Eiss whose constraints are at least as re-
strictive as c0. (The credential locations must of course be
renamed from Es to Er.)

5. Expressing Policy Idioms

Cassandra is powerful enough to express common RBAC
policy idioms such as role hierarchy, separation of duties and
role delegation, so there is no need to support them specif-
ically with ad hoc language extensions. This approach not
only keeps the language definition simpler and more uni-
form, it also enables the policy designer to express variants
and combinations of these idioms that cannot be expressed
in other policy languages. Naturally, these advantages come
at a cost: rules may look more complicated than in languages
with built-in application-tailored features. Here we give en-
codings of the three above mentioned idioms in their pure
forms. The EHR case study exhibits variants of role appoint-
ment, as well as other idioms such as cardinality constraints,
role validity periods and distributed trust negotiation.

Role Hierarchy A project leader is more senior than both
a production engineer and a quality engineer. Both produc-
tion engineer and quality engineer are more senior than the
engineer role. This example is taken from [43]. The hier-
archy graph can be directly represented by canActivate de-
pendencies. We extend the example by using roles that have
a “department” parameter:

canActivate(x, Prod-eng(dep))←
canActivate(x, Proj-leader(dep))

canActivate(x, Qual-eng(dep))←
canActivate(x, Proj-leader(dep))

canActivate(x, Eng(dep))←
canActivate(x, Prod-eng(dep))

canActivate(x, Eng(dep))←
canActivate(x, Qual-eng(dep))

Separation of Duties To encode separation-of-duties con-
straints it is necessary to be able to express negated con-
ditions such as “x has not activated role R(y)”, where x
and y will have been instantiated by the time the condition
is processed. We will write this condition in the body as

¬hasActivated(x,R(y)) as shorthand for the user-defined
aggregation condition existsActivationR(0, x, y), defined by
a rule

existsActivationR(count〈x′〉, x, y)←
hasActivated(x′, R(y)), x′ = x

Clearly, existsActivationR(0, x, y) holds if and only if x
has not activated R(y). As an example for dynamic n-wise
parameter-centric separation of duties, suppose that nobody
can work on two projects at the same time if they both belong
to a set of n pairwise mutually conflicting projects. With
a function Conflict() that returns this set of conflicting
projects, this can be encoded as

canActivate(x, Projmem(p))←
¬hasActivated(x, Projmem(p′)),
{p, p′} ⊆ Conflict()

Delegation and Appointment Delegation can be viewed
as a special case of the more general appointment mecha-
nism where the appointer is required to be a member of the
appointed role [48]. Appointment can easily be encoded in
Cassandra. It is also possible to encode different versions
of delegation, such as transitive delegation where the dele-
gatee is able to further delegate the role or finitely transi-
tive delegation where the delegation chain is of a fixed fi-
nite length (cf. [49]). Here we only show the encoding of
a simple version of appointment. A manager M can ap-
point A as an employee by activating an “appointer role”
AppointEmployee(A). This then enables A to activate the
“employee appointed by M” role Employee(M).

canActivate(mgr, AppointEmployee(emp))←
hasActivated(mgr, Manager())

canActivate(emp, Employee(appointer))←
hasActivated(appointer, AppointEmployee(emp))

Furthermore, A’s employee role is revoked automatically
when AppointEmployee(A) is deactivated:

isDeactivated(emp, Employee(appointer))←
isDeactivated(appointer, AppointEmployee(emp))

We also have to specify who is allowed to revoke the ap-
pointment role. With grant-dependent revocation, only the
appointer herself can revoke it:

canDeactivate(x, appointer, AppointEmployee(emp))←
x = appointer

Grant-independent revocation, on the other hand, allows ev-
ery manager to revoke employee roles:

canDeactivate(x, appointer, AppointEmployee(emp))←
hasActivated(x, Manager())

In some cases, all roles appointed by M should be revoked
wheneverM is revoked from her role herself, in this case the
manager role. We can encode a cascading chain of revoca-
tions as follows:

isDeactivated(mgr, AppointEmployee(emp))←
isDeactivated(supermgr, AppointManager(mgr))

6. Expressing the Case study in Cassandra

We have drafted a complete Cassandra policy for a na-
tional EHR system, based mainly on the Output Based ICRS
Specification [38] (a 570-page document given to potential
suppliers during the current procurement process), reports
from NHS pilot projects of the Electronic Records Devel-
opment and Implementation Programme (ERDIP) [37, 23],
and various Department of Health documents [20, 21]. The
policy comprises 310 rules, 58 roles and 10 actions. Of
the 310 rules, there are 84 canActivate and canDeactivate
rules each, 52 isDeactivated, 28 permits and 24 canReqCred
rules. The remaining 38 are user-defined aggregate rules.
The case study suggests that common policy idioms such
as appointment hardly occur in their pure forms in practice;
rather, it is necessary to be able to express different variants
of them. Interestingly, one of the most commonly mentioned
policy idioms in the literature, separation of duties, was not
encountered in this case study. The rules can be roughly di-
vided into the following categories:
Permissions assignment: many of the permits rules are
straightforward parameterised role-action assignments, e.g.
“patients can annotate their own record items”. Others re-
quire more than one role-related prerequisite condition, e.g.
“clinicians can force-read record items concealed by a pa-
tient if they have activated their clinician role and if they are
member of a workgroup (clinical team or ward) currently
treating the patient”. The last condition is also an exam-
ple of an auxiliary or derived role: the Group-treating-

