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Abstract

Compositional testingconcerns the testing of systems that consist of communicating components which can also be tested
in isolation. Examples are component based testing and interoperability testing. We show that, with certain restrictions, the
ioco-test theory for conformance testing is suitable for compositional testing, in the sense that the integration of fully con-
formant components is guaranteed to be correct. As a consequence, there is no need to re-test the integrated system for con-
formance.

This result is also relevant fortesting in context, since it implies that every failure of a system embedded in a test context
can be reduced to a fault of the system itself.

1. Introduction

In this paper we study formal testing based on theioco-test theory. This theory works on labeled transition systems
(LTS) [11, 12]. The nameioco, which stands forinput/output conformance, refers to the implementation relation (i.e., no-
tion of correctness) on which the theory and the test generation algorithm have been built. A number of tools are based on
theioco theory, among which there areTGV [4], TESTGEN [5] andTorX [1].

Two open issues in testing theory in general, and theioco-theory in particular, arecompositional testingand testing in
context. For instance, for the testing theory based on Finite-State-Machines (FSM) this issue has been studied in [9].

Compositional testingconsiders the testing of communicating components that together form a larger system. An example
is component based testing, i.e., integration testing of components that have already been tested separately. An example from
the telecom sector is interoperability testing, i.e., testing if systems from different manufacturers, that should comply with a
certain standard, work together; for example GSM mobile phones. The question is what can be concluded from the individual
tests of the separate components, and what should be (re)tested on the integration or system level. With the current theory it
is unclear what the relation between the correctness of the components and the integrated system is.

Another scenario, with similar characteristics, istesting in context. This refers to the situation that a tester can only access
the implementation under test through atest context[6, 7, 10]. The test context interfaces between the implementation under
test and the tester. As a consequence the tester can only indirectly observe and control theIUT via the test context. This makes
testing weaker, in the sense that there are fewer possibilities for observation and control of theIUT. With testing in context,
the question is whether faults in theIUT can be detected by testing the composition ofIUT and test context, and whether a
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failure of this composition always indicates a fault of theIUT. This question is the converse of compositional testing: when
testing in context we wish to detect errors in theIUT — a component — by testing it in composition with the test context,
whereas in compositional testing we wish to infer correctness of the integrated system from conformance of the individual
components.

This paper studies the above mentioned compositionality properties ofioco for two operations on labeled transition sys-
tems: parallel composition and hiding. Ifioco has this compositional property for these operations, it follows that correct-
ness of the parts (the components) implies correctness of the whole (the integrated system), or that a fault in the whole (IUT

and test context) implies a fault in the component (IUT). This compositionality property is formally called a pre-congruence.
We show thatioco is a pre-congruence for parallel composition and hiding in the absence of underspecification of input

actions. One way to satisfy this condition is to only allow specifications which areinput enabled. Another way is to make the
underspecification explicit bycompletion. We show that, in particular,demonic completionis suitable for this purpose. As a
final result we show how to use the original (uncompleted) specifications and still satisfy the pre-congruence property. This
leads to a new implementation relation, baptizediocoU which is slightly weaker thanioco.

This paper has two main results. First we show a way to handle underspecification of input actions when testing communi-
cating components with theioco theory. This idea is new for LTS testing. It is inspired by [3] and similar work done in FSM
testing [8]. Second we establish a formal relation between the components and the integrated system. As far as we know this
result is new for both LTS testing and FSM testing.

Overview. The next section recalls some basic concepts and definitions about transition systems andioco. Section 3 sets
the scene and formalizes the problems of compositional testing and testing in context. Section 4 studies the pre-congruence
properties ofioco for parallel composition and hiding. Section 5 discusses underspecification, and approaches to complete
specifications with implicit underspecification. Section 6 concludes with some final remarks and an assessment of the results.
For a full version of this paper with all the proofs, we refer to [13].

2. Formal preliminaries

This section recalls the aspects of the theory behindioco that are used in this paper; see [11] for a more detailed exposi-
tion.

