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Abstract

Compositional testingoncerns the testing of systems that consist of communicating components which can also be tested
in isolation. Examples are component based testing and interoperability testing. We show that, with certain restrictions, the
ioco-test theory for conformance testing is suitable for compositional testing, in the sense that the integration of fully con-
formant components is guaranteed to be correct. As a consequence, there is no need to re-test the integrated system for con-
formance.

This result is also relevant fdesting in contextsince it implies that every failure of a system embedded in a test context
can be reduced to a fault of the system itself.

1. Introduction

In this paper we study formal testing based on iteo-test theory. This theory works on labeled transition systems
(LTS) [11,[12]. The naméoco, which stands fomput/output conformangeefers to the implementation relation (i.e., no-
tion of correctness) on which the theory and the test generation algorithm have been built. A number of tools are based on
theioco theory, among which there arev [4], TESTGEN [5] and TorX [1].
Two open issues in testing theory in general, anditi-theory in particular, areompositional testingndtesting in
context For instance, for the testing theory based on Finite-State-Machines (FSM) this issue has been siudied in [9].
Compositional testingonsiders the testing of communicating components that together form a larger system. An example
is component based testing, i.e., integration testing of components that have already been tested separately. An example from
the telecom sector is interoperability testing, i.e., testing if systems from different manufacturers, that should comply with a
certain standard, work together; for example GSM mobile phones. The question is what can be concluded from the individual
tests of the separate components, and what should be (re)tested on the integration or system level. With the current theory it
is unclear what the relation between the correctness of the components and the integrated system is.
Another scenario, with similar characteristicstasting in contextThis refers to the situation that a tester can only access
the implementation under test througteat contexf6, [7,[10]. The test context interfaces between the implementation under
test and the tester. As a consequence the tester can only indirectly observe and controbidéhe test context. This makes
testing weaker, in the sense that there are fewer possibilities for observation and contrabaf. théth testing in context,
the question is whether faults in theT can be detected by testing the compositionuaf and test context, and whether a
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failure of this composition always indicates a fault of the. This question is the converse of compositional testing: when
testing in context we wish to detect errors in the — a component — by testing it in composition with the test context,
whereas in compositional testing we wish to infer correctness of the integrated system from conformance of the individual
components.

This paper studies the above mentioned compositionality propertiesoffor two operations on labeled transition sys-
tems: parallel composition and hiding.ibco has this compositional property for these operations, it follows that correct-
ness of the parts (the components) implies correctness of the whole (the integrated system), or that a fault in thetwhole (
and test context) implies a fault in the componeuatr{. This compositionality property is formally called a pre-congruence.

We show thaioco is a pre-congruence for parallel composition and hiding in the absence of underspecification of input
actions. One way to satisfy this condition is to only allow specifications whicinprg enabledAnother way is to make the
underspecification explicit bgompletion We show that, in particulademonic completiors suitable for this purpose. As a
final result we show how to use the original (uncompleted) specifications and still satisfy the pre-congruence property. This
leads to a new implementation relation, baptitedo ;; which is slightly weaker thaioco.

This paper has two main results. First we show a way to handle underspecification of input actions when testing communi-
cating components with theco theory. This idea is new for LTS testing. It is inspired by [3] and similar work done in FSM
testing [8]. Second we establish a formal relation between the components and the integrated system. As far as we know this
result is new for both LTS testing and FSM testing.

Overview. The next section recalls some basic concepts and definitions about transition systeimsoar@kctior] B sets

the scene and formalizes the problems of compositional testing and testing in context. [Jection 4 studies the pre-congruence
properties ofioco for parallel composition and hiding. Sectioh 5 discusses underspecification, and approaches to complete
specifications with implicit underspecification. Secfi¢n 6 concludes with some final remarks and an assessment of the results.
For a full version of this paper with all the proofs, we referto|[13].

2. Formal preliminaries

This section recalls the aspects of the theory behiag that are used in this paper; seel[11] for a more detailed exposi-
tion.

Labeled Transition SystemsA labeled transition system (LTS) description is defined in terms of states and labeled transi-
tions between states, where the labels indicate what happens during the transition. Labels are taken from alglaal set

use a special label ¢ L to denote an internal action. For arbitratyC L, we useL. as a shorthand fak U {7}. We devi-

ate from the standard definition of labeled transition systems in that we assume the label set of an LTS to be partitioned in an
input and an output set.

