CIS 700-3: Selected Topics In
Embedded Systems

Insup Lee ESEE
[

University of Pennsylvania ¢

October 11, 2004
Introduction

http://www.upenn.edu/computing/web/webdev/style/resources/protected/shield.color.eps

Course requirements

= Select a topic and then you are expected to
*= Do In-class presentation

= Write a survey paper
= Download a toolset and do a demo in class

= Partial paper listing at
www.cis.upen.edu/~lee/04cis700

= Proceedings of RV’'01, RV'02, RV ‘03, RV '04,
WODA 2004.

= Safeware, Nancy Leveson, Addison
Wesley,1995.

http://www.cis.upen.edu/~lee/04cis700

List of possible topics

» Foundations of run-time verification

= Probabilistic run-time verification

= Merging partial specifications

= Test generation from specifications, hybrid models

= Certification, CMM

= Safeware, by Nancy Leveson

= Model-carrying code

= [ntrusion detection
= Signature-based IDS, Model-based IDS
= Anomaly-based intrusion IDS

= Application domains: medical devices, sensor networks, stateless PC
» Modical device architecture and specification; e.g., infusion pump
= Security in sensor networks

= Tools
» Run-time verification: JPaX

Test generation: ASML

Software model checker: Bangor

Run-time concurrency analyzers

Etc.

Embedded Systems

= An embedded system is a
system

= that interacts with (or reacts
to) its environment, and

= whose correctness is subject
to the physical constraints
Imposed by the environment.

= Difficulties
» Increasing complexity

» Decentralized and networked 7 -
» Resource constrained (e.g. q"\ o
power, size) s +)3 B

= Safety critical

= Development of reliable and
robust embedded software

Software Development Process

= Requirements capture and analysis
= Informal to formal
= Consistency and completeness
= Assumptions and interfaces between system components
= Application- gecific properties
= Design specifications and analysis
= Formal modeling notations
= Analysis techniques
* simulation, model checking, equivalence checking,
testing, etc.
* Abstractions
» Implementation
= Manual/automatic code generation
= Validation
* Testing
* Model extraction and verification
* Run-time monitoring and checking

= Motivation & Objectives

= make each step more rigorous using formal method
techniques

= narrow the gaps between phases

RTG: Real-Time Systems Group

= Goals:
= To develop methods and tools for improving the reliability and quality of real-time
embedded systems
= To apply them to real world problems and applications

= Projects:
» Modeling and analysis techniques

* requirements capture and analysis: user requirements
* design specification and analysis: systems and hardware/device platforms

* Techniques
+ EMFS (Extended Finite State Machines)
¢+ CHARON (Hybrid systems: discrete and continuous)

= Prototyping using simulator, code generator

» Test generation for validation (of real implementation)

» Runtime monitoring and checking

= Validation and Certification

» Real-time operating systems, e.g., resource management, scheduling

= Application domains
= Wireless sensor networks
= Medical devices
= Stateless PC

Modeling languages and tools

= ACSR
= CHARON
= EFSM

CHARON language

» Hierarchical modeling of concurrent embedded systems
= Discrete computation, continuous environment
e Avionics, automotive, medical device controllers

= Architectural hierarchy
e Communicating concurrent components
e Shared variable communication

= Behavioral hierarchy
» Hierarchical hybrid state machines
* Mode switches, interrupts, exceptions
= Formal compositional semantics enables rigorous
analysis

Charon toolset

File Edit

FhEed sB2@o o

Visual/textual editors
Simulator

Reachability analyzer

Code generator

Project Simulate Check Options

[Project: LeakyTank

i tankcn

Q@ Jagents

@ Janalog vars
@[] parameters
@[] LeakyTank

@[TransientMade

@ [Maintain

& [JHoleMade

Q@ 3 compute
@ J analog vars
@[discrete vars
@ [sub modes
Gbljtransitions
Dempty

&[] PumpMade

@[TankMode

& [point

@[steadyMode

extern real jawa.lang.Math.randemi);

@[Tank & a leaky tank controlled by a pump
Fum
® 4 P agent LeakyTank{) {
@ [top mode private analog real lewvel, flow;
& [writes

agent pump Pump{ 5

- [JHole S the tank agent with a hidden Teak
@ LTank
@ [Omodes agent LTank() {

private discrete real leak;

agent tank
agent hole

Tank();
Hole();

agent Holel)
write discrete real leak;

init { leak = 1; }
mode top = HoleMode();

mode HoleMode()
it r-E1 et 3 ale .

