
How to find lots of bugs by checking program
belief systems

Dawson Engler
David Chen, Seth Hallem, Ben Chelf, Andy Chou

Stanford University

Presentedy by Baohua Wu

Context: finding OS bugs w/ compilers
Systems have many ad hoc correctness rules
– “acquire lock l before modifying x”, “cli() must be paired

with sti(),” “don’t block with interrupts disabled”
– One error = crashed machine

If we know rules, can check with extended compiler
– Rules map to simple source constructs
– Use compiler extensions to express them

– Nice: scales, precise, statically find 1000s of errors

lock_kernel();
if (!de->count) {

printk("free!\n");
return;

}
unlock_kernel();

Linux
fs/proc/
inode.c

GNU C compiler

Lock checker “missing
unlock!”

Goal: find as many serious bugs as possible
Problem: what are the rules?!?!
– 100-1000s of rules in 100-1000s of subsystems.
– To check, must answer: Must a() follow b()? Can foo()

fail? Does bar(p) free p? Does lock l protect x?
– Manually finding rules is hard. So don’t. Instead infer

what code believes, cross check for contradiction
Intuition: how to find errors without knowing truth?
– Contradiction. To find lies: cross-examine. Any

contradiction is an error.
– Deviance. To infer correct behavior: if 1 person does X,

might be right or a coincidence. If 1000s do X and 1
does Y, probably an error.

– Crucial: we know contradiction is an error without knowing
the correct belief!

MUST beliefs:
– Inferred from acts that imply beliefs code *must* have.

– Check using internal consistency: infer beliefs at
different locations, then cross-check for contradiction

MAY beliefs: could be coincidental
– Inferred from acts that imply beliefs code *may* have

– Check as MUST beliefs; rank errors by belief confidence.

Cross-checking program belief systems

x = *p / z; // MUST belief: p not null
// MUST: z != 0

unlock(l); // MUST: l acquired
x++; // MUST: x not protected by l

// MAY: A() and B()
// must be paired

B(); // MUST: B() need not
// be preceded by A()

A();
…
B();

A();
…
B();

A();
…
B();

A();
…
B();

Two techniques
Internal Consistency
– Must beliefs

Statistical Analysis
– May beliefs

Trivial consistency: NULL pointers
*p implies MUST belief:
– p is not null

A check (p == NULL) implies two MUST beliefs:
– POST: p is null on true path, not null on false path
– PRE: p was unknown before check

Cross-check these for three different error types.
Check-then-use (79 errors, 26 false pos)

/* 2.4.1: drivers/isdn/svmb1/capidrv.c */
if(!card)
printk(KERN_ERR, “capidrv-%d: …”, card->contrnr…)

Null pointer fun
Use-then-check: 102 bugs, 4 false

Contradiction/redundant checks (24 bugs, 10 false)

/* 2.4.7: drivers/char/mxser.c */
struct mxser_struct *info = tty->driver_data;
unsigned flags;
if(!tty || !info->xmit_buf)

return 0;

/* 2.4.7/drivers/video/tdfxfb.c */
fb_info.regbase_virt = ioremap_nocache(...);
if(!fb_info.regbase_virt)

return -ENXIO;
fb_info.bufbase_virt = ioremap_nocache(...);
/* [META: meant fb_info.bufbase_virt!] */
if(!fb_info.regbase_virt) {

iounmap(fb_info.regbase_virt);

Redundancy checking
Assume: code supposed to be useful
– Useless actions = conceptual confusion. Like type

systems, high level bugs map to low-level redundancies
Identity operations: “x = x”, “1 * y”, “x & x”, “x | x”

Assignments that are never read:

/* 2.4.5-ac8/net/appletalk/aarp.c */
da.s_node = sa.s_node;
da.s_net = da.s_net;

for(entry=priv->lec_arp_tables[i];entry != NULL; entry=next){
next = entry->next;
if (…)

lec_arp_remove(priv->lec_arp_tables, entry);
lec_arp_unlock(priv);
return 0;

}

Internal Consistency: finding security holes
Applications are bad:
– Rule: “do not dereference user pointer <p>”
– One violation = security hole
– Detect with static analysis if we knew which were “bad”
– Big Problem: which are the user pointers???