Definition 2.1 A labeled transition systeis a 5-tuple(Q, I, U, T, qo) whereQ is a non-empty countable setsthtes I C L
is the countable set afiput labels U C L is the countable set @futput labelswhich is disjoint from/; T C Q x (JUU U
{T}) x Q is a set of triples, th&ansition relation ¢, € Q is theinitial state

We useL as shorthand for the entire label sét £ I U U); furthermore, we us€),,, I, etc. to denote the components of

an LTSp. We commonly write; 2> ¢ for (¢, A\, q’) € T. Since the distinction between inputs and outputs is important, we
sometimes use a question mark before a label to denote input and an exclamation mark to denote output. We denote the class
of all labeled transition systems ovEandU by L7S(1,U). We represent a labeled transition system in the standard way,

by a directed, edge-labeled graph where nodes represent states and edges represent transitions.

A state that cannot do an internal action is cabéable A state that cannot do an output or internal action is caiigie
escentWe use the symbdl (¢ L.) to represent quiescence: thatjis2> p stands for the absence of any transitjor*> p’
with A € U... For an arbitrany C L., we useL; as a shorthand fat U {0}.

An LTS is calledstrongly responsivé it always eventually enters a quiescent state; in other words, if it does not have
any infiniteU.-labeled paths. For technical reasons we resffic§ (7, U) to strongly responsive transition systems. Systems
that are not strongly responsive may show live-locks (or develop live-locks by hiding actions). So one can argue that it is
a favorable property if a specification is strongly responsive. However, from a practical perspective it would be nice if the
constraint can be lessened. This is probably possible, but needs further research.

A traceis a finite sequence of observable actions. The set of all traceslo{€rL) is denoted byL*, ranged over by
o, with e denoting the empty sequence.df, o, € L*, thenoy-o; is the concatenation af; andoy. We use the stan-



dard notation with single and double arrows for trageg2-%~, ¢ denoteg; -“& - .. %=, ¢/, ¢ == ¢’ denotes; —-T ¢’ and
g =—===2n ; denoteg) = -4 = ... o, = ¢/ (Wherea; € L,s).

We will not always distinguish between a labeled transition system and its initial state. We will identify the preeess
(Q,1,U,T,qo) with its initial stateqy, and we write, for example, == ¢, instead ofyy == q; .

Input-output transition systems. An input-output transition systefhOTS) is a labeled transition system that is completely
specified for input actions. The class of input-output transition systems with input actidrsnid output actions i@/ is
denoted by O7S(I,U) (C LTS(I,U)). Notice that we do not require IOTS'’s to be strongly responsive.

Definition 2.2 An input-output transition system= (Q, I, U, T, qo) is a labeled transition system for which all inputs are
enabled in all stateslg € Q,a € I : ==

Composition of labeled transition systemsThe integration of components can be modeled algebraically by putting the
components in parallel while synchronizing their common actions, possibly with internalizing (hiding) the synchronized ac-
tions. In process algebra, the synchronization and internalization are typically regarded as two separate operations. The syn-
chronization of the processgsndg is denoted by || g. The internalization of a label s&tin proces, orhiding V' in p as

it is commonly called, is denoted hide V' in p. Below we give the formal definition.

Definition 2.3 Fori = 1,2 letp; = (Q;, I;, U;, T;, p;) be a transition system.
olf [ NILb=UNU; = ] thenp1 ||p2 =def <Q,I, U, T7p1 ||p2> where

Q={qllelacQi,qc@Qs};

oI = (Il \ Ug) @] (Ig\Ul),

o U= U1 U UQ.

o T'is the minimal set satisfying the following inference rulgsq L.):

[¢]
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o If V. .C Uy, thenhide V in p1 =qer (@, I1,U; \ V, T, hide V in p;) where

o @=1{hideVing | q € Q1};
o T'is the minimal set satisfying the following inference rulgpsq L. ):

a4, pgV F hideVing +5hideV ing]
¢1-%q, peV + hideVing ShideVing,

Note that these constructions are opbytial: there are constraints on the input and output sets. Moreover, parallel com-
position may give rise to an LTS that is not strongly responsive, even if the components are. For the time being, we do not try
to analyze this but implicitly restrict ourselves to cases where the parallel compasgioongly responsive (thus, this is an-
other source of partiality of the construction).

