How to find lots of bugs by checking program
belief systems

Dawson Engler
David Chen, Seth Hallem, Ben Chelf, Andy Chou
Stanford University

Presentedy by Baohua Wu

Context: finding OS bugs w/ compilers

Systems have many ad hoc correctness rules

” "

“acquire lock | before modifying x”, "cli() must be paired
with sti(),” "don't block with interrupts disabled”

One error = crashed machine
If we know rules, can check with extended compiler

Rules map to simple source constructs

Use compiler extensions to express them
Tock_kernel(Q);

. if (1de->count) { '
Linux printk("freel\n"); "missi
fs/proc/| return; T TLock checker missing
) unlock

inode.c
unlock _kernel ();

Nice: scales, precise, statically find 1000s of errors

Goal: find as many serious bugs as possible

Problem: what are the rules?!?!
100-1000s of rules in 100-1000s of subsystems.

To check, must answer: Must a() follow b()? Can foo()
fail? Does bar(p) free p? Does lock | protect x?

Manually finding rules is hard. So don't. Instead infer
what code believes, cross check for contradiction
Intuition: how to find errors without knowing truth?

Contradiction. To find lies: cross-examine. Any
contradiction is an error.

Deviance. To infer correct behavior: if 1 person does X,
might be right or a coincidence. If 1000s do X and 1
does Y, probably an error.

Crucial: we know contradiction is an error without knowing
the correct belief!

Cross-checking program belief systems

MUST beliefs:

Inferred from acts that imply beliefs code *must* have.

x =*p / z: // MUST belief: p not null
// MUST: z1=0
unlock(l): // MUST: | acquired
X++; // MUST: x not protected by |

Check using internal consistency: infer beliefs at
different locations, then cross-check for contradiction

MAY beliefs: could be coincidental
Inferred from acts that imply beliefs code *may* have

AOQ: AQ: AO: AO: B(); // MUST: B() need not
// MAY: A() and B() // be preceded by A()

é.()3 é.()3 BO: BO: // must be paired

Check as MUST beliefs; rank errors by belief confidence.

Two techniques

Internal Consistency
Must beliefs

Statistical Analysis
May beliefs

Trivial consistency: NULL pointers
*p implies MUST belief:

p is not null

A check (p == NULL) implies two MUST beliefs:

POST: p is null on true path, not null on false path
PRE: p was unknown before check

Cross-check these for three different error types.
Check-then-use (79 errors, 26 false pos)

/* 2.4_1: drivers/isdn/svmbl/capidrv.c */
iT('card)
printk(KERN_ERR, “capidrv-%d: ..””, card->contrnr..)

Null pointer fun
Use-then-check: 102 bugs, 4 false

/* 2.4_.7: drivers/char/mxser.c */
struct mxser_struct *info = tty->driver _data;
unsigned flags;
ittty || '"info->xmit_buf)

return O;

Contradiction/redundant checks (24 bugs, 10 false)

/* 2.4_7/drivers/video/tdfxfb.c */
b _i1nfo.regbase virt = i1oremap nocache(...);
1IT('fb_i1nfo.regbase virt)
return -ENXI10;
fb_i1nfo.bufbase virt = i1oremap nocache(...);
/* [META: meant fb_info.bufbase virt!] */
1IT('fb_info.regbase virt) {
1ounmap(fb_i1nfo.regbase virt);

Redundancy checking

Assume: code supposed to be useful

Useless actions = conceptual confusion. Like type
systems, high level bugs map to low-level redundancies

/I W ! W

Identity operations: "x = x", "1 *y" "x & x", "x | x"

/> 2.4.5-ac8/net/appletalk/aarp.c */
da.s node = sa.s node;
da.s net = da.s net;

Assignments that are never read:

for(entry=priv->lec_arp_ tables[i];entry != NULL; entry=next){
next = entry->next;
it ()
lec _arp _remove(priv->lec _arp tables, entry);
lec_arp_unlock(priv);
return O;

}

Internal Consistency: finding security holes

Applications are bad:
Rule: "do not dereference user pointer <p>”
One violation = security hole
Detect with static analysis if we knew which were “"bad"”
Big Problem: which are the user pointers???