Labeled Transition Systems.A labeled transition system (LTS) description is defined in terms of states and labeled transi-
tions between states, where the labels indicate what happens during the transition. Labels are taken from a global setL. We
use a special labelτ /∈ L to denote an internal action. For arbitraryL ⊆ L, we useLτ as a shorthand forL ∪ {τ}. We devi-
ate from the standard definition of labeled transition systems in that we assume the label set of an LTS to be partitioned in an
input and an output set.

Definition 2.1 A labeled transition systemis a 5-tuple〈Q, I, U, T, q0〉whereQ is a non-empty countable set ofstates; I ⊆ L
is the countable set ofinput labels; U ⊆ L is the countable set ofoutput labels, which is disjoint fromI; T ⊆ Q× (I ∪ U ∪
{τ})×Q is a set of triples, thetransition relation; q0 ∈ Q is theinitial state.

We useL as shorthand for the entire label set (L = I ∪ U ); furthermore, we useQp, Ip etc. to denote the components of

an LTSp. We commonly writeq λ−→ q′ for (q, λ, q′) ∈ T . Since the distinction between inputs and outputs is important, we
sometimes use a question mark before a label to denote input and an exclamation mark to denote output. We denote the class
of all labeled transition systems overI andU by LTS(I, U). We represent a labeled transition system in the standard way,
by a directed, edge-labeled graph where nodes represent states and edges represent transitions.

A state that cannot do an internal action is calledstable. A state that cannot do an output or internal action is calledqui-
escent. We use the symbolδ ( 6∈ Lτ ) to represent quiescence: that is,p δ−→ p stands for the absence of any transitionp λ−→ p′

with λ ∈ Uτ . For an arbitraryL ⊆ Lτ , we useLδ as a shorthand forL ∪ {δ}.
An LTS is calledstrongly responsiveif it always eventually enters a quiescent state; in other words, if it does not have

any infiniteUτ -labeled paths. For technical reasons we restrictLTS(I, U) to strongly responsive transition systems. Systems
that are not strongly responsive may show live-locks (or develop live-locks by hiding actions). So one can argue that it is
a favorable property if a specification is strongly responsive. However, from a practical perspective it would be nice if the
constraint can be lessened. This is probably possible, but needs further research.

A trace is a finite sequence of observable actions. The set of all traces overL (⊆ L) is denoted byL∗, ranged over by
σ, with ε denoting the empty sequence. Ifσ1, σ2 ∈ L∗, thenσ1·σ2 is the concatenation ofσ1 andσ2. We use the stan-



dard notation with single and double arrows for traces:q a1···an−−−−−→ q denotesq a1−−→ · · · an−−→ q′, q
ε=⇒ q′ denotesq τ ···τ−−−→ q′ and

q
a1·...·an======⇒ q denotesq

ε=⇒ a1−−→ ε=⇒ · · · an−−→ ε=⇒ q′ (whereai ∈ Lτδ).
We will not always distinguish between a labeled transition system and its initial state. We will identify the processp =

〈Q, I, U, T, q0〉 with its initial stateq0, and we write, for example,p
σ=⇒ q1 instead ofq0

σ=⇒ q1.

Input-output transition systems. An input-output transition system(IOTS) is a labeled transition system that is completely
specified for input actions. The class of input-output transition systems with input actions inI and output actions inU is
denoted byIOTS(I, U) (⊆ LTS(I, U)). Notice that we do not require IOTS’s to be strongly responsive.

Definition 2.2 An input-output transition systemp = 〈Q, I, U, T, q0〉 is a labeled transition system for which all inputs are
enabled in all states:∀q ∈ Q, a ∈ I : q

a=⇒

Composition of labeled transition systems.The integration of components can be modeled algebraically by putting the
components in parallel while synchronizing their common actions, possibly with internalizing (hiding) the synchronized ac-
tions. In process algebra, the synchronization and internalization are typically regarded as two separate operations. The syn-
chronization of the processesp andq is denoted byp ‖ q. The internalization of a label setV in processp, or hidingV in p as
it is commonly called, is denoted byhide V in p. Below we give the formal definition.