clinician role need not be activated when using the rule;
it is sufficient that it can be activated. The permits rules
concerning reading record items are typically also condi-
tioned on consent and (absence of) access denial role ac-
tivations (activated by other entities); such rules cannot be
easily expressed in languages in which the subject parame-
ters of the head and the body are the same, e.g. RT [33] or
Oasis [26, 48].
Consent: access to health records is primarily based on ex-
plicit patient consent. Consent may be required for initial
treatment, for referrals and for disclosure of third-party in-
formation. We implement consent as a form of appointment:
by activating a consent role, a patient “appoints” a clinician
to be e.g. a Treating-clinician with a legitimate rela-
tionship. To prevent frivolous users from unsolicitedly acti-
vating myriads of consent roles, the user must first have been

requested to activate that role. These consent requests are
again implemented as a form of appointment, but now the
other way round: by activating a consent request role, the
clinician enables the patient to activate a consent role. Con-
sent is thus implemented as a two-stage appointment mech-
anism.
Registration is an administrative task that takes on many
forms in our case study: e.g. MPI-administrators enter newly
born patients into the MPI, receptionists register new pa-
tients, human resource managers employ clinicians and other
staff, head nurses assign nurses to wards, and heads of clin-
ical teams assign clinicians to their respective teams. It is
easy to see that registration can again be implemented using
variants of the appointment encoding given in §5. Variants
include combinations with cardinality restrictions (“patients
can register at most three distinct agents acting on their be-
half”) and uniqueness constraints (“a patient can only be reg-
istered if no one has already activated the registration role
for that patient”). The two mentioned variants make use of
Cassandra’s aggregation operators.
Referral is implemented as a form of delegation. Our case
study exhibits two kinds of patient referral. On the EHR ser-
vice, no patient consent is required, and referral chains are
of unbounded length. On the level of the local health or-
ganisation, we decided to implement a stricter alternative:
a local treating clinician can refer the patient to an external
clinician (who will then have restricted rights to read the lo-
cal EPR record items) only with explicit patient consent, and
delegation chain can only be of length one.
Access denial: this is a policy idiom motivated by the re-
quirement that patients may conceal their data. By activat-
ing an access denial role, patients can fine-tune the rights to
access their records. The corresponding permits rules need
to check that no such access denial role has been activated;
this requires universally quantified negation, expressed with
the help of aggregation operators.
Deactivation: canDeactivate rules specify who can deacti-
vate which roles. Although these rules are rather straight-
forward, it is important that deactivation can be specified
flexibly. For example, revocation of patient agent regis-
trations is asymmetric in the sense that patients can only
revoke the agents they have appointed themselves (grant-
dependent revocation), whereas Caldicott Guardians can re-
voke not only the agents they have appointed for a patient but
also those appointed by the patient himself (variant of grant-
independent revocation). Cascading deactivation, specified
by isDeactivated rules, is used to automatically deactivate
a role if some other role is deactivated. For example, the
revocation of a patient’s registration in the hospital triggers
the deactivation of all roles that have something to do with
that patient, including agent registrations, inpatient episode
registrations, legitimate relationships with clinicians, access
denial roles, and consent roles.

Credential management: credential-based trust negotiation
and credential protection are governed by the interaction be-
tween canReqCred rules and rules with remote body predi-
cates. The scenario in §2.1 gives an example of multi-phase
automatic trust negotiation. canReqCred rules are also used
for regulating direct credential requests from entities. For ex-
ample, agent credentials can be requested by certified health
organisations, and also by the agent himself. The location
parameter of Cassandra predicates facilitates very flexible
forms of automatic credential retrieval: unlike most other
systems, credential locations are not restricted to the issuer
or the credential subject. For example, a credential of the
form

RA.hasActivated(RA-adm,
NHS-health-org-cred(Org, Start, End))

may be found at the location Org which is neither the issuer
(RA) nor the subject (RA-adm).

The users of the system – patients, clinicians and adminis-
trative staff – are modelled as entities whose policies consist
only of the credentials they acquire over time. We assume
the existence of an infrastructure for the identification of in-
dividuals. The NHS number identifies patients uniquely, but
we do not specify the exact authentication mechanism (e.g.
a password, a name certificate, or a smartcard-stored key).
Further we assume that network communication is secured.

In the following we outline the policy for the EHR archi-
tecture proposed in §2 and illustrated in the scenario (§2.1)
and give examples of policy rules that illustrate particular
features of Cassandra or express a variant of an interesting
policy idiom.