In this paper we restrict ourselves to binary parallel composition. N-ary parallel composition may be an interesting ex-
tension. One may wonder however what this means in our input output setting, since an output action is uniquely identified
by its sender. From this perspective only the synchronization of many receivers to one sender (broadcast) seems an interest-
ing extension.

Proposition 2.4 Letp, q € LTS(I;,U;) fori = p,q, with I, N I, = U, N U, = 0, and letV C U,,.
1. If p|| q is strongly responsive then|| ¢ € LTS((I, \ Uy) U (I; \ Up),U, U Uy); moreoverp| g € ZOTS if p,q €
Z0O7S.
2. hide Vinp € LTS(I,,U, \ V); moreoverhide V inp € ZO7S if p € ZOTS.

Conformance. The testing scenario on whidlaco is based assumes that two things are given: 1) An LTS constituting a
specification of required behavior. And 2) an implementation under test. We treatrtttas a black box. In order to reason
about it we assume it can be modeled as an IOTSuyars an object in the real world) . This assumption is referred to as the
test hypothesis [6]. We want to stress that we do not ne&dvethis model when testing theT. We onlyassumehat the
implementatiorbehavess an I0OTS.

Given a specification and an (assumed) model of ther 4, the relationi ioco s expresses thatconforms tas. Whether
this holds is decided on the basis of thespension tracesf s: it must be the case that, after any such tracevery output



0.50, 1.00 make_coffee coffee, tea

0.50,1.00 mon error drk

Scof = hide {make_coffee, make_tea, error} in spop || Sark
icof = hide {make_coffee, make_tea, error} in iy,on || tark

Figure 1: Architecture of coffee machine in components.

action (and also quiescence) thas capable of should be allowed accordingstd his is formalized by defining after o
(the set of states that can be reacheg &fter the suspension traed, out(p) (the set of output and-actions ofp) and
Straces(p) (the suspension traces ©f.

Definition 2.5 Letp € L7S(1,U), let P C Q, be aset of states i leti € ZOTS(I,U), s € LTS(I,U) and leto € Lj.
1. pafter o =get { P | p=p }
2. out(p) =qet {2z €U |p-5}U{d|p->}
3. out(P) =qet U { out(p) [p€ P}
4. Straces(p) =dget {0 € Lj | p=1}

The following defines the implementation relatiwto, modulo a functionF that generates a set of test-traces from a spec-
ification. In this definitior2X denotes the powerset &f, for an arbitrary sef.

Definition 2.6 Given a functionF : L7S(I,U) — 2%, we defindiocor C ZOTS(I,U) x LTS(I,U) as follows:
iiocor s <= Vo € F(s): out(i after o) C out(s after o)

S04 i0COgtaces S MeEANSYo € Straces(s) : out(i after o) C out(s after o). We useioco as an abbreviation for
i0Cogiraces- FOr more details aboudbdco we refer to[[11].

3. Approach

In this section we want to clarify compositional testing with the formal framework presented in the previous section. The
consequences for testing in context will be discussed in the final section.

We study systems that consist of communicating components. These components can be tested individually and while
working together (in the case of testing in context the components arethend its test context). The behavior of such a
system is described by the parallel composition of the individual transition systems. Output actions of one component that
are in the input label set of another componentsamechronizedresulting in a single, internal transition of the overall sys-
tem. Actions of a component that are not in the label set of another component are not synchronized, resulting in a single ob-
servable transition of the overall system. This gives rise to the scenario depicted in[Figure 1. The figure will be explained in
the next example.

3.1. Example

To illustrate compositional testing, we use two components of a coffee machine: a “money compamoenthat handles
the inserted coins and a “drink componerdtk) that takes care of preparing and pouring the drinks, see Higure 1.

The money componentccepts coins c€1 and of€0.50 as input from the environment. After insertion &€8.50 coin
(respectively€1 coin), the money component orders the drink component to make tea (respectively coffee).

The drink component interfaces with the money component and the environment. If the money component orders it to
make tea (respectively coffee) it outputs tea (respectively coffee) to the environment. If anything goes wrong in the drink
making process, the component gives an error signal.
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coffee /'\ tea

?1.00 ?0.50 Icoffed Tégf?gg ?rtr;%ke Itea
?make coffé ?make coffee
?make tea \/!error ?make tea
?make ?make
coffee tea

o ?make ?make
money component specification coffee tea

drink component specification

Figure 2: Specification of money and drink components as LTS’s.