Sol'n: forall pointers, cross-check two OS beliefs
"*p" implies safe kernel pointer
“copyin(p)/copyout(p)” implies dangerous user pointer
Error: pointer p has both beliefs.

Implemented as a two pass global checker

Result: 24 security bugs in Linux, 18 in OpenBSD
(about 1 bug to 1 false positive)

An example
Still alive in linux 2.4.4:

/* drivers/net/appletalk/ipddp.c:ipddp _roctl */
case SIOCADDIPDDPRT:

return 1pddp create(rt);
case SIOCDELIPDDPRT:
return i1pddp delete(rt);
case SIOFCINDIPDDPRT:
1T(copy _to user(rt, i1pddp_find route(rt)
sizeof(struct 1pddp r
return —EFAULT;

e)))

Tainting marks "rt” as a tainted pointer, checking warns
that rt is passed to a routine that dereferences it

2 other examples in same routine...

Cross checking beliefs related abstractly

Common: multiple implementations of same interface.

Beliefs of one implementation can be checked against
those of the others!

User pointer (3 errors):

If one implementation faints its argument, all others must

How to tell? Routineg’ assigned to same function pointer
g,mj{:bar_write(void *p, void *arg,..){

foo write(void *p, void *

copy_from_user(p, arg, 4); *p = *(int *)arg; <
disable(); .. do something ..

.. do something .. disable();
enable(); return O;

return O; }

More general: infer execution context, arg preconditions...
Interesting q: what spec properties can be inferred?

Handling MAY beliefs

MUST beliefs: only need a single contradiction

MAY beliefs: need many examples to separate fact
from coincidence

Conceptually:
Assume MAY beliefs are MUST beliefs
Record every successful check with a “"check” message
Every unsuccessful check with an “error” message

Use the test statistic to rank errors based on ratio of
checks (n) to errors (err)

z(n, err) = ((n-err)/n-p0)/sqrt(p0*(1-p0)/n)

Intuition: the most likely errors are those where n is
large, and err is small.

Statistical: Deriving deallocation routines

Use-after free errors are horrible.
Problem: lots of undocumented sub-system free functions
Soln: derive behaviorally: pointer “p“ not used after call
“foo(p)” implies MAY belief that "foo" is a free function
Conceptually: Assume all functions free all arguments
(in reality: filter functions that have suggestive names)
Emit a "check” message at every call site.

Emit an “error” message at every us . .
foo(p): | foo(p): foo(p): bar(p): bar(p)., *ar'sp),.
*o=x:|*p=x:| *p=x|p=0 [P0 | P=X

Rank errors using z test statistic: z(checks, errors)
E.g., foo.z(3, 3) < bar.z(3, 1) so rank bar's error first
Results: 23 free errors, 11 false positives

A bad free error

/* drivers/block/cciss.c:cciss _1octl */
IT (1tocommand.Direction == XFER_WRITE){
iIT (copy to user(...)) {
cmd_free(NULL, c);
iIT (buff = NULL) kfree(buff);
return(-EFAULT);
ks
ks
iIT (1ocommand.Direction == XFER_READ) {
iIT (copy to user(...)) {
cmd_free(NULL, c);
kfree(buff);
ks
ks
cmd_free(NULL, c);
iIT (buff '= NULL) kfree(buff);

Statistical: deriving routines that can fail

Traditional:
Use global analysis to track which routines return NULL

Problem: false positives when pre-conditions hold,
difficult to tell statically ("return p->next”?)

Instead: see how often programmer checks.
Rank errors based on number of checks to non-checks.

Algorithm: Assume *all* functions can return NULL
If pointer checked before use, emit "check” message
(‘ If pointer used before check, emit “error”
f

- foo(.): P°* bar(..); p = bar(.) p = bar(..); = bar(...);
*p = x: If('p) return; ff('p) return; ff('p) return; *p = x;
*p = X; p = X; P = X«

Sort errors based on ratio of checks to errors

Result: 152 bugs, 16 false.