Master Patient Index Recall that the MPI is a central na-
tional service that, for each patient, stores the location of his
EHR. This MPI patient/EHR-service binding can be queried
by patients, health professionals and organisations and then
used to retrieve the EHR items from the EHR service. This
approach keeps the size of the central service manageable
and can cope with high access rates since our MPI policy is
very simple and the amount of transferred data small.

There will be an estimated number of 300 million GP
appointments, 70 million inpatient episodes and out-patient
hospital attendances, and about 30 million other health
episodes and encounters per year [38]. For each of these
events, the MPI will typically be consulted not more than
two or three times, hence the expected number of accesses
will be around one billion per year. The service therefore
needs to be able to handle at most a few thousand accesses
per second if we take peak times into account. The MPI pol-
icy defines only four roles and 17 rules.

A new patient/EHR-service binding can be entered
by an MPI administrator, by activating the Register-

patient(pat, ehr-srv) role, if no binding for that patient

exists yet. This negative condition holds if the aggregation
parameter of the user-defined aggregation predicate count-
patient-regs is 0. Patient registration can be seen as a variant
of appointment in which there appointees (patients) can only
be appointed (registered) once.

canActivate(adm, Register-patient(pat, ehr-srv))←
hasActivated(adm, MPI-admin()),
count-patient-regs(0, pat)

count-patient-regs(count〈x〉, pat)←
hasActivated(x, Register-patient(pat, ehr-srv))

The MPI policy also contains rules for removing
patient/EHR-service bindings and various rules for re-
questing credentials containing the binding. One examples
for credential request is given below. The rule authorises
health organisations to request a credential asserting the
binding if they in turn can (and are willing to) provide an
RA-approved NHS health organisation credential. This
is an example for encoding a particular distributed trust
negotiation strategy in Cassandra. Cassandra’s evaluation
algorithm ensures that trust negotiation strategies always
terminate, even in the presence of mutually recursive rules.

canReqCred(org, MPI.hasActivated(x,
Register-patient(pat, ehr-srv)))←

org@ra.hasActivated(x,
NHS-health-org-cred(org, start, end)),

ra ∈ NHS-registration-authorities(),
Current-time() ∈ [start, end]

EHR services The EHR records are physically stored on
EHR services that could be deployed below the Strategic
Health Authority (SHA) level. There are 28 SHAs in Eng-
land, each covering one to two million living patients. So
if there are four EHR services per SHA, each will keep the
complete health records of up to a million patients (including
deceased or moved abroad). The EHR service policy defines
18 roles, five actions and 98 rules.

Each patient is associated with exactly one health record
consisting of a set of items, indexed by some item ID. Only
health professionals can create new items but patients can
annotate existing items. The system function Get-EHR-

item-author(pat, id) returns the author of the record item
id of patient pat. Similar functions exist for getting the health
organisation of the author, a set of subjects the item relates
to, the time the item was created, and the set of third parties
whose consent must be sought before the patient may view
the item.

A clinician can generally only read (Read-EHR-item)
a patient’s record item if either she is the item’s author or
she is currently treating the patient. The rule for the latter
case also specifies that she must be treating the patient in
a specialty that allows her to read the subjects of the item.
Furthermore, she is denied access if the patient has activated

a matching Access-denied-by-patient role. The
parameters of this role specify which items are affected, to
whom access should be denied, and a validity date range for
the access restriction. Recall the scenario from §2.1, where
Bob conceals all record items concerning an alcohol-related
liver problem from everybody except clinicians treating
him as GP. This can be accomplished by activating the
role Access-denied-by-patient(what, whom, 0,∞)
where what = (Bob,Ω,Ω,Ω, {Liver, Drugs}, 0,∞) and
whom = (Ω,Ω,Ω − {GP}). The rather complex user-
defined aggregation rule for count-access-denied-by-pat
is used in the permits rule to ensure nobody has activated
a matching access denial role. This condition holds if the
aggregation parameter is 0.

permits(cli, Read-EHR-item(pat, id))←
hasActivated(cli, Clinician(org, spcty)),
canActivate(cli, Treating-clinician(pat, org, spcty)),
count-access-denied-by-pat(0, (pat, id), (org, cli, spcty)),
Get-EHR-item-subjects(pat, id) ⊆

Permitted-subjects(spcty)

count-access-denied-by-pat(count〈x〉, (pat, id),
(org, reader, spcty))←

hasActivated(x, Access-denied-by-patient(
what, whom, start, end)),

what = (pat, ids, orgs, authors, subjects,
from-time, to-time)∧

whom = (orgs1, readers1, spctys1)∧
Get-EHR-item-org(pat, id) ∈ orgs∧
Get-EHR-item-author(pat, id) ∈ authors∧
Get-EHR-item-subjects(pat, id) ∩ subjects 6= ∅∧
Get-EHR-item-time(pat, id) ∈ [from-time, to-time]∧
(id ∈ ids) ∧ (org ∈ orgs1) ∧ (reader ∈ readers1)∧

