
Runtime Verification (RV)

Usa Sammapun
University of Pennsylvania
September 29, 2004

http://www.upenn.edu/computing/web/webdev/style/resources/protected/shield.color.eps

Introduction

Modeling language:
CCS, CSP, Kripke

Verification:
Model Checking

Language:
Java, C, C++, etc..

Verification:
Formal Test Generation

Language:
CTL

Introduction

Modeling language:
CCS, CSP, Kripke

Verification:
Model Checking

Language:
Java, C, C++, etc..

Verification:
Formal Test Generation
Runtime Verification

Language:
CTL

Motivation

Limitation of current verification
techniques

Model checking
Testing

Model Checking

Pro
Formal
Complete – Provides guarantees

Con
Doesn’t scale well
Checks design, not implementation

Testing

Pro
Scales well
Tests an implementation directly

Con
Informal
Incomplete – Doesn’t provide
guarantees.

How does RV verify?

1. Specify formal requirements
2. Extract information from current
executing program
3. Check the execution against formal
requirements

Runtime Verification

Program Verifier

Execution

Information
Check

Sat / UnsatFeedback

User

Runtime Verification

Formal
Done at implementation
Not complete

Guarantee for current execution

JPaX: Java PathExplorer

Klaus Havelund
Grigore Rosu
(NASA)

[HR01, HR04]

JPaX

Checks the execution of Java program
During program testing to gain info about execution
During operation to survey safety critical systems

Extracts interesting events from an executing
program
Checks those events

Logic based monitoring
Error pattern analysis

• Deadlock
• Data race

JPaX

Java Program JPaX Verifier

Execution

Information
Check

Sat / Unsat

User

JPaX Verifier

Instrumentation
(Extracting Info) Observer (Checking)Inter

connection

Instrumentation Module:
How JPaX extracts info

Given
Java bytecode
Instrumentation specification

To extract
Examine java bytecode
Insert some code at places specified
instrumentation specification

• Logic based / error pattern analysis

Send this info to the observer

Insert Code: Logic Based
class C {
int x;
main() {

x = -1;
send(x,-1);
x = -2;
send(x,-2);
x = 1;
send(x,1);
x = -3;
send(x,-3);

} }

class C {
int x;
main() {

x = -1;
x = -2;
x = 1;
x = -3;

} }

instrumentation:
monitor C.x;
proposition A is C.x > 0

+
=

Sent to observer:
[(x,-1), (x,-2), (x,1), (x,-3)]

Not all info is needed
class C {
int x;
main() {

x = -1;
eval(x,-1);
x = -2;
eval(x,-2);
x = 1;
eval(x,1);
x = -3;
eval(x,-3);

} }

instrumentation:
monitor C.x;
proposition A is C.x > 0

Send(A) Send(A)Send(A,false)

trueA false false

X = -1 X = -2 X = 1 X = -3
Sent to observer:
[(A,false), A, A]

Not all info is needed

What eval(x,value) does
Look at all propositions P corresponding to
variable x
Evaluate the value of P (true, false)

• Using value of x

If P has no value,
• Send event (P, P_val) to observer

Else
• If P changes value,
• Send (P) to observer

Insert Code: Error Pattern

Instead of sending propositions to the
observer
Sends events

Acquiring locks (deadlock, data race)
Releasing locks (deadlock, data race)
Accessing variables (data race)

Interconnection Module

Send extracted info
From the java program to the observer
Via socket, shared memory, file

Extraced Info
Event stream

Event Stream

Similar to Kripke structure
Kripke

Event Stream (Trace)

N1,N2

T1,N2 N1,T2

!A A !A

[(A,false), A, A]

Observer Module

Runs in parallel with the
Java program
Monitors and analyzes
2 Components

Logic based monitoring
Error Pattern Analysis

• Deadlock
• Data race

1. Logic Based Monitoring

Given
Trace (Event stream)
Specification in some logic

To check
Check if properties in
specification hold in the trace

Logic Based Monitoring

Logic
CTL – Model checking

• AG, EG, AF, EF, AX, EX, AU, EU
• Tree like

Not appropriate for event stream
• Only has one path

P

P P

AG P

LTL

LTL – Linear Temporal Logic
G, F, X, U (□, ◇, ○, U)
Linear

G P

P P P

instrumentation:
monitor C.x;
proposition A is C.x > 0

verification:
formula F1 is <> A

Past Time LTL (ptLTL)