The coffee machines the parallel composition of the money component and the drink component, in which the “make
coffee” command, the “make tea” command and the “error” signal are hidden. One can think of the parallel composition as
establishing the connection between the money component and the drink component, whereas hiding means that the commu-
nication between the components is not observable anymore; only communication with the environment can be observed.

Models In Figure[2 we show the behavioral specification of the money compangitand the drink component;,, as

LTS’s. Note that the money component is underspecified foetha input label and that the drink component cannot re-
cover from an error state, and while in the error state it cannot produce tea or coffee[Figure 3 shows implementation models
of the money component,,,,,, and the drink component,,,.. We have used transitions labeled withas an abbreviation

for all the non-specified input actions from the alphabet of the component. The money component has input Ighel set,

{0.50, 1.00, error}, output label set, ., = {make_coffee, make_tea, 0.50,1.00}; Smon € LTS (Imons Umon)s tmon €

ZOTS (Imon, Umon)- For the drink componerty,, = {make_coffee, make_tea} andU 4,4, = {coffee, tea, error} are the in-

put and output label sets;,;, € LTS (Iark, Udrk)s tark € ZOTS (Igrk, Ugrk)-

In the implementations of the components we choose to improve upon the specification, by adding functionality. This is
possible sincéoco allows partial specifications. Implementations are free to make use of the underspecification. The extra
functionality ofi,,,, compared to its specification,,,, is that it can handle error signals: it reacts by returrfd1g00.7 4,
is also changed with respect to its specificatig,: making tea never produces an error signal. Since implementations are
input enabled, we have chosen that all non specified inputs are ignored, i.e., the system remains in the same state.

Z‘mon \ Z‘drk \

Imak Imake /‘\
coffe 21.00/ \70.50 tea ?mf:fake ?Take
/CO ee ea

11.00 ?error

A

money component implementation drink component implementation

Figure 3: Implementation of the money and drink components as IOTS's.
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Figure 4: Counter example to compositionality for parallel composition; see Example 4.1.

i1

We havei,,,, ioco s,,.n, andig ioco sg. The question now is whether the integrated implementation, as given by
feof IN Figure[], is alsdoco correct with respect to the integrated specificatigr. We discuss this in secti@\ 4, to illustrate
the compositionality properties discussed there.

3.2. Compositional testing

We now paraphrase the question of compositional testing, discussed in the introduction, as follows: “Given that the compo-
nentsp andq have been tested to beco-correct (according to their respective specifications), may we conclude that their in-
tegration is als@oco-correct (according to the integrated specification)?” If the component specifications are LTS's, the com-
ponent implementations are modeled by I0OTS’s, and their integration by parallel composition followed by hiding, this boils
down to the following questions in our formal framework (whéfec ZO7S (1, Uy) andsy, € LTS (I, Uy) for k = 1,2,
withl; NI, =U;NU; = @)

Q1: Giveniy ioco si for k = 1,2, is it the case that, || i2 ioco s; || $2?
Q2: Giveni; ioco s1, is it the case thatide V in ;) ioco (hide V in s;) for arbitraryV C U;?

If the answer to both questions is “yes”, then we may concludeidieat is suitable for compositional testing as stated in the
following corollary.

Conjecture 3.1 If iy, € ZOTS(I,Ux) and sy € LTSIy, Uy) fork = 1,2with Iy N I, = U; N Uy = P andV =
(Il n Ug) U (U1 n Ig), then

i1 ioco 1 Aig ioco s; = (hide V in 4y ||i2) ioco (hide Vin sq || s2) .

We study the above pre-congruence questions in the next section. We will show that the answer to Q1 and Q2 in general
is no. Instead, we can show that the answer to Q1 and @&s8 s; andss are completely specified.

4. Compositionality for synchronization and hiding

In this section we address the questions Q1 and Q2 formulated above ($edtion 3.2), using the coffee machine example to
illustrate our results.

4.1. Synchronization

The property that we investigate for parallel compositiorifisve have two correct component implementations accord-
ing to ioco, thenthe implementation remains correct after synchronizing the components. It turns out that in general this
property does not hold, as we show in the following example.