(spcty ∈ spctys1) ∧ (Current-time() ∈ [start, end])

The Clinician role can be activated by submitting a cur-
rently valid clinician approval credential issued by a reg-
istration authority to the EHR service. Clinicians have a
legitimate relationship with a patient if they can activate
the Treating-clinician role (an example of an auxiliary
role that need not be activated, hence the canActivate con-
dition instead of hasActivated in the permits rule above).
This is permitted if the patient or his agent have previ-
ously given consent to this treatment (activated a Consent-
to-treatment role), in the case of emergency (active
Emergency-clinician for the patient), or if the clinician
has been referred by another treating clinician (who has ac-
tivated Referrer for her). Finally, if the health organisation
of the clinician supports Cassandra and is NHS-approved,
she can simply submit a credential that proves she is a mem-
ber of a workgroup involved in the treatment of the patient.
This allows local hospitals to manage workgroup member-
ships themselves. The rule for this case is shown below and
is an example of distributed delegation of authority. Note

how the rule specifies that the clinician’s Group-treating-
clinician role credential has to be submitted directly to the
EHR service, whereas the NHS-health-org-cred role cre-
dential is retrieved automatically, so we have two different
automatic credential retrieval strategies within one rule.

canActivate(cli, Treating-clinician(pat, org, spcty))←
org.canActivate(cli,
Group-treating-clinician(pat, group, spcty)),

org@ra.hasActivated(x,
NHS-health-org-cred(org, start, end)),

ra ∈ NHS-registration-authorities(),
Current-time() ∈ [start, end]

Patients (and similarly, their agents) can read their record
items if they are not concealed by a clinician (nobody has
activated a matching Access-denied-by-clinician role)
or by the patient himself, e.g. if a patient does not want to
see any items concerning “Cancer”. Furthermore, all third
parties affected by the item must have given their explicit
consent to disclosure. The set of all such third parties whose
consent has been registered is found using the group aggre-
gation operator (the actual permits rule for patient access is
not shown here):

third-party-consent(group〈party〉, pat, id)←
hasActivated(x, Third-party-consent(party, pat, id))

Patient agents are registered on the patient’s EHR service,
either by the patient or by his GP. A registered agent can
act on behalf of the patient on the EHR service but can
also request an agent credential to be used at e.g. a local
Cassandra-supporting hospital. Our revocation policy for
agents is a combination of grant-dependent (patients can de-
activate their own agent registrations) and grant-independent
revocation (the GP can also deactivate her patients’ registra-
tions, e.g. if a patient is deemed incompetent). The agent
registration rule for patients is a another variant of appoint-
ment with a restriction on the number of appointments: pa-
tients may appoint at most three different agents. (The ag-
gregation rule for agent-regs(n, pat) counts the number of
agent registrations, and is not shown here.)

canActivate(pat, Register-agent(agent, pat))←
hasActivated(pat, Patient()),
agent-regs(n, pat),
n < 3

Other patient-centred issues such as consent to treatment
are also managed at the EHR service level. The policy
is designed in such a way that users are forced to acti-
vate at least one of the main roles, EHR-service-admin,
Clinician, Emergency-clinician, Patient, Agent or
Third-party, before they can perform any action or acti-
vate a registration, consent or access configuration role.

Local Health Organisations/EPR services It is expected
that local health organisations will gradually migrate to elec-
tronic systems that conform to national standards and are
compatible with the nation-wide services. This process may
take a long time, so none of the national services puts any
policy related requirements on local systems running in the
health organisations. This is also the reason why the EHR
cannot be deployed at this level. However, our EHR service
policy is designed in such a way that if a health organisa-
tion can produce credentials and has a compatible policy-
enforcement system, working with the EHR service can be
more efficient. Health organisations can be as small as sin-
gle GP practices but could also be entire NHS acute trusts
with up to half a million registered patients. The policy of
our model hospital defines 31 roles, five actions and 168
rules. It is mainly concerned with staff and patient registra-
tion (a Receptionist can register new patients by activat-
ing Register-patient(pat)) and the trust management of
local electronic patient records (EPR). The rules for access-
ing the local EPR are similar to those for the shared EHR on
the EHR services, so we do not give any explicit examples
of policy rules here.

One difference is that our model hospital is workgroup
based, with two kinds of workgroups, teams and wards. Pa-
tients are treated in clinical teams, usually headed by a con-
sultant, and during inpatient episodes patients also belong to
a ward, usually headed by a head nurse. As such, the legiti-
mate relationship between patient and clinician is not based
on explicit consent to treatment as in the case of the EHR ser-
vices but only requires a receptionist or the head of the work-
group to register the patient with a workgroup by activating
Register-team-episode or Register-ward-episode.
Any clinician belonging to the workgroup automatically be-
comes a treating clinician. Clinicians can also request work-
group credentials for supporting requests to access a pa-
tient’s EHR item on an EHR service.