More natural for RV
ʘ F – previous F (as oppose to next)
▣ F – always F in the past
◈ F – eventually F in the past
F1 S F2 – F1 since F2

[F1, F2) – interval F1, F2

F2 F1 F1 F1

F1 S F2 F1 S F2 F1 S F2 F1 S F2

[F1 ,F2) [F1 ,F2)

F1 F2

JPaX Checking

Given
Trace
LTL or ptLTL

Check
Use “Maude engine” to check
Or dynamic programming

Result
True or false
We want it to always return true

• The requirement is satisfied
• Nothing bad has happened

Maude

Rewriting engine
Treat LTL or ptLTL as an equation
“Rewrite” or “consume” this LTL/ptLTL
equation and produce a new equation

• A new equation – a new state
• Normal form (true or false)
• Just another LTL or ptLTL

Rewrite LTL

** propositional logic **
eq true /\ X = X
eq false /\ X = false
eq true \/ X = true
eq false \/ X = X
eq X /\ (Y \/ Z) = (X /\ Y) \/ (X /\ Z)

Eq (X /\ Y){As} = X{As} /\ Y{As}
Eq (X \/ Y){As} = X{As} \/ Y{As}

** LTL **
eq ([] X){As} = ([] X) /\ X{As}
eq (<> X){As} = (<> X) \/ X{As}
eq (o X){As} = X
eq (X U Y){As} = Y{As} \/ (X{As} /\ (X U Y))

X{As} = assignment of a boolean value to a variable X

Example
instrumentation:
monitor C.x;
proposition A is C.x > 0

verification:
formula F1 is <> A

Here A is false
eq (<> A){As} = (<> A) \/ A{As}

= (<> A) \/ false
= (<> A)

!A

A

!A

Here A is true
eq (<> A){As} = (<> A) \/ A{As}

= (<> A) \/ true
= true

Here A is false
eq true

Dynamic Programming

ptLTL
For each formula P

Divide P into subformulae
Keep the value of each proposition
and subformulae from the previous
state (pre[])
Calculate the value of each
subformulae for current state (now[])
by using pre[] and now[]

Dynamic Programming

Propositional logic
now[x \/ y] = now[x] \/ now[y]
now[x /\ y] = now[x] /\ now[y]
now[!x] = ! now[x]

ptLTL
now[(.) x] = pre[x]
now[[.] x] = pre[[.] x] /\ now[x]
now[<.>x] = pre [<.> x] \/ now[x]
now[x S y] = now[y] \/ now[[(.) y, !x)]
now[[x,y)] = (pre[[x,y)] \/ now[x])

/\ !now[y]

Example: x ∧ [y, z)
bit pre[0..4]
bit now[0..4]
INPUT: trace t = e1e2e3...en;

Subformulae:
0: x /\ [y, z)
1: x
2: [y, z)
3: y
4: z

Init:
pre[4] = z(state);
pre[3] = y(state);
pre[2] = pre[3] and not pre[4];
pre[1] = x(state);
pre[0] = pre[1] and pre[2];

for i = 2 to n do {
state = update(state,ei);

now[4] = z(state);
now[3] = y(state);
now[2] = (pre[2] or now[3])

and not now[4];
now[1] = x(state);
now[0] = now[1] and now[2];

if now[0] = 0 then
output(‘property violate’);

pre = now;
}

Running Time

At one point
O (m)

• m = size of formula

Overall
O (n m)