Definition 2.3 For i = 1, 2 let pi = 〈Qi, Ii, Ui, Ti, pi〉 be a transition system.
◦ If I1 ∩ I2 = U1 ∩ U2 = ∅ thenp1 ‖ p2 =def 〈Q, I, U, T, p1 ‖ p2〉 where

◦ Q = {q1 ‖ q2 | q1 ∈ Q1, q2 ∈ Q2};
◦ I = (I1 \ U2) ∪ (I2 \ U1);
◦ U = U1 ∪ U2.
◦ T is the minimal set satisfying the following inference rules (µ ∈ Lτ ):

q1
µ−→ q′1, µ 6∈ L2 ` q1 ‖ q2

µ−→ q′1 ‖ q2

q2
µ−→ q′2, µ 6∈ L1 ` q1 ‖ q2

µ−→ q1 ‖ q′2
q1

µ−→ q′1, q2
µ−→ q′2, µ 6= τ ` q1 ‖ q2

µ−→ q′1 ‖ q′2

◦ If V ⊆ U1, thenhide V in p1 =def 〈Q, I1, U1 \ V, T,hide V in p1〉 where
◦ Q = {hide V in q1 | q1 ∈ Q1};
◦ T is the minimal set satisfying the following inference rules (µ ∈ Lτ ):

q1
µ−→ q′1, µ 6∈ V ` hide V in q1

µ−→hide V in q′1
q1

µ−→ q′1, µ ∈ V ` hide V in q1
τ−→hide V in q′1

Note that these constructions are onlypartial: there are constraints on the input and output sets. Moreover, parallel com-
position may give rise to an LTS that is not strongly responsive, even if the components are. For the time being, we do not try
to analyze this but implicitly restrict ourselves to cases where the parallel compositionis strongly responsive (thus, this is an-
other source of partiality of the construction).

In this paper we restrict ourselves to binary parallel composition. N-ary parallel composition may be an interesting ex-
tension. One may wonder however what this means in our input output setting, since an output action is uniquely identified
by its sender. From this perspective only the synchronization of many receivers to one sender (broadcast) seems an interest-
ing extension.

Proposition 2.4 Let p, q ∈ LTS(Ii, Ui) for i = p, q, with Ip ∩ Iq = Up ∩ Uq = ∅, and letV ⊆ Up.
1. If p ‖ q is strongly responsive thenp ‖ q ∈ LTS((Ip \ Uq) ∪ (Iq \ Up), Up ∪ Uq); moreover,p ‖ q ∈ IOTS if p, q ∈
IOTS.

2. hide V in p ∈ LTS(Ip, Up \ V ); moreover,hide V in p ∈ IOTS if p ∈ IOTS.

Conformance.The testing scenario on whichioco is based assumes that two things are given: 1) An LTS constituting a
specification of required behavior. And 2) an implementation under test. We treat theIUT as a black box. In order to reason
about it we assume it can be modeled as an IOTS (anIUT is an object in the real world) . This assumption is referred to as the
test hypothesis [6]. We want to stress that we do not need tohavethis model when testing theIUT. We onlyassumethat the
implementationbehavesas an IOTS.

Given a specifications and an (assumed) model of theIUT i, the relationi ioco s expresses thati conforms tos. Whether
this holds is decided on the basis of thesuspension tracesof s: it must be the case that, after any such traceσ, every output
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Figure 1: Architecture of coffee machine in components.

action (and also quiescence) thati is capable of should be allowed according tos. This is formalized by definingp after σ
(the set of states that can be reached inp after the suspension traceσ), out(p) (the set of output andδ-actions ofp) and
Straces(p) (the suspension traces ofp).

Definition 2.5 Let p ∈ LTS(I, U), let P ⊆ Qp be a set of states inp, let i ∈ IOTS(I, U), s ∈ LTS(I, U) and letσ ∈ L∗
δ .

1. p after σ =def { p′ | p σ=⇒ p′ }
2. out(p) =def {x ∈ U | p x−→} ∪ {δ | p δ−→}
3. out(P ) =def

⋃
{ out(p) | p ∈ P }

4. Straces(p)=def {σ ∈ L∗
δ | p

σ=⇒}
The following defines the implementation relationioco, modulo a functionF that generates a set of test-traces from a spec-
ification. In this definition2X denotes the powerset ofX, for an arbitrary setX.

