
CIS 700-3: Selected Topics in
Embedded Systems

Insup Lee
University of Pennsylvania

October 11, 2004
Introduction

http://www.upenn.edu/computing/web/webdev/style/resources/protected/shield.color.eps

Course requirements

Select a topic and then you are expected to
Do In-class presentation
Write a survey paper
Download a toolset and do a demo in class

Partial paper listing at
www.cis.upen.edu/~lee/04cis700
Proceedings of RV’01, RV’02, RV ‘03, RV ’04,
WODA 2004.
Safeware, Nancy Leveson, Addison
Wesley,1995.

http://www.cis.upen.edu/~lee/04cis700

List of possible topics
Foundations of run-time verification
Probabilistic run-time verification
Merging partial specifications
Test generation from specifications, hybrid models
Certification, CMM
Safeware, by Nancy Leveson
Model-carrying code
Intrusion detection

Signature-based IDS, Model-based IDS
Anomaly-based intrusion IDS

Application domains: medical devices, sensor networks, stateless PC
Modical device architecture and specification; e.g., infusion pump
Security in sensor networks

Tools
Run-time verification: JPaX
Test generation: ASML
Software model checker: Bangor
Run-time concurrency analyzers
Etc.

Embedded Systems
An embedded system is a
system

that interacts with (or reacts
to) its environment, and
whose correctness is subject
to the physical constraints
imposed by the environment.

Difficulties
Increasing complexity
Decentralized and networked
Resource constrained (e.g.
power, size)
Safety critical

Development of reliable and
robust embedded software

Software Development Process

Requirements

Design
specification

Implementation

Requirements capture and analysis
Informal to formal
Consistency and completeness
Assumptions and interfaces between system components
Application- specific properties

Design specifications and analysis
Formal modeling notations
Analysis techniques

simulation, model checking, equivalence checking,
testing, etc.
Abstractions

Implementation
Manual/automatic code generation
Validation

Testing
Model extraction and verification
Run-time monitoring and checking

Motivation & Objectives
make each step more rigorous using formal method
techniques
narrow the gaps between phases

RTG: Real-Time Systems Group
Goals:

To develop methods and tools for improving the reliability and quality of real-time
embedded systems
To apply them to real world problems and applications

Projects:
Modeling and analysis techniques

requirements capture and analysis: user requirements
design specification and analysis: systems and hardware/device platforms
Techniques

EMFS (Extended Finite State Machines)
CHARON (Hybrid systems: discrete and continuous)

Prototyping using simulator, code generator
Test generation for validation (of real implementation)
Runtime monitoring and checking
Validation and Certification
Real-time operating systems, e.g., resource management, scheduling

Application domains
Wireless sensor networks
Medical devices
Stateless PC

Modeling languages and tools

ACSR
CHARON
EFSM

CHARON language
Hierarchical modeling of concurrent embedded systems

Discrete computation, continuous environment
Avionics, automotive, medical device controllers

Architectural hierarchy
Communicating concurrent components
Shared variable communication

Behavioral hierarchy
Hierarchical hybrid state machines
Mode switches, interrupts, exceptions

Formal compositional semantics enables rigorous
analysis

Charon toolset
Visual/textual editors
Simulator
Reachability analyzer
Code generator

CHARON Environment

CHARON Code
(High level language)

Java
Code

Charon to Java TranslatorCharon to Java Translator

Control Code GeneratorControl Code Generator

Java
Libraries

Human InterfaceHuman Interface Analysis

Simulator Code GeneratorSimulator Code Generator

Drivers

Model CheckerModel Checker

Runtime MonitorRuntime Monitor

Formal
Requirements

Example: Four Legged Robot

Control objective
v = c

High-level control laws

Low-level control laws

)
LL2

LLarccos(

)
L2

LLarccos()/arctan(

21

2
2

2
1

22

2

22
1

2
2

2
1

22

1

−++
=

+

−++
−=

yxj

yx
yxyxj

x

y

j1

j2

L1

(x, y)