• n = number of events
• m = size of formula

2. Error Pattern Analysis

Use well-known algorithm to
detect

Data race
Deadlock

Data Race – Cause

Cause
Two or more concurrent threads
Access a shared variable

• At least one access is write
No explicit critical section mechanism

Init x = 0;
T1:
x = x+1;
T2:
x = x+10;

x=0 T1 reads
x=1 T1 writes
x=1 T2 reads
x=11 T2 writes

x=0 T1 reads
x=0 T2 reads
x=1 T1 writes
x=10 T2 writes

Data Race – Check

Events
Acquiring, releasing locks
Shared variable accessing

Checks – make sure that
The lock is held by any thread
whenever it accesses the variable

Deadlock – Cause

Order of acquiring
and releasing locks
T1:

Get lock1
Get lock2
Release lock2
Release lock1

T2:
Get lock2
Get lock1
Release lock1
Release lock2

Deadlock – Check

Events
Acquiring, releasing locks

Checks
Thread map – keep track of locks owned by
each thread
Lock graph – edge record locking orders

• Introduce from a lock to another lock each time
when a thread that already owns the first lock
acquires the other

If lock graph is cyclic, deadlock potential

That’s it for JPaX

Specification Logic
LTL

Information Extraction
Instrument bytecode
Events

• Propositions
• Get/Release locks, variable access

Check
Rewriting engine
Dynamic programming
Error pattern analysis

Other RV tools

Different Logic
LTL
Timed LTL [TR04]

• F1 U< t F2

(Extended) Regular Expression [CR03]
Interval logic
Automata [LBW03]

Extracting Information

From bytecode
Instrument bytecode [HR01, HR04, KKL+04]

• Code, specification in different files
• Normal compiler

From sourcecode
Instrument source code

• Code, specification in different files
• Normal compiler

Specification embedded in source code [LBW03, Dru03]
• Special compiler translates specification into some code

Use debugger [BM02]
• Does not modify program code
• Configure the debugger to generate events at desirable

points in the code

Checker

Rewriting engine
Maude

Dynamic programming
Translate LTL to Automata [CR03]

States – states in a trace
Transitions – inputs are events
Accepting states – satisfied

Same technique, different
purpose

Security
Check security policy

• Edit automata
• Model-carrying code
• Intrusion detection

Edit Automata [LBW03]

How can we run untrusted code on
our machine?

Use monitor, called ‘edit automata’
• Analogous to the JPaX observer

‘edit automata’ monitors and enforces
security policies

• Analogous to the JPaX specification

Edit Automata

Program Edit Automata

Execution

Information
Check

Enforcing
Security
Policy

User

Edit Automata

Specification Logic (Security policy)
Automata

Information Extraction
Embedded in source code
Events

• Actions (Method calls)
Check

Automata

Enforcing Policy

When it recognizes a dangerous
operation, it may

halt the application
suppress (skip) the operation but
allow the application to continue
insert (perform) some computation on
behalf of the application

This slide is taken from David Walker

Security Policy

Automata

app’s action

allowed, edited
action

Example

Program: Cable car
Policy: Showing ticket policy

insert

Model-Carrying Code [SVB+03]

How can we run untrusted code on
our machine?

Untrusted code comes with a model of
its security-relevant behavior
Users have their own security policies

Two checking

Does untrusted program’s model
respect user’s security policy?

Use model checking to check
• Security policy is a specification

Does model capture program
behavior?

Use runtime checking
• Model is a specification (Automata)
• Events are system calls

Intrusion Detection

2 Approaches for ID
Anomaly-based

• Behavior deviates from normal behavior
is an intrusion

Signature-based
• Define patterns of bad behaviors or

attacks
• Anything fits the patterns is an intrusion

Intrusion Detection using RV
[NST04]

Signature-based
Use LTL to define attack pattern

Use runtime verification
Runs in parallel
Observes behaviors of programs
Check if behaviors match LTL attack
pattern
If so, raises an alarm