Definition 2.6 Given a functionF : LTS(I, U) → 2L∗
δ , we defineiocoF ⊆ IOTS(I, U)× LTS(I, U) as follows:

i iocoF s ⇐⇒ ∀σ ∈ F(s) : out(i after σ) ⊆ out(s after σ)

So i iocoStraces s means∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ). We useioco as an abbreviation for
iocoStraces . For more details aboutioco we refer to [11].

3. Approach

In this section we want to clarify compositional testing with the formal framework presented in the previous section. The
consequences for testing in context will be discussed in the final section.

We study systems that consist of communicating components. These components can be tested individually and while
working together (in the case of testing in context the components are theIUT and its test context). The behavior of such a
system is described by the parallel composition of the individual transition systems. Output actions of one component that
are in the input label set of another component aresynchronized, resulting in a single, internal transition of the overall sys-
tem. Actions of a component that are not in the label set of another component are not synchronized, resulting in a single ob-
servable transition of the overall system. This gives rise to the scenario depicted in Figure 1. The figure will be explained in
the next example.

3.1. Example

To illustrate compositional testing, we use two components of a coffee machine: a “money component” (mon) that handles
the inserted coins and a “drink component” (drk) that takes care of preparing and pouring the drinks, see Figure 1.

The money componentaccepts coins of¤1 and of¤0.50 as input from the environment. After insertion of a¤0.50 coin
(respectively¤1 coin), the money component orders the drink component to make tea (respectively coffee).

The drink component interfaces with the money component and the environment. If the money component orders it to
make tea (respectively coffee) it outputs tea (respectively coffee) to the environment. If anything goes wrong in the drink
making process, the component gives an error signal.
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Figure 2: Specification of money and drink components as LTS’s.

The coffee machineis the parallel composition of the money component and the drink component, in which the “make
coffee” command, the “make tea” command and the “error” signal are hidden. One can think of the parallel composition as
establishing the connection between the money component and the drink component, whereas hiding means that the commu-
nication between the components is not observable anymore; only communication with the environment can be observed.

Models In Figure 2 we show the behavioral specification of the money componentsmon and the drink componentsdrk as
LTS’s. Note that the money component is underspecified for theerror input label and that the drink component cannot re-
cover from an error state, and while in the error state it cannot produce tea or coffee. Figure 3 shows implementation models
of the money component,imon , and the drink component,idrk . We have used transitions labeled with ‘?’ as an abbreviation
for all the non-specified input actions from the alphabet of the component. The money component has input label set,Imon =
{0 .50 , 1 .00 , error}, output label setUmon = {make coffee,make tea, 0 .50 , 1 .00}; smon ∈ LTS(Imon, Umon), imon ∈
IOTS(Imon, Umon). For the drink componentIdrk = {make coffee,make tea} andUdrk = {coffee, tea, error} are the in-
put and output label sets;sdrk ∈ LTS(Idrk, Udrk), idrk ∈ IOTS(Idrk, Udrk).

In the implementations of the components we choose to improve upon the specification, by adding functionality. This is
possible sinceioco allows partial specifications. Implementations are free to make use of the underspecification. The extra
functionality ofimon compared to its specificationsmon is that it can handle error signals: it reacts by returning¤1.00.idrk
is also changed with respect to its specificationsdrk : making tea never produces an error signal. Since implementations are
input enabled, we have chosen that all non specified inputs are ignored, i.e., the system remains in the same state.

money component implementation drink component implementation

!make
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!make
tea

imon idrk

?1.00

? ?

tea
?make

coffee
?make

!error
coffee
?make

tea
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? ?

??

?0.50

!1.00 ?error
!error

!coffee !tea

Figure 3: Implementation of the money and drink components as IOTS’s.



s1 ‖ s2

!x

i1

?x

?x

i2

!x

!x

i1 ‖ i2

!x

!x

s1

!x?x

!x

s2

Figure 4: Counter example to compositionality for parallel composition; see Example 4.1.

We haveimon ioco smon andidrk ioco sdrk . The question now is whether the integrated implementation, as given by
icof in Figure 1, is alsoioco correct with respect to the integrated specificationscof . We discuss this in section 4, to illustrate
the compositionality properties discussed there.