Registration Authorities RAs could be located on the
NHS cluster level, of which there are five in England. A
typical cluster comprises up to 2000 Primary Care Practices
and 100 Acute Hospital Trusts and other health organisa-
tions. An RA should be able to cope with up to 200,000
registered health professionals [38]. The policy of our model
RA (“RA-East”) defines five roles and 27 rules.

For example, the person cli is registered as a clini-
cian with specialty spcty working for the health organisa-
tion org if somebody activates the appointment role NHS-

clinician-cred(org, cli, spcty, start, end). RA credentials
are required to be time-limited, so all RA roles have a start
and an end date among their parameters. The role can be ac-
tivated by local administrators, and only if org is registered
as a current health organisation on this RA. Furthermore, the
validity period must be covered by the validity period of the

organisation’s registration:
canActivate(adm,

NHS-clinician-cred(org, cli, spcty, start, end))←
hasActivated(adm, RA-admin()),
hasActivated(x, NHS-health-org-cred(org, start′, end′)),
[start, end] ⊆ [start′, end′]

The registration can be revoked by deactivating the role.
This is an example of a variant of time-limited appointment
with grant-independent revocation, as deactivation can be
done by any active administrator (note that x occurs only
in the head of the rule):

canDeactivate(adm, x,
NHS-clinician-cred(org, cli, spcty, start, end))←

hasActivated(adm, RA-admin())
The registration is cancelled automatically if the health or-
ganisation loses its registration for the relevant period. This
isDeactivated rule implements a rather complex variant of
cascading deactivation (that cannot be expressed in e.g. Oa-
sis): the cancellation should only proceed if there is no other
registration for the health organisation that is valid during
the relevant period. This negative condition is ensured by
the user-defined aggregation predicate other-NHS-health-
org-regs whose first parameter is 0 if and only if the con-
dition holds.

isDeactivated(adm,
NHS-clinician-cred(org, cli, spcty, start, end))←

isDeactivated(x,
NHS-health-org-cred(org, start′, end′)),

other-NHS-health-org-regs(0, x, org, start′, end′),
[start, end] ⊆ [start′, end′]

other-NHS-health-org-regs(count〈y〉, x, org, start, end)←
hasActivated(y,
NHS-health-org-cred(org, start′, end′)),

[start, end] ⊆ [start′, end′]∧
(x 6= y ∨ start 6= start′ ∨ end 6= end′)

A registered clinician can request a credential asserting that
someone has activated the corresponding registration role for
her during a given period. Similarly, EHR services, other
RAs as well as the health organisation employing the clini-
cian can also request the credential. The rule for the latter
case is shown below.

canReqCred(org, ra.hasActivated(x,
NHS-clinician-cred(org, cli, spcty, start, end))←

hasActivated(y, NHS-health-org-cred(org, start′, end′)),
Current-time() ∈ [start′, end′]

As we can see, in this variant of appointment, the appointee
(the clinician) never actually activates the appointed role
NHS-health-org-cred. The appointer (the RA-admin)
only enables her to request a credential certifying the ap-
pointment. Similar rules exist for Caldicott Guardians (NHS-
Caldicott-guardian-cred) and health organisation au-
thentication (NHS-health-org-cred) credentials. The RA

policy further contains rules for the appointment of new ad-
ministrators.

7. Discussion

Implementation and performance A prototype of
Cassandra has been implemented in OCaml. The access
control engine forms the core of the implementation. It
provides a simple user interface for reading in policies
and handling user requests concerning actions, credentials,
and role activation and deactivation. On a request, the
access control engine uses the policy evaluation engine, an
implementation of the top-down evaluation algorithm from
§3, to decide whether to grant or to deny access. If access
is granted, the state (the global set of policies) might be
changed, as specified in §4. The globally chosen constraint
domain can be plugged into the access control and policy
evaluation engines as an independent module. Constraint
domain modules must only provide implementations for
standard functions such as conjunction, satisfiability and
implication checking, and existential quantifier elimination.
We have implemented the constraint domain C0, including
a type inference mechanism that allows us to omit explicit
variable typing.

At the time of writing, role deactivation and credential
requests and the static groundness analyser are still in the
process of being implemented. Furthermore, the current pro-
totype only simulates the distributed system, and issued cre-
dentials are implemented without encryption and public key
signatures.

The prototype was tested with the EHR policies from §6
by going through various scenarios. The initial test results
were promising: even the most complex requests were han-
dled within fractions of a second. We believe it would be
feasible to use Cassandra to enforce our EHR policy on a na-
tionwide system, despite its relative complexity. Of course,
authoritative results can only be produced after completion
of a less naive implementation and under more realistic set-
tings; we have for example so far only tested the system
with up to 10,000 patients. Even though DatalogC queries
in C0 may theoretically be intractable, the test results with
the EHR policy suggest that the worst-case does not occur
in practice: the policy seems complex but a closer analy-
sis reveals that recursion is very shallow and that nearly all
variables become ground at an early stage. This means that
neither the evaluation engine nor the constraint solving pro-
cedures need to work very hard. The current implementation
is rather inefficient in that credential rules for role activations
are stored in a linear list. If a hashtable is used instead, the
cost of almost all requests would be nearly independent of
the number of patients in the system; for the rest, the cost
would be at most linear in the number of patients.