Example 4.1 Regard the LTS's in figurg] 4. On the left hand side we show the specifications and on the right hand side the
corresponding implementations. The models have the following labelssets: £L7S({z},0),i1 € ZOTS({x},0),s2 €
LTS(0,{z}),i2 € ZOTS(D,{z}). The suspension traces af are given byy* U 6*?xz5* and the suspension tracessgfare
given by{e, lz}Ulzlzd*. We havei; ioco s; andis ioco s;.

After we take the parallel composition of the two specifications wesgéts,, see figuré:]4 (the corresponding imple-
mentation isiy || i2). We see thabut (i || iz after lx) = {lz} € out(sy || s2 after lz) = {§}; this means that the parallel
composition of the implementations is rieico-correct:i; || ia iofo s || s2. O
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Figure 5: Counter-example to compositionality for hiding; see Exafnple 4.3.

Analysis shows that; ioco s, becauséoco allows underspecification of input actions. However, the semantics of the
parallel composition operator does not take underspecification of input actions into account. Akhoagloutput a second
x, it cannot do so i || s, because; cannot input the second

It turns out that if we forbid implicit underspecification, i.e., if the specification explicitly prescribes for any possible input
what the allowed responses are, then we do not have this problem. In fact in that case we have the desired compositionality
property. This property is expressed in the following theorem. For a proof see [13].

Theorem 4.2 Letsl,il S IOTS(Il, Ul), S9,19 € IOTS(IQ, Ug), with LnNnlhb=U;NU; = 0.
i1 i0co $1 Aig i0co s5 = i1 |2 ioco s1 || 2

Our running example (Sectign B.1) shows the same problem illustrated in example 4.1. Although the implementations
of the money component and the drink componentiat® correct with respect to their specifications, it turns out that the
parallel composition of,,,,,, andi g, is not:

out (imon || tark after 71.00-!make_coffeec) = {lcoffee,!error}
out(Smon || Sark after 71.00-!make_coffee) = {lcoffee}

Note that the internal signals are still visible as output actions. To turn them into internal actions is the tagkdifithe
operator, discussed below.

4.2. Hiding

The property that we investigate for hiding is the followiifgwe have a correct implementation accordindgdoo, then
the implementation remains correct after hiding (some of the) output actions. It turns out that, as for synchronization, in gen-
eral this property does not hold.

Example 4.3 Consider the implementaticnand specification in Figure[$, both with input sefa} and output sefz, y}.
The suspension traces ofire{e}U?ad*Ulzd*. We see that ioco s.

We get the specificatiohide {z} in s, and implementatiohide {z} in ¢ after hiding the output action. After the input
a we now get the followingout(hide {z} in i after a) = {J,y} € out(hide {z} in s after a) = {d}; in other words
hide {z} in‘ ioto hide {z} in s. O

An analysis of the above example shows thatas underspecified, in the sense that it fails to prescribe how an implemen-
tation should behave after the trda€a. The proposed implementatioruses the implementation freedom by having an un-
specifiedy-output afterlaz?a. However, ifz becomes unobservable due to hiding, then the tracksand?a collapse and
become indistinguishable: lide {«} in s andhide {z} in i they both masquerade as the trdeeNow hide {z} in s ap-
pearsto specify that aftefa, only quiescenced] is allowed; howeverhide {z} in i still has this unspecifieg-output. In
other words, hiding creates confusion about what part of the system is underspecified.

It follows that if we rule out underspecification, i.e., we limit ourselves to specifications that are IOTS’s then this problem
disappears. In fact, in that case we do have the desired congruence property. This is stated in the following theorem. For a
proof seel[183].



Theorem 4.4 1f i,s € ZOTS(I,U) with V C U, then:

iiocos = (hideV ini) ioco (hide V in s)

5. Demonic completion

We have shown in the previous section ttato is a pre-congruence for parallel composition and hiding when restricted
to ZOTS x ZOTS. However, in the original theory [1libco C ZOTS x L7S; the specifications are LTS’s. The intu-
ition behind this is thatoco allows underspecification of input actions. In this section we present a function that transforms
LTS’s into IOTS’s in a way that complies with this notion of underspecification. We will show that this leads to a new imple-
mentation relation that is slightly weaker tharco.