The worst bug

Starts with weird way of checking failure:

/* 2.3.99: 1pc/shm.c:1745:map_zero _setup */
IT (1S _ERR(shp = seg _alloc(.-..)))
return PTR_ERR(shp);

static inline long IS ERR(const void *ptr)
{ return (unsigned long)ptr > (unsigned long)-1000L; }

So why are we looking for "seg_alloc"?

/* 1pc/shm.c:750:newseqg: */
iIT (1(shp = seg_alloc(...))
return -ENOMEM;

id = shm_addid(shp);

int 1pc_addid(.* new..) {

new->cuild = new->uid
new->gid = new->cgid "
ids->entriesf[i1d].p = new;

Deriving "A() must be followed by B()"
“a(); ... b();" implies MAY belief that a() follows b()

Programmer may believe a-b paired, or might be a
coincidence.

Algorithm:
Assume every a-b is a valid pair (reality: prefilter
functions that seem to be plausibly paired)
Emit “check” for each path that has a() then b()

Emit "error” for each path that has a() and no b()

foo(p. ..)_“check x();: “check foo(p, ..). “error:foo,
bar(p, ..): foo-bar" Y()2_>x-y" " no bar!”

Rank errors for each pair using the test statistic
z(foo.check, foo.error) = z(2, 1)

Results: 23 errors, 11 false positives.

Checking derived lock functions

/* 2.4_1: drivers/sound/trident.c:
T _)
trident release:
lock kernel();
card = state->card;
dmabuf = &state->dmabuf;
VALIDATE STATE(state);

And the award for best effort:

/* 2.4.0:drivers/sound/cmpci.c:cm_midi_release: */
lock _kernel();
1T (file->f _mode & FMODE _WRITE) {

add _wait _gqueue(&s->midi.owairt, &wait);

Eviles

1T (file->f _flags & O NONBLOCK) {
remove_wailt _gueue(&s->midi.owailt, &wait);
set_current_state(TASK _RUNNING);
return —EBUSY;
. unlock _kernel();

Summary: Belief Analysis
Key ideas:
Check code beliefs: find errors without knowing truth.

Beliefs code MUST have: Contradictions = errors

Beliefs code MAY have: check as MUST beliefs and rank
errors by belief confidence

Secondary ideas:

Check for errors by flagging redundancy.

Analyze client code to infer abstract features rather
than just implementation.

Spec = checkable redundancy. Can use code for same.

Example free checker

sm free checker {
state decl any pointer v;

decl any pointer X;
start
start: { kfree(v); } = v.freed

v.freed: kfree(v)
{v==x} }
| { v !i=x} =2 { /* suppress fp */ }
| { v } 2 { err(““Use after freel!”); @
¥ use(v)

Example inferring free checker

sm free checker {
state decl any pointer v;
decl any pointer X;
decl any fn _call call;
decl any args args;

start: { call(v) } 2 {
char *n = mc_i1dentifier(call);
if(strstr(n, “free”) || strstr(n, “dealloc™) || .) {
mc_v_set state(v, freed);
mc_v_set data(v, n);
note(*“NOTE: %s’, n);

}
}s
v.freed: { v=x}] {vVvI=x} =2 { /* suppress fp */ }
| { v } 2 { err(““Use after free %s!”, mc v _get data(v)):

Conclusion

Two Techniques:
intfernal consistency
statistical analysis

Found hundreds of bugs automatically in real system
code:

Linux
OpenBSD

	How to find lots of bugs by checking program belief systems
	Context: finding OS bugs w/ compilers
	Goal: find as many serious bugs as possible
	Cross-checking program belief systems
	Two techniques
	Trivial consistency: NULL pointers
	Null pointer fun
	Redundancy checking
	Internal Consistency: finding security holes
	An example
	Cross checking beliefs related abstractly
	Handling MAY beliefs
	Statistical: Deriving deallocation routines
	A bad free error
	Statistical: deriving routines that can fail
	The worst bug
	Deriving “A() must be followed by B()”
	Checking derived lock functions
	Summary: Belief Analysis
	Example free checker
	Example inferring free checker
	Conclusion