= , 10 3 [flow = flow]
agent tank = LTank{ J [inflow := flow]

e

Ff the hole agent: leak changes randomly every so often

File Charon Wiew Maodel

rToal

AN

Project

@ [Current Project
® [New Project
o @ Compute
& @ empty
©- M Hole
© @ HoleMade
@ Ml LeakyTank
o Ml LTank
@ @ Maintain
® adjust
® off
® on
® turnOff
@ Ml Pump
@ @ PumpMode
@ @ steadyMode
© Ml Tank
@ @ TankMode
@ @ TransientMode
© @ TurnOffMade

turnOff adjust

rDefinition
Params [Variables [{Constraints|
Interface | Update | Type [Name
writeExcl... |analog real |flow
read analog real |lewel
read discrete real |rate
writeExcl... analog |real |clock
Add

| LMalntam

5|k]

%

[lanicieal

All

-

— T

IEquation position Line # =9 ; Column # =0

0.0

0.5 1.0 1.5 2.0

2.5 3.0 3.5 4.0 4.5

CHARON Environment

CHARON Code . F9r'mal .
(High level language) H Requirements
| Charon to Java Translator ' Model Checker

ll Java =
Df"VGf‘S ler'arles .

|Com‘ro| Code Generator '. ‘ |$imula1'or' Code Gener'a'ror"
v 9 9 9

“ - v
W = |3 |Human In'rer'facel Analysis

Runtime Monitor

‘‘‘‘‘‘

Example: Four Legged Robot

= Control objective
= V=C

= | ow-level control laws

CHARON Code Generator

= CHARON code generator Commicatig Hybr i >§
translates CHARON models into

Discrete

C++ Code time domain Continuous time
u EaCh ObjeCt Of CHARON mOdeIS Discretizet_j Communicating
Is translated into a C++ structure rybrid Atomata

Heterogeneous
discrete time domain Discrete synchronous time

» Generated C++ code is compiled \
by the target compiler along with
additional code Communicating Hybrid

= Run-time scheduler: invokes
active components periodically

= APl interface routines: associates code
variables with devices

= Correctness of generated code
code target

cn | generator _ compiler .bin |
CHARON generated / binary code

.CC
model C++ code scheduler

Real-time constraints Discrete asynchronous time

APl interface

.CC

} J

Bridging the gap between specification
and Implementation

= Model-based code generation and synthesis
* Model-based testing
= Software model checking

= Run-time monitoring and checking (i.e., run-time
verification)

Model-based testing

= Narrowing the gap between the Specification
model and implementation Model

= Testing remains the primary
validation technique

= Model-based test generation adds
rigor to testing:

= Provide test suites based on a
formally verified model

= Conventional testing coverage
criteria applied to the model

Implementation

_ Test
= Determines whether an Suite

iImplementation conforms to its
specification
= Two main steps

= Test generation from specification
model Outcomes

Test

= Test execution of implementation

Model-based test generation

= Developed a framework for test generation:
= Model is Extended Finite-State Machines (EFSM)
= Coverage Criteria
« control-flow (e.qg., state coverage, transition coverage)
» data-flow (e.g., all-def, all-use coverage)
» Test generation using model checker
= Covert test sequences to scripts for test execution

= Basis for conformance metrics

o Input to []
Specification model checker

Model A set of /O /.
checken : >O \
Coverage Aosfet \O \
criterion form \

Testing-based Validation

= Determines whether an implementation
conforms to its specification
= Hardware and protocol conformance testing
= Widely-used specifications
* Finite state machines and labeled transition systems
= Two main steps

= Test generation from specifications
* What to test, how to generate test

= Test execution of implementations

* Applies tests to implementations and validates the observed
behaviors

Model-based testing

o o
» »
o
»

v
k-
»

Run-time verification and checking

= Run-time monitoring and checking (MaC) w.r.t. formal
specification
= Ensures the runtime compliance of the current execution
of a system with its formal requirement
e detect incorrect execution of applications

e predict error and steer computation
e collect statistics