Related work A large amount of work has been done
on policy specification in a non-trust-management context
(e.g. Ponder [18], GTRBAC [30], FAF [28], RCL2000 [2],
RDM2000 [49], just to name a few): these languages do not
support credential-based authorisation, credential retrieval
and distributed trust negotiation, or they do not focus on dis-
tributed resource sharing at all.

The notion of credential-based trust management was in-
troduced by Blaze et al. with PolicyMaker [10, 9] and its
successor, KeyNote [8, 7]. PolicyMaker’s credentials and
policies are fully programmable in that the choice of the
policy specification language is left open to the user. This
makes it very flexible but makes policy compliance check-
ing undecidable in general. In KeyNote, policies are written
in a specific assertion language containing simple string and
arithmetic constraints on environment variables. Both Pol-
icyMaker and KeyNote do not handle credential retrieval.
Unlike Cassandra, these systems do not act as a protective
layer around the resources; they are just called by the ap-
plication to check policy compliance. The application is re-
sponsible for interpreting the answer and the actual policy
enforcement. One of the distinctive aspects of Cassandra is
that not only the policy language but also the access con-
trol semantics is formally specified, with exact definitions
for the conditions and consequences of role activation and
deactivation, action and credential requests. The policy lan-
guage together with the access control semantics provide a
rigorous framework unifying dynamic RBAC, role revoca-
tion, distributed trust management and trust negotiation. Ex-
isting distributed trust management systems have a narrower
scope and specify at most the policy specification language,
not the access control semantics.

The Cassandra policy specification language was inspired
by Oasis [48, 26], a role-based trust management system in
which Datalog-like rules specify which credentials are pre-
requisite for role activation and deactivation. Oasis does not
retrieve credentials automatically and does not guarantee ter-
mination of queries. One of the main contributions of the
work on Oasis was the development of the concept of ap-
pointment as a generalisation of delegation. Previous sys-
tems have concentrated on delegation (e.g. RDM2000 [49],
a rule-based language with built-in role delegation), which,
as our case study suggests, is far less useful in practice. Stan-
dard appointment can be expressed in Oasis with its built-in
appointment mechanism. However, as the subject of the role
activation prerequisites must be equal to the subject of the
conclusion of the rule, it is not impossible to encode the dif-
ferent variants of appointment we encountered.

RDM2000 can express role revocation policies including
revocation authorisation and cascading revocation in much
the same way as Cassandra. Oasis is the only other trust
management system we are aware of that supports rule-
based cascading role revocation. However, its revocation

mechanism is not expressive enough for some of the revoca-
tion policies in our case study. In particular, Oasis’s revoca-
tion triggers are restricted to those role activations that were
actually used to activate the role; furthermore, revocation is
triggered whenever a role membership condition ceases to
hold, even if other current conditions might allow the activa-
tion to stay alive. Cassandra’s isDeactivated mechanism is
expressive enough to capture such policies. In Oasis, revo-
cations can be automatically propagated across the network
via an event infrastructure. In contrast, Cassandra’s revoca-
tions are explicitly restricted to local role activations. We be-
lieve that distributed revocation is too difficult to implement
reliably and securely on a wide scale; for example, services
would need to keep state about which other services to notify
about revocations, and would need to apply at other services
for the right to receive particular revocations.

The RT family of role-based trust management languages
[33] bears some similarities to our system. RT can be seen as
an extension/combination of SPKI/SDSI 2.0 [12] and Dele-
gation Logic [31]. In RT, the Datalog-based rules, or cre-
dentials, as they are called, specify only the role member-
ship relation: either directly, by role hierarchy, by (direct
or attribute-based) delegation of authority, or any combina-
tion of these. As in Oasis, the subjects of the rule head and
the body conditions are implicitly the same, which is suffi-
cient to express delegation but not convenient for appoint-
ment policies. In RT’s youngest offspring, RT C1 [32], rules
are translated into DatalogC . Constraints are used only to
define a range on each role parameter; constraints between
two parameters are not permitted in order to keep policies
more comprehensible and to guarantee tractability. We find
that a more liberal use of constraints is useful and neces-
sary, as our EHR policy shows, and can still be efficient in
practice. RT roles are prefixed with the issuing entity, just
like Cassandra’s predicates are, but do not specify the loca-
tion where a matching credential may be found. RT solves
this by statically specifying for each role name whether cre-
dentials defining such roles are stored with the issuer or the
subject. Our EHR policy has rules in which predicates have
locations different from both issuer and the subject entity.