Underspecification comes in two flavors: underspecification of input actions and underspecification of output actions. Un-
derspecification of output actions is always explicit; in an LTS it is represented by a choice between several output ac-
tions. The intuition behind this is that we do not know or care which of the output actions is implemented, as long as at
least one is. Underspecification of input actions is always implicit; it is represented by absence of the respective input ac-
tion in the LTS. The intuition behind underspecification of input actions is that after an unspecified input action we do not
know or care what the behavior of the specified system is. This means that in an underspecified state — i.e., a state reached af-
ter an unspecified input action — every action from the label set is correct, including quiescence. Following [2] we call this
kind of behaviorchaotic

Intranslating LTS's to IOTS’s, we propose to model underspecification of mput actions explicitly. Flrstlykwe model chaotic
behavior through a statg, (wherey stands for chaos) with the propertya € U : ¢, 2 gy andvi € I : ¢, —= ¢q,,. Sec-
ondly, we add for every stable statéof a given LTS) that is underspecified for an inpyita transition(q, a, g, ). This turns
the LTS into an I0TS. After [3] we call this procedulemoniccompletion — as opposed &mgeliccompletion, where un-
specified inputs are discarded (modeled by adding self-loop transitions). Note that demonic completion results in an IOTS
that is not strongly convergent. However the constraint of strong convergence only holds for LTS'’s.

Definition 5.1 E: LTS(I,U) — ZOTS(I,U) is defined byQ, I, U, T, qo) — (Q', I,U,T’, q0), where

Q/ = QU{QquQaQA}» where Qx> 4Q,9A ¢Q

T = T U{(ga4q)lqcQaclg—F q—F}
U{(qxaTa QQ)’(QXaTa QA)}U{(QQ7>\aQX) | Ae L} U {(QA7>\;QX) | Ae I}

Example 5.2 To illustrate the demonic completion of implicit underspecification, we use the money component of sec-
tion[3.1. The LTS specification of the money component is given in the top left corner of [Figure 6. The I0TS that mod-
els our chaos property is given in the bottom left corner. For every stable state of the specification that is underspecified for
an input action, the functiol adds a transition with that input action to state For example, every state is underspeci-

fied for input actionerror, so we add a transition from every stategtofor error. The stateg; andg, are underspecified

for 0.50 and1.00, so we add transitions for these inputs frgimandg to ¢,. The resulting demonically completed specifi-
cation is given on the right hand side of Fig[ife 6. |

An important property of demonic completion is that it only adds transitions Btainlestates with underspecified inputs
in the original LTS tog,.. Moreover, it does not delete states or transitions. Furthermore, the chaotic IOTS acts as a kind of
sink: once one of the added stateg,(gn Or ga) has been reached, they will never be left anymore.

Proposition 5.3 Lets € LTS(I,U).Yo € L%, ¢ € Qs : s==¢ & =(s) == ¢

We use the notationiéco o =" to denote that before applyinco, the LTS specification is transformed to an I0TS
by =; i.e.,i(ioco o E)s < i ioco H(s). This relation is slightly weaker thaimco. This means that previously conformant
implementations are still conformant, but it might be that previously non-allowed implementations are allowed with this new
notion of conformance.

Theorem 5.4 ioco C iocoo =

Note that the opposite is not true i.e(joco o Z) s =% i ioco s (as the counter-examples of sec{idn 4 show). Further-
more this property is a consequence of our choice of the demonic completion function. Other forms of completion, such as
angelic completion, result in variants fco which are incomparable to the original relation.
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Figure 6: Demonic completion of an LTS specification.

Testing The testing scenario is now such that an integrated system can be tested by comparing the individual components to
their demonically completedpecifications. If the components conform, then the composition of implementations also con-
forms to the composition of the demonically completed specifications.

Corollary 5.5 Letsy, sy € LTS(I,U) andiy,is € ZOTS(1,U)

i1 ioco Z(s1) Nig ioco E(sg) = i1 || iz ioco E(s1) || E(s2)

Test restriction A disadvantage of demonic completion is that it destroys information about underspecified behavior. On the
basis of the underspecified LTS, one can conclude that traces including an unspecified input need not be tested because every
implementation will always pass; after completion, however, this is no longer visible, and so automatic test generation will
yield many spurious tests.

In order to avoid this, we characterizeco o = directly over LTS’s. In other words, we extend the relation fld@7S x
TOTSt0ZOTS x LTS, in such a way as to obtain the same testing power but avoid these spurious tests. For this purpose,
we restrict the number of traces after which we test.

Definition 5.6 Lets € LTS(I,U).
Utraces(s) =qot {0 € Ly | s== A (B¢ ,01-a-0a=0:a€INs==>¢ N =~)}

Intuitively, the Utraces are theStraces without the underspecified traces. A tracés underspecified if there exists a prefix
o1 -a of o, with a € I, for whichs == ¢’ andq’ =% .