Sol’n: forall pointers, cross-check two OS beliefs
– “*p” implies safe kernel pointer
– “copyin(p)/copyout(p)” implies dangerous user pointer
– Error: pointer p has both beliefs.
– Implemented as a two pass global checker

Result: 24 security bugs in Linux, 18 in OpenBSD
– (about 1 bug to 1 false positive)

Still alive in linux 2.4.4:

– Tainting marks “rt” as a tainted pointer, checking warns
that rt is passed to a routine that dereferences it

– 2 other examples in same routine…

/* drivers/net/appletalk/ipddp.c:ipddp_ioctl */
case SIOCADDIPDDPRT:

return ipddp_create(rt);
case SIOCDELIPDDPRT:

return ipddp_delete(rt);
case SIOFCINDIPDDPRT:

if(copy_to_user(rt, ipddp_find_route(rt),
sizeof(struct ipddp_route)))

return –EFAULT;

An example

Common: multiple implementations of same interface.
– Beliefs of one implementation can be checked against

those of the others!
User pointer (3 errors):

If one implementation taints its argument, all others must
– How to tell? Routines assigned to same function pointer

– More general: infer execution context, arg preconditions…
– Interesting q: what spec properties can be inferred?

Cross checking beliefs related abstractly

foo_write(void *p, void *arg,…){
copy_from_user(p, arg, 4);
disable();
… do something …
enable();
return 0;

}

bar_write(void *p, void *arg,…){
*p = *(int *)arg;
… do something …
disable();
return 0;

}

Handling MAY beliefs
MUST beliefs: only need a single contradiction
MAY beliefs: need many examples to separate fact
from coincidence
Conceptually:
– Assume MAY beliefs are MUST beliefs
– Record every successful check with a “check” message
– Every unsuccessful check with an “error” message
– Use the test statistic to rank errors based on ratio of

checks (n) to errors (err)

– Intuition: the most likely errors are those where n is
large, and err is small.

z(n, err) = ((n-err)/n-p0)/sqrt(p0*(1-p0)/n)

Statistical: Deriving deallocation routines
Use-after free errors are horrible.
– Problem: lots of undocumented sub-system free functions
– Soln: derive behaviorally: pointer “p” not used after call

“foo(p)” implies MAY belief that “foo” is a free function
Conceptually: Assume all functions free all arguments
– (in reality: filter functions that have suggestive names)
– Emit a “check” message at every call site.
– Emit an “error” message at every use

– Rank errors using z test statistic: z(checks, errors)
– E.g., foo.z(3, 3) < bar.z(3, 1) so rank bar’s error first
– Results: 23 free errors, 11 false positives

foo(p);
*p = x;

foo(p);
*p = x;

foo(p);
*p = x;

bar(p);
p = 0;

bar(p);
p = 0;

bar(p);
*p = x;

A bad free error

/* drivers/block/cciss.c:cciss_ioctl */
if (iocommand.Direction == XFER_WRITE){

if (copy_to_user(...)) {
cmd_free(NULL, c);
if (buff != NULL) kfree(buff);
return(-EFAULT);

}
}
if (iocommand.Direction == XFER_READ) {

if (copy_to_user(...)) {
cmd_free(NULL, c);
kfree(buff);

}
}
cmd_free(NULL, c);
if (buff != NULL) kfree(buff);

Traditional:
– Use global analysis to track which routines return NULL
– Problem: false positives when pre-conditions hold,

difficult to tell statically (“return p->next”?)
Instead: see how often programmer checks.
– Rank errors based on number of checks to non-checks.

Algorithm: Assume *all* functions can return NULL
– If pointer checked before use, emit “check” message
– If pointer used before check, emit “error”

– Sort errors based on ratio of checks to errors
Result: 152 bugs, 16 false.