Conclusion

Lightweight Verification alternative to model
checking and testing

Formal
Done at Implementation
Security

Development
Multithreaded [SRA03]
Distributed [SVAR04]
Probabilistic

References - RV

[HR04] Klaus Havelund and Grigore Rosu. An Overview of the
Runtime Verification Tool Java PathExplorer. Journal of Formal
Methods in System Design, 24(2):189-215, 2004.
[HR01] Klaus Havelund and Grigore Rosu. Java PathExplorer - A
runtime verification tool. In Proceedings of the 6th International
Symposium on Artificial Intelligence, Robotics and Automation in Space,
(ISAIRAS'01), Montreal, Canada, Jun 2001.
[TR04] Prasanna Thati and Grigore Rosu. Monitoring Algorithms for
Metric Temporal Logic Specifications. In Proceedings of the 4nd
International Workshop on Run-time Verification, Apr 2004.
[CR03] Feng Chen and Grigore Rosu. Towards Monitoring-Oriented
Programming: A Paradigm Combining Specification and
Implementation. In Oleg Sokolsky and Mahesh Viswanathan, editors,
Electronic Notes in Theoretical Computer Science, volume 89. Elsevier,
2003.
[BM02] Mark Brörkens and Michael Möller. Dynamic Event Generation
for Runtime Checking using the JDI. In Klaus Havelund and Grigore
Rosu, editors, Electronic Notes in Theoretical Computer Science,
volume 70. Elsevier, 2002.

References - RV

[KKL+04] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky,
and Mahesh Viswanathan. Java-MaC: a Run-time Assurance Approach
for Java Programs. Formal Methods in Systems Design, 24(2):129-155,
Mar 2004.
[Dru03] Doron Drusinsky. Monitoring Temporal Rules Combined with
Time Series. In Proceedings of the 2003 Computer Aided Verification
Conference (CAV), volume 2725, pages 114-118. Springer-Verlag, Jul
2003.
[SRA03] Koushik Sen, Grigore Rosu, and Gul Agha. Runtime Safety
Analysis of Multithreaded Programs. In Proceedings of the 10th
European Software Engineering Conference and the 11th ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
(FSE/ESEC 03), pages 337-346, Helsinki, Finland, Sep 2003.
[SVAR04] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu.
Efficient Decentralized Monitoring of Safety in Distributed Systems. In
Proceedings of 26th International Conference on Software Engineering
(ICSE 04), 2004.

References - Security

[LBW03] Jay Ligatti, Lujo Bauer, and David Walker. Edit Automata:
Enforcement Mechanisms for Run-time Security Policies. Technical
report, Princeton University, Computer Science Department, May 2003.
[SVB+03] R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep
Bhatkar, and Daniel C. DuVarney. Model-Carrying Code: A Practical
Approach for Safe Execution of Untrusted Applications . In Proceedings
of the 19th ACM Symposium on Operating Systems Principles, pages
214-228, Bolton Landing, New York, Oct 2003.
[NST04] Prasad Naldurg, Koushik Sen, Prasanna Thati. A Temporal
Logic Based Approach to Intrusion Detection. In Proceedings of the
International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE 2004), 2004.

The End

	Runtime Verification (RV)
	Introduction
	Introduction
	Motivation
	Model Checking
	Testing
	How does RV verify?
	Runtime Verification
	Runtime Verification
	JPaX: Java PathExplorer
	JPaX
	JPaX
	JPaX Verifier
	Instrumentation Module:How JPaX extracts info
	Insert Code: Logic Based
	Not all info is needed
	Not all info is needed
	Insert Code: Error Pattern
	Interconnection Module
	Event Stream
	Observer Module
	1. Logic Based Monitoring
	Logic Based Monitoring
	LTL
	Past Time LTL (ptLTL)
	JPaX Checking
	Maude
	Rewrite LTL
	Example
	Dynamic Programming
	Dynamic Programming
	Example: x ∧ [y, z)
	Running Time
	2. Error Pattern Analysis
	Data Race – Cause
	Data Race – Check
	Deadlock – Cause
	Deadlock – Check
	That’s it for JPaX
	Other RV tools
	Extracting Information
	Checker
	Same technique, different purpose
	Edit Automata [LBW03]
	Edit Automata
	Edit Automata
	Enforcing Policy
	Security Policy
	Example
	Model-Carrying Code [SVB+03]
	Two checking
	Intrusion Detection
	Intrusion Detection using RV[NST04]
	Conclusion
	References - RV
	References - RV
	References - Security
	The End