SD3 is another Datalog-based trust management system
[29]. It is similar to Cassandra in that SD3 predicates can
also have an issuer and a location, which in the case of SD3
is an IP address. SD3 is a very general system that does
not specify any access control meaning for its predicates and
can be viewed as Cassandra without constraints, roles and
access control semantics, but with automatic credential re-
trieval and trust negotiation. SD3 passes the proof tree from
its highly optimised policy evaluation engine through a sim-
ple and small proof checker to reduce the size of its trusted
computing base. This would be a technique that could also
be applied to Cassandra.

The problem of trust negotiation has been addressed in

[46] where various different strategies are discussed. Their
Credential Access Policy (CAP) corresponds to Cassandra’s
canReqCred rules. Cassandra’s uniform treatment of rules
during evaluation gives us trust negotiation “for free”, with
a strategy similar to the “Parsimonious Strategy” in [46]. It
has been pointed out that this strategy may leak information
about the policy without actually disclosing any credentials.
[47] prevents this problem by adding another policy protec-
tion layer.

Conclusion and Future work We have developed a role-
based policy specification system for access control in a
distributed system, Cassandra, in which the expressiveness
can be tuned according to need. In combination with the
constraint domain C0, Cassandra’s expressiveness surpasses
that of existing systems while preserving a strong termina-
tion property. The language is truly policy-neutral in that
it can express subtle variants of well-known policy idioms.
It can express trust-management related policies such as
credential-based authorisation, automatic trust negotiation
and automatic credential retrieval strategies. Our work on
a policy for a national EHR system, one of the most substan-
tial trust management case studies we are aware of, demon-
strates that Cassandra is expressive enough for large-scale
real-world applications with highly complex policy require-
ments.

To gather more reliable test results, we will first complete
the implementation of role deactivation and credential re-
quests, and a static groundness analyser. In a further step, we
plan to build a prototype that is truly distributed, uses digi-
tal certificates for sending credentials over the network and
uses a relational database to accelerate the look-up of role
activations. Such an implementation will enable us to test
the EHR policy in a more realistic setting, with at least a few
million policy entries. We will also produce web-based EHR
user interfaces to illustrate how applications can be build on
Cassandra.

Cassandra was designed to satisfy complex policy re-
quirements and at the same time be simple enough that its
language and access control semantics can be formally spec-
ified. We plan to use this formal framework to prove high-
level meta-properties about specific policies or policy id-
ioms. Along the same lines, we wish to formalise a low-
level model of Cassandra that specifies the underlying net-
work protocols, the public key infrastructure and the design
of certificates.

Acknowledgments We acknowledge support from a
Gates Cambridge Scholarship (Becker), a Royal Society
University Research Fellowship (Sewell), EPSRC grant
GRN24872, and EC FET-GC project IST-2001-33234
PEPITO. The authors thank Rishi Mukherjee for his insight
and discussion on hospital management, and Arne Heizmann

and Matthew Parkinson for corrections. We also thank the
reviewers for their valuable comments.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
databases. Addison-Wesley, 1995.

[2] G.-J. Ahn and R. Sandhu. Role-based authorization con-
straints specification. ACM Transactions on Information and
System Security, 3(4):207–226, 2000.

[3] R. Anderson. A security policy model for clinical informa-
tion systems. In Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, pages 30–42, 1996.

[4] N. Baker and H. Sondergaard. Definiteness analysis for
CLP(R). In Australian Computer Science Conference, pages
321–332, 1993.

[5] M. Y. Becker. Cassandra policies for a national EHR ar-
chitecture. http://www.cl.cam.ac.uk/users/mywyb2/

policy.
[6] M. Y. Becker and P. Sewell. Cassandra: distributed access

control policies with tunable expressiveness. In Policy Work-
shop, June 2004.

[7] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
RFC 2704: The KeyNote trust management system version
2, 1999.

[8] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust management for public-key infrastructures (position
paper). Lecture Notes in Computer Science, 1550:59–63,
1999.

[9] M. Blaze, J. Feigenbaum, and A. D. Keromytis. The role of
trust management in distributed systems security. In Secure
Internet Programming, pages 185–210, 1999.

[10] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In IEEE Symposium on Security and Privacy,
pages 164–173, 1996.

[11] W. Chen and D. S. Warren. Towards effective evaluation of
general logic programs. Technical report, State University of
New York at Stony Brook, 1993.

[12] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,
and R. L. Rivest. Certificate chain discovery in SPKI/SDSI.
Journal of Computer Security, 9(4):285–322, 2001.

[13] T. Collins. Doctors express alarm at plans to store patient
data without consent (15/07/03). Computer Weekly, 2003.

[14] T. Collins. How the national programme came to be the
health service’s riskiest IT project (16/09/03). Computer
Weekly, 2003.

[15] T. Collins and M. Simons. NHS plan branded a ’farce’
(03/06/03). Computer Weekly, 2003.

[16] A. Cornwall. Electronic health records: an international per-
spective. Health Issues, 73, 2002.

[17] M. Cross. NHS spree revealed (12/06/03). The Guardian,
2003.

[18] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Pon-
der policy specification language. In Policy Workshop, 2001.