Statistical: deriving routines that can fail

P = foo(…);
*p = x;

p = bar(…);
If(!p) return;
*p = x;

p = bar(…);
If(!p) return;
*p = x;

p = bar(…);
If(!p) return;
*p = x;

p = bar(…);
*p = x;

The worst bug
Starts with weird way of checking failure:

So why are we looking for “seg_alloc”?
/* ipc/shm.c:750:newseg: */
if (!(shp = seg_alloc(...))

return -ENOMEM;
id = shm_addid(shp);

/* 2.3.99: ipc/shm.c:1745:map_zero_setup */
if (IS_ERR(shp = seg_alloc(...)))

return PTR_ERR(shp);

static inline long IS_ERR(const void *ptr)
{ return (unsigned long)ptr > (unsigned long)-1000L; }

int ipc_addid(…* new…) {
...
new->cuid = new->uid =…;
new->gid = new->cgid = …
ids->entries[id].p = new;

Deriving “A() must be followed by B()”
“a(); … b();” implies MAY belief that a() follows b()
– Programmer may believe a-b paired, or might be a

coincidence.
Algorithm:
– Assume every a-b is a valid pair (reality: prefilter

functions that seem to be plausibly paired)
– Emit “check” for each path that has a() then b()
– Emit “error” for each path that has a() and no b()

– Rank errors for each pair using the test statistic
» z(foo.check, foo.error) = z(2, 1)

Results: 23 errors, 11 false positives.

foo(p, …)
bar(p, …);

“check
foo-bar”

x();
y();

“check
x-y”

foo(p, …);
…

“error:foo,
no bar!”

Checking derived lock functions
Evilest:

And the award for best effort:

/* 2.4.1: drivers/sound/trident.c:
trident_release:

lock_kernel();
card = state->card;
dmabuf = &state->dmabuf;
VALIDATE_STATE(state);

/* 2.4.0:drivers/sound/cmpci.c:cm_midi_release: */
lock_kernel();
if (file->f_mode & FMODE_WRITE) {

add_wait_queue(&s->midi.owait, &wait);
...
if (file->f_flags & O_NONBLOCK) {

remove_wait_queue(&s->midi.owait, &wait);
set_current_state(TASK_RUNNING);
return –EBUSY;

… unlock_kernel();

Summary: Belief Analysis
Key ideas:
– Check code beliefs: find errors without knowing truth.
– Beliefs code MUST have: Contradictions = errors
– Beliefs code MAY have: check as MUST beliefs and rank

errors by belief confidence

Secondary ideas:
– Check for errors by flagging redundancy.
– Analyze client code to infer abstract features rather

than just implementation.
– Spec = checkable redundancy. Can use code for same.

Example free checker
sm free_checker {
state decl any_pointer v;
decl any_pointer x;

start: { kfree(v); } v.freed
;

v.freed:
{ v == x }

| { v != x } { /* suppress fp */ }
| { v } { err(“Use after free!”);
;

}

start

v.freed

error

use(v)

kfree(v)

Example inferring free checker
sm free_checker {
state decl any_pointer v;
decl any_pointer x;
decl any_fn_call call;
decl any_args args;

start: { call(v) } {
char *n = mc_identifier(call);
if(strstr(n, “free”) || strstr(n, “dealloc”) || …) {

mc_v_set_state(v, freed);
mc_v_set_data(v, n);
note(“NOTE: %s”, n);

}
};

v.freed: { v == x } | { v != x } { /* suppress fp */ }
| { v } { err(“Use after free %s!”, mc_v_get_data(v));
;

Conclusion
Two Techniques:
– internal consistency
– statistical analysis

Found hundreds of bugs automatically in real system
code:
– Linux
– OpenBSD

	How to find lots of bugs by checking program belief systems
	Context: finding OS bugs w/ compilers
	Goal: find as many serious bugs as possible
	Cross-checking program belief systems
	Two techniques
	Trivial consistency: NULL pointers
	Null pointer fun
	Redundancy checking
	Internal Consistency: finding security holes
	An example
	Cross checking beliefs related abstractly
	Handling MAY beliefs
	Statistical: Deriving deallocation routines
	A bad free error
	Statistical: deriving routines that can fail
	The worst bug
	Deriving “A() must be followed by B()”
	Checking derived lock functions
	Summary: Belief Analysis
	Example free checker
	Example inferring free checker
	Conclusion