3.2. Compositional testing

We now paraphrase the question of compositional testing, discussed in the introduction, as follows: “Given that the compo-
nentsp andq have been tested to beioco-correct (according to their respective specifications), may we conclude that their in-
tegration is alsoioco-correct (according to the integrated specification)?” If the component specifications are LTS’s, the com-
ponent implementations are modeled by IOTS’s, and their integration by parallel composition followed by hiding, this boils
down to the following questions in our formal framework (whereik ∈ IOTS(Ik, Uk) andsk ∈ LTS(Ik, Uk) for k = 1, 2,
with I1 ∩ I2 = U1 ∩ U2 = ∅):
Q1: Givenik ioco sk for k = 1, 2, is it the case thati1 ‖ i2 ioco s1 ‖ s2?
Q2: Giveni1 ioco s1, is it the case that (hide V in i1) ioco (hide V in s1) for arbitraryV ⊆ U1?

If the answer to both questions is “yes”, then we may conclude thatioco is suitable for compositional testing as stated in the
following corollary.

Conjecture 3.1 If ik ∈ IOTS(Ik, Uk) andsk ∈ LTS(Ik, Uk) for k = 1, 2 with I1 ∩ I2 = U1 ∩ U2 = ∅ andV =
(I1 ∩ U2) ∪ (U1 ∩ I2), then

i1 ioco s1 ∧ i2 ioco s2 =⇒ (hide V in i1 ‖ i2) ioco (hide V in s1 ‖ s2) .

We study the above pre-congruence questions in the next section. We will show that the answer to Q1 and Q2 in general
is no. Instead, we can show that the answer to Q1 and Q2 isyesif s1 ands2 are completely specified.

4. Compositionality for synchronization and hiding

In this section we address the questions Q1 and Q2 formulated above (Section 3.2), using the coffee machine example to
illustrate our results.

4.1. Synchronization

The property that we investigate for parallel composition is:if we have two correct component implementations accord-
ing to ioco, then the implementation remains correct after synchronizing the components. It turns out that in general this
property does not hold, as we show in the following example.

Example 4.1 Regard the LTS’s in figure 4. On the left hand side we show the specifications and on the right hand side the
corresponding implementations. The models have the following label sets:s1 ∈ LTS({x}, ∅), i1 ∈ IOTS({x}, ∅), s2 ∈
LTS(∅, {x}), i2 ∈ IOTS(∅, {x}). The suspension traces ofs1 are given byδ∗ ∪ δ∗?xδ∗ and the suspension traces ofs2 are
given by{ε, !x}∪!x!xδ∗. We havei1 ioco s1 andi2 ioco s2.

After we take the parallel composition of the two specifications we gets1 ‖ s2, see figure 4 (the corresponding imple-
mentation isi1 ‖ i2). We see thatout(i1 ‖ i2 after !x) = {!x} 6⊆ out(s1 ‖ s2 after !x) = {δ}; this means that the parallel
composition of the implementations is notioco-correct:i1 ‖ i2 /ioco s1 ‖ s2. 2
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Figure 5: Counter-example to compositionality for hiding; see Example 4.3.

Analysis shows thati1 ioco s1, becauseioco allows underspecification of input actions. However, the semantics of the
parallel composition operator does not take underspecification of input actions into account. Althoughs2 can output a second
x, it cannot do so ins1 ‖ s2, becauses1 cannot input the secondx.

It turns out that if we forbid implicit underspecification, i.e., if the specification explicitly prescribes for any possible input
what the allowed responses are, then we do not have this problem. In fact in that case we have the desired compositionality
property. This property is expressed in the following theorem. For a proof see [13].

Theorem 4.2 Let s1, i1 ∈ IOTS(I1, U1), s2, i2 ∈ IOTS(I2, U2), with I1 ∩ I2 = U1 ∩ U2 = ∅.

i1 ioco s1 ∧ i2 ioco s2 =⇒ i1 ‖ i2 ioco s1 ‖ s2

Our running example (Section 3.1) shows the same problem illustrated in example 4.1. Although the implementations
of the money component and the drink component areioco correct with respect to their specifications, it turns out that the
parallel composition ofimon andidrk is not:

out(imon ‖ idrk after ?1 .00 ·!make coffee) = {!coffee, !error}
out(smon ‖ sdrk after ?1 .00 ·!make coffee) = {!coffee}

Note that the internal signals are still visible as output actions. To turn them into internal actions is the task of thehiding
operator, discussed below.