2/stride−≥
−=

x
vx&

kvy =&
2/stride≤

=
x

kvx&

kvy −=&

v

L2

CHARON Code Generator
Communicating Hybrid

Automata

Discretized Communicating
Hybrid Automata

Instrumented
Communicating Hybrid

Automata

Code

Continuous time

Discrete synchronous time

Discrete
time domain

Heterogeneous
discrete time domain

Real-time constraints Discrete asynchronous time

CHARON code generator
translates CHARON models into
C++ code

Each object of CHARON models
is translated into a C++ structure

Generated C++ code is compiled
by the target compiler along with
additional code

Run-time scheduler: invokes
active components periodically
API interface routines: associates
variables with devices

Correctness of generated code

Bridging the gap between specification
and implementation

Model-based code generation and synthesis
Model-based testing
Software model checking
Run-time monitoring and checking (i.e., run-time
verification)

Model-based testing
Specification

Model

Test
Generation

Test
Suite

Implementation

Test
Outcomes

Test
Execution

Narrowing the gap between the
model and implementation
Testing remains the primary
validation technique
Model-based test generation adds
rigor to testing:

Provide test suites based on a
formally verified model
Conventional testing coverage
criteria applied to the model

Determines whether an
implementation conforms to its
specification
Two main steps

Test generation from specification
model
Test execution of implementation

Model-based test generation

Developed a framework for test generation:
Model is Extended Finite-State Machines (EFSM)
Coverage Criteria

control-flow (e.g., state coverage, transition coverage)
data-flow (e.g., all-def, all-use coverage)

Test generation using model checker
Covert test sequences to scripts for test execution

Basis for conformance metrics

Specification
Input to

model checker

Coverage
criterion

A set
of

form
ulas

Model
checker

A set of
tests

E[U]

Testing-based Validation

Determines whether an implementation
conforms to its specification

Hardware and protocol conformance testing
Widely-used specifications

Finite state machines and labeled transition systems

Two main steps
Test generation from specifications

What to test, how to generate test

Test execution of implementations
Applies tests to implementations and validates the observed
behaviors

Model-based testing

Specification
Model

Test Output

Test Suite

Implementation

Test
Generation

Test
Execution

Test
Evaluator

input

output

Run-time verification and checking

Run-time monitoring and checking (MaC) w.r.t. formal
specification
Ensures the runtime compliance of the current execution
of a system with its formal requirement

detect incorrect execution of applications
predict error and steer computation
collect statistics of actual execution

Complementary methodology to formal verification and
program testing
Prevention, avoidance, and detection & recovery

The MaC Framework

ProgramProgram

Static Phase

Run-time Phase

low-level
behavior

high-level
behaviorProgramProgram Filter

Automatic
Instrumentation

Human

Monitoring ScriptsMonitoring Scripts
Low-level

Specification
High-level

Specification

Event
Recognizer

Event
Recognizer

Automatic
Translation

Run-time
Checker
Run-time
Checker

Automatic
Translation

Input

Informal
Requirement

Spec

Case Studies

Experience/case studies in medical
devices

CARA infusion pump system
Requirements modeling and analysis
Design specification and analysis
Hardware in-the-loop simulation

Blood bank policy and DBSS
Extracting formal models from FDA guidelines
Test generation from models
(evaluation of DBSS for conformance to the FDA
guidelines)
(testing DBSS)

CARA case study
The CARA (Computer Assisted
Resuscitation Algorithm) infusion
pump control system is being
developed by WRAIR (Walter Reed
Army Institute of Research)
Goals:

Study applicability of state-of-the-
art formal techniques for
development of safety critical
embedded systems
System modeling from
requirements
Formulation and checking of
properties on models

General properties
Specific safety properties
(from requirements)

Caregiver

Infusion Pump

Blood Pressure
Monitor

Patient

Pump Monitor

Blood Pressure
Monitor

Algorithm

Caregiver
Interface

CARA

Consistency
checker

Model
checker

simulator Equality
checker

Informal requirements

translator

EFSM

translator translator translator translator

SCR SMV CHARON ACSR

Model
checker

translator

DOVE

Etc.