[19] Department of Health, UK. Building the information core:
Implementing the NHS plan. 2001.

[20] Department of Health, UK. Building the information core:
Protecting and using confidential patient information. 2001.

[21] Department of Health, UK. Legal and policy constraints on
electronic records. 2002.

[22] Foundation for Information Policy Research. NHS
confidentiality consultation – FIPR response. Febru-
ary 2003. http://www.cl.cam.ac.uk/users/rja14/

fiprmedconf.html.
[23] N. Gaunt. Confidentiality and consent: Use cases applica-

ble to shared electronic health record. S&W Devon ERDIP
Project, 2003.

[24] L. Giuri and P. Iglio. Role templates for content-based access
control. In Proceedings of the 2nd ACM Workshop on Role-
Based Access Control (RBAC-97), pages 153–159, 1997.

[25] J. Y. Halpern and V. Weissman. Using first-order logic to rea-
son about policies. In Proceedings of the Computer Security
Foundations Workshop (CSFW’03), 2003.

[26] R. Hayton, J. Bacon, and K. Moody. OASIS: Access control
in an open distributed environment. In Proceedings of the
1998 IEEE Symposium on Security and Privacy, pages 3–14,
1998.

[27] J. Jaffar and M. J. Maher. Constraint logic programming:
a survey. Journal of Logic Programming, 19/20:503–581,
1994.

[28] S. Jajodia, P. Samarati, M. Sapino, and V. S. Subrahmanian.
Flexible support for multiple access control policies. ACM
Transactions on Database Systems, 26(2):214–260, 2001.

[29] T. Jim. SD3: A trust management system with certified eval-
uation. In Proceedings of the 2001 IEEE Symposium on Se-
curity and Privacy, pages 106–115, 2001.

[30] J. B. D. Joshi, B. Shafiq, A. Ghafoor, and E. Bertino. Depen-
dencies and separation of duty constraints in GTRBAC. In
Proceedings of the eighth ACM symposium on Access control
models and technologies, pages 51–64. ACM Press, 2003.

[31] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic:
a logic-based approach to distributed authorization. ACM
Transactions on Information and System Security, pages
128–171, 2003.

[32] N. Li and J. C. Mitchell. Datalog with constraints: A founda-
tion for trust management languages. In Proceedings of the
5th International Symposium on Practical Aspects of Declar-
ative Languages, pages 58–73, 2003 2003.

[33] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust management framework. In Proceedings of
the 2002 IEEE Symposium on Security and Privacy, pages
114–130, 2002.

[34] E. C. Lupu and M. Sloman. Reconciling role-based manage-
ment and role-based access control. In ACM Workshop on
Role-based Access Control, pages 135–141, 1997.

[35] National Health Service, UK. The Caldicott committee: re-
port on the review of patient-identifiable information. 1997.

[36] National Health Service, UK. Information for health: an in-
formation strategy for the modern NHS 1998-2005. 1998.

[37] National Health Service, UK. ERDIP evaluation: Technical
options for the implementation of electronic health record na-
tionally. 2002.

[38] National Health Service, UK. Integrated Care Records Ser-
vice: Output based specification version 2. 2003.

[39] M. Palmer. A complex operation for the NHS spine
(14/08/03). Computer Weekly, 2003.

[40] P. Revesz. Introduction to constraint databases. Springer
Verlag, 2002.

[41] J. Rogers. GPs voice patient confidentiality concerns
(20/05/03). Computer Weekly, 2003.

[42] R. Sandhu. Rationale for the RBAC96 family of access con-
trol models. In Proceedings of the 1st ACM Workshop on
Role-Based Access Control, 1997.

[43] R. Sandhu, V. Bhamidipati, E. Coyne, S. Canta, and
C. Youman. The ARBAC97 model for role-based admin-
istration of roles: Preliminary description and outline. In
Proceedings of 2nd ACM Workshop on Role-Based Access
Control, pages 41–54, 1997.

[44] A. Sommerville, N.-J. Macdonald, and R. Weston. Medical
Ethics Today: Its Practice and Philosophy. British Medical
Association, BMJ Publishing Group, 1993.

[45] D. Toman. Memoing evaluation for constraint extensions of
datalog. Constraints, 2(3/4):337–359, 1997.

[46] W. Winsborough, K. Seamons, and V. Jones. Automated trust
negotiation. In DARPA Information Survivability Conference
and Exposition, volume 1, pages 88–102, 2000.

[47] W. H. Winsborough and N. Li. Towards practical automated
trust negotiation. In Proceedings of the 3rd International
Workshop on Policies for Distributed Systems and Networks,
pages 92–103, 2002.

[48] W. Yao, K. Moody, and J. Bacon. A model of OASIS role-
based access control and its support of active security. ACM
Transactions on Information and System Security, 5(4), 2002.

[49] L. Zhang, G.-J. Ahn, and B.-T. Chu. A rule-based framework
for role-based delegation and revocation. ACM Transactions
on Information and System Security, 6(3):404–441, 2003.