4.2. Hiding

The property that we investigate for hiding is the following:if we have a correct implementation according toioco, then
the implementation remains correct after hiding (some of the) output actions. It turns out that, as for synchronization, in gen-
eral this property does not hold.

Example 4.3 Consider the implementationi and specifications in Figure 5, both with input set{a} and output set{x, y}.
The suspension traces ofs are{ε}∪?aδ∗∪!xδ∗. We see thati ioco s.

We get the specificationhide {x} in s, and implementationhide {x} in i after hiding the output actionx. After the input
a we now get the following:out(hide {x} in i after a) = {δ, y} 6⊆ out(hide {x} in s after a) = {δ}; in other words
hide {x} in i /ioco hide {x} in s. 2

An analysis of the above example shows thats was underspecified, in the sense that it fails to prescribe how an implemen-
tation should behave after the trace!x?a. The proposed implementationi uses the implementation freedom by having an un-
specifiedy-output after!x?a. However, ifx becomes unobservable due to hiding, then the traces!x?a and?a collapse and
become indistinguishable: inhide {x} in s andhide {x} in i they both masquerade as the trace?a. Nowhide {x} in s ap-
pearsto specify that after?a, only quiescence (δ) is allowed; however,hide {x} in i still has this unspecifiedy-output. In
other words, hiding creates confusion about what part of the system is underspecified.

It follows that if we rule out underspecification, i.e., we limit ourselves to specifications that are IOTS’s then this problem
disappears. In fact, in that case we do have the desired congruence property. This is stated in the following theorem. For a
proof see [13].



Theorem 4.4 If i, s ∈ IOTS(I, U) with V ⊆ U , then:

i ioco s =⇒ (hide V in i) ioco (hide V in s)

5. Demonic completion

We have shown in the previous section thatioco is a pre-congruence for parallel composition and hiding when restricted
to IOTS × IOTS. However, in the original theory [11]ioco ⊆ IOTS × LTS; the specifications are LTS’s. The intu-
ition behind this is thatioco allows underspecification of input actions. In this section we present a function that transforms
LTS’s into IOTS’s in a way that complies with this notion of underspecification. We will show that this leads to a new imple-
mentation relation that is slightly weaker thanioco.

Underspecification comes in two flavors: underspecification of input actions and underspecification of output actions. Un-
derspecification of output actions is always explicit; in an LTS it is represented by a choice between several output ac-
tions. The intuition behind this is that we do not know or care which of the output actions is implemented, as long as at
least one is. Underspecification of input actions is always implicit; it is represented by absence of the respective input ac-
tion in the LTS. The intuition behind underspecification of input actions is that after an unspecified input action we do not
know or care what the behavior of the specified system is. This means that in an underspecified state — i.e., a state reached af-
ter an unspecified input action — every action from the label set is correct, including quiescence. Following [2] we call this
kind of behaviorchaotic.

In translating LTS’s to IOTS’s, we propose to model underspecification of input actions explicitly. Firstly, we model chaotic
behavior through a stateqχ (whereχ stands for chaos) with the property:∀λ ∈ U : qχ

λ=⇒ qχ and∀λ ∈ I : qχ
δ∗·λ===⇒ qχ. Sec-

ondly, we add for every stable stateq (of a given LTS) that is underspecified for an inputa, a transition(q, a, qχ). This turns
the LTS into an IOTS. After [3] we call this proceduredemoniccompletion — as opposed toangeliccompletion, where un-
specified inputs are discarded (modeled by adding self-loop transitions). Note that demonic completion results in an IOTS
that is not strongly convergent. However the constraint of strong convergence only holds for LTS’s.