Run real
hardware

Compare
models

Check LTL
Properties

Check for
Completeness,

Non-determinism

Check CTL
Properties

Interfaces of CARA Simulation

Hardware Setup

CHARON
simulation

Java GUI

External
Java Class

JNI

. Cuff Pressure

. AL Pressure

. PW Pressure

. Plug-in

. Continuity

. Occ Ok

. AirOk

. back EMF

. Impedance

Driven voltage
(control flow rate /
pumping speed)

Status Data
/ Message

Manual
signals

Data processing

Hardware in-the-loop Simulation

We connected the
CHARON Simulator and
GUI to the hardware
setup.
The hardware consists of
four components:

M100 Infusion Pump
2 1000mL flasks
Pressure Sensor
A/D interface

Blood Bank Case Study
The FDA Code of Federal
Regulations (CFR) requirements
are complemented by an
explanatory guidance memo.
Extract formal models from
documents and then analyze for

errors such as incompleteness;
inconsistencies between
documents; and
requirements traceability and
maintenance.

DBSS (Defense Blood Standard
System) is the system used by
the Army to keep track of their
blood supply.

?
Errors found include:

• Inconsistency
• Incompleteness

Our approach
CFR Memo CFR and Memo documents

are translated into formal
models.
Merge multiple models into a
single model to

Verify using formal methods
techniques
Generate test suite

Working on semi-automatic
way to extract models using
NLP techniques
Army’s DBSS

NLP NLP

CFR
Model

Memo
Model

Merging

System
Model

Policy Modeling and Verification
Manual

Translation
and Merging

System
Specification

NL
Documents

ParagraphsParagraphsNLFSMsBuild
NLFSM

Test Script
Generation

Tool

Properties
Certification

Test
Scripts

Program
Code

Test
Outcomes

Certification
Criteria

Certifier

Tester

Programmer

1. Write NL Requirements
2. Extract formal System Specification

(EFSMs)
3. Programmer implements system
4. Create Test Scripts
5. Tester runs scripts on implementation
6. Certifier uses test results and properties to

decide if implementation passes

Yes / No
Outcome

The HASTEN Project
High Assurance Systems Tools and ENvironments
(HASTEN)
Develop techniques and tools for “end-to-end” software
engineering of embedded systems

Requirements capture
Specification, analysis, simulation
Implementation generation and validation: code generation,
testing
Deployed system monitoring, checking, and steering

Integrated use of tools and artifacts
Vertical integration: multiple uses of models
Horizontal integration: multiplicity of techniques

Case Studies and Tech Transfers

Opportunities and Challenges
Modeling challenges

Semi-automatic extraction of formal models from informal docs
Composition of partial, heterogeneous models

Open-source requirements and models
Multiple use and sharing of modeling artifacts
Assess to domain experts & Model validation
Certification based on models
Benchmarks for tool evaluation

Support for system integration
Applying model-based techniques to legacy code
Extracting behavioral interfaces
Compositional real-time scheduling framework

Certification challenges
Metrics based on formal method foundations

The End.

	CIS 700-3: Selected Topics in Embedded Systems
	Course requirements
	List of possible topics
	Embedded Systems
	Software Development Process
	RTG: Real-Time Systems Group
	Modeling languages and tools
	CHARON language
	Charon toolset
	CHARON Environment
	Example: Four Legged Robot
	CHARON Code Generator
	Bridging the gap between specification and implementation
	Model-based testing
	Model-based test generation
	Testing-based Validation
	Model-based testing
	Run-time verification and checking
	The MaC Framework
	Case Studies
	Experience/case studies in medical devices
	CARA case study
	Interfaces of CARA Simulation
	Hardware in-the-loop Simulation
	Blood Bank Case Study
	Our approach
	Policy Modeling and Verification
	The HASTEN Project
	Opportunities and Challenges
	The End.