We useiocoy as a shorthand fdbco y44ces- In the following proposition we state thiaico; is equivalent tdoco o E.
This equivalence is quite intuitivéoco o = uses extra states to handle underspecified behavior, which are constructed so as
to display chaotic behavior. E(s) reaches such a state, then all behavior is considered cdeeoty, on the other hand,
circumvents underspecified behavior, because it GBesces.

Theorem 5.7 iocoy = ioco o E

6. Conclusions

The results of this paper imply thiico can be used for compositional testing if the specifications are modeled as IOTS’s;
see theorenis 4.2 ahd 4.4.

We proposed the functioi to complete an LTS specification; i.e., transform an LTS to an IOTS in a way that captures
our notion of underspecification. This means that the above results become applicable iaxd ttheory with completed
specifications can be used for compositional testing. The resulting relation is slightly weaker than the iaiégimalation;



previously conformant implementations are still conformant, but it might be that previously non-conformant implementations
are allowed under the modified notion of conformance.

Testing after completion is in principle (much) more expensive since, due to the nature of IOTS’s, even the completion
of a finite specification already displays infinite testable behavior. As a final result of this paper, we have presented the im-
plementation relatiofioco ;. This relation enables us to use the original component specificabiefarecompletion, for
compositional testing (see theorém|5.7). Note that the correctness ioteéheatedsystem is still only guaranteed with re-
spect to theompleteccomponent specifications; thus, completion is still an unavoidable step.

The insights gained from these results can be recast in termsdafrspecificationioco recognizes two kinds of under-
specification: omitting input actions from a state (which impliedoa'’t careif an input does occur) and including multi-
ple output actions from a state (which allows the implementation to choose between them). It turns out that the first of these
two is not compatible with parallel composition and hiding.

Testing in contextWe have discussed the pre-congruence properties mainly in the context of compositional testing, but the
results can easily by transposed to testing in context. Suppose an implementation undsrtésted via a context The

tester interacts witla, andc interacts withi; the tester cannot directly interact withThen we havd; C U, andU; C I,

andL; is not observable for the tester, i.e., hidden. The tester observes the system as an implementation in &[¢oatext:
hide (I; N Uc) U (I. N U;) in ¢ || i. Now theorenf 4]2 ar{d 4.4 directly lead to the following corollary for testing in context.

Corollary 6.1 Lets,i € ZOTS occur in test contex@[_]. C[i] ioto C[s] = i iofo s

Hence, an error detected while testing the implementation in its context is a real error of the implementation, but not the
other way around: an error in the implementation may not be detectable when tested in a context. This holds of course under
the assumption that the test context is error free.

Relevance.We have shown a way to handle underspecification of input actions when testing communicating components
with theioco theory. This idea is new for LTS testing. It is inspired by [3] and work done on partial specifications in FSM
testing [8].

Furthermore we have established a pre-congruence resiitidorfor parallel composition and hiding. This is important
because it shows thédco is usable for compositional testing and testing in context. It establishes a formal relation between
the components and the integrated system. As far as we know this result is new for both LTS testing and FSM testing. In
FSM testing there are so called Communicating FSM'’s to model the integration of components. However we have not found
any relevant research on the relation between conformance with respect to the CFSM and conformance with respect to its
component FSM’s.

Traditionally conformance testing is seen as the activity of checking the conformance of a single black box implementa-
tion against its specification. The testing of communicating components is often considered to be outside the scope of con-
formance testing. The pre-congruence result shows thabtlwetheory can handle both problems in the same way.

Future work. The current state of affairs is not yet completely satisfactory, because the notion of composition that we require
is not defined on general labeled transition systems but just on IOTS’s. Testing against IOTS’s is inferior, in that these models
do not allow the “input underspecification” discussed above: for that reason, testing against an IOTS cannot take advantage of
information about “don’t care” inputs (essentialhg testing is required after a “don’t care” input, since by definition every
behavior is allowed). We intend to solve this issue by extending IOTS’s with a predicate that identifies our added chaotic
states. Testing can stop when the specification has reached a chaotic state.

AcknowledgmentsWe want to thank D. Lee and A. Petrenko for sharing their knowledge of FSM testing and for their in-
sightful discussions.
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