Definition 5.1 Ξ : LTS(I, U) → IOTS(I, U) is defined by〈Q, I, U, T, q0〉 7→ 〈Q′, I, U, T ′, q0〉, where

Q′ = Q ∪ {qχ, qΩ, q∆}, where qχ, qΩ, q∆ 6∈ Q

T ′ = T ∪{(q, a, qχ) | q ∈ Q, a ∈ I, q
a−−→/ , q

τ−−→/ }
∪{(qχ, τ, qΩ), (qχ, τ, q∆)} ∪ {(qΩ, λ, qχ) | λ ∈ L} ∪ {(q∆, λ, qχ) | λ ∈ I}

Example 5.2 To illustrate the demonic completion of implicit underspecification, we use the money component of sec-
tion 3.1. The LTS specification of the money component is given in the top left corner of Figure 6. The IOTS that mod-
els our chaos property is given in the bottom left corner. For every stable state of the specification that is underspecified for
an input action, the functionΞ adds a transition with that input action to stateqχ. For example, every state is underspeci-
fied for input actionerror , so we add a transition from every state toqχ for error . The statesq1 andq2 are underspecified
for 0.50 and1.00, so we add transitions for these inputs fromq1 andq2 to qχ. The resulting demonically completed specifi-
cation is given on the right hand side of Figure 6. 2

An important property of demonic completion is that it only adds transitions fromstablestates with underspecified inputs
in the original LTS toqχ. Moreover, it does not delete states or transitions. Furthermore, the chaotic IOTS acts as a kind of
sink: once one of the added states (qχ, qΩ or q∆) has been reached, they will never be left anymore.

Proposition 5.3 Let s ∈ LTS(I, U). ∀σ ∈ L∗
δ , q

′ ∈ Qs : s
σ=⇒ q′⇔Ξ(s) σ=⇒ q′

We use the notation “ioco ◦ Ξ” to denote that before applyingioco, the LTS specification is transformed to an IOTS
by Ξ; i.e., i(ioco ◦ Ξ)s⇔ i ioco Ξ(s). This relation is slightly weaker thanioco. This means that previously conformant
implementations are still conformant, but it might be that previously non-allowed implementations are allowed with this new
notion of conformance.

Theorem 5.4 ioco ⊆ ioco ◦ Ξ

Note that the opposite is not true i.e.,i (ioco ◦ Ξ) s /=⇒ i ioco s (as the counter-examples of section 4 show). Further-
more this property is a consequence of our choice of the demonic completion function. Other forms of completion, such as
angelic completion, result in variants ofioco which are incomparable to the original relation.
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Figure 6: Demonic completion of an LTS specification.

Testing The testing scenario is now such that an integrated system can be tested by comparing the individual components to
their demonically completedspecifications. If the components conform, then the composition of implementations also con-
forms to the composition of the demonically completed specifications.

Corollary 5.5 Let s1, s2 ∈ LTS(I, U) andi1, i2 ∈ IOTS(I, U)

i1 ioco Ξ(s1)∧ i2 ioco Ξ(s2) =⇒ i1 ‖ i2 ioco Ξ(s1) ‖Ξ(s2)

Test restriction A disadvantage of demonic completion is that it destroys information about underspecified behavior. On the
basis of the underspecified LTS, one can conclude that traces including an unspecified input need not be tested because every
implementation will always pass; after completion, however, this is no longer visible, and so automatic test generation will
yield many spurious tests.

In order to avoid this, we characterizeioco ◦ Ξ directly over LTS’s. In other words, we extend the relation fromIOTS ×
IOTS to IOTS × LTS, in such a way as to obtain the same testing power but avoid these spurious tests. For this purpose,
we restrict the number of traces after which we test.

Definition 5.6 Let s ∈ LTS(I, U).

Utraces(s) =def {σ ∈ L∗
δ | s

σ=⇒ ∧ (6 ∃q′, σ1 · a · σ2 = σ : a ∈ I ∧ s
σ1==⇒ q′ ∧ q′

a

=6⇒ )}

Intuitively, theUtraces are theStraces without the underspecified traces. A traceσ is underspecified if there exists a prefix
σ1 · a of σ, with a ∈ I, for whichs

σ1==⇒ q′ andq′ /
a=⇒ .

We useiocoU as a shorthand foriocoUtraces . In the following proposition we state thatiocoU is equivalent toioco ◦ Ξ.
This equivalence is quite intuitive.ioco ◦ Ξ uses extra states to handle underspecified behavior, which are constructed so as
to display chaotic behavior. IfΞ(s) reaches such a state, then all behavior is considered correct.iocoU , on the other hand,
circumvents underspecified behavior, because it usesUtraces.

Theorem 5.7 iocoU = ioco ◦ Ξ

6. Conclusions

The results of this paper imply thatioco can be used for compositional testing if the specifications are modeled as IOTS’s;
see theorems 4.2 and 4.4.

We proposed the functionΞ to complete an LTS specification; i.e., transform an LTS to an IOTS in a way that captures
our notion of underspecification. This means that the above results become applicable and theioco theory with completed
specifications can be used for compositional testing. The resulting relation is slightly weaker than the originalioco relation;



previously conformant implementations are still conformant, but it might be that previously non-conformant implementations
are allowed under the modified notion of conformance.

Testing after completion is in principle (much) more expensive since, due to the nature of IOTS’s, even the completion
of a finite specification already displays infinite testable behavior. As a final result of this paper, we have presented the im-
plementation relationiocoU . This relation enables us to use the original component specifications,beforecompletion, for
compositional testing (see theorem 5.7). Note that the correctness of theintegratedsystem is still only guaranteed with re-
spect to thecompletedcomponent specifications; thus, completion is still an unavoidable step.

The insights gained from these results can be recast in terms ofunderspecification. ioco recognizes two kinds of under-
specification: omitting input actions from a state (which implies adon’t care if an input does occur) and including multi-
ple output actions from a state (which allows the implementation to choose between them). It turns out that the first of these
two is not compatible with parallel composition and hiding.

Testing in contextWe have discussed the pre-congruence properties mainly in the context of compositional testing, but the
results can easily by transposed to testing in context. Suppose an implementation under testi is tested via a contextc. The
tester interacts withc, andc interacts withi; the tester cannot directly interact withi. Then we haveIi ⊆ Uc andUi ⊆ Ic,
andLi is not observable for the tester, i.e., hidden. The tester observes the system as an implementation in a context:C[i] =
hide (Ii ∩ Uc) ∪ (Ic ∩ Ui) in c ‖ i. Now theorem 4.2 and 4.4 directly lead to the following corollary for testing in context.

Corollary 6.1 Let s, i ∈ IOTS occur in test contextC[ ]. C[i] /ioco C[s] =⇒ i /ioco s

Hence, an error detected while testing the implementation in its context is a real error of the implementation, but not the
other way around: an error in the implementation may not be detectable when tested in a context. This holds of course under
the assumption that the test context is error free.

Relevance.We have shown a way to handle underspecification of input actions when testing communicating components
with the ioco theory. This idea is new for LTS testing. It is inspired by [3] and work done on partial specifications in FSM
testing [8].

Furthermore we have established a pre-congruence result forioco for parallel composition and hiding. This is important
because it shows thatioco is usable for compositional testing and testing in context. It establishes a formal relation between
the components and the integrated system. As far as we know this result is new for both LTS testing and FSM testing. In
FSM testing there are so called Communicating FSM’s to model the integration of components. However we have not found
any relevant research on the relation between conformance with respect to the CFSM and conformance with respect to its
component FSM’s.

Traditionally conformance testing is seen as the activity of checking the conformance of a single black box implementa-
tion against its specification. The testing of communicating components is often considered to be outside the scope of con-
formance testing. The pre-congruence result shows that theioco theory can handle both problems in the same way.

Future work. The current state of affairs is not yet completely satisfactory, because the notion of composition that we require
is not defined on general labeled transition systems but just on IOTS’s. Testing against IOTS’s is inferior, in that these models
do not allow the “input underspecification” discussed above: for that reason, testing against an IOTS cannot take advantage of
information about “don’t care” inputs (essentially,no testing is required after a “don’t care” input, since by definition every
behavior is allowed). We intend to solve this issue by extending IOTS’s with a predicate that identifies our added chaotic
states. Testing can stop when the specification has reached a chaotic state.

AcknowledgmentsWe want to thank D. Lee and A. Petrenko for sharing their knowledge of FSM testing and for their in-
sightful discussions.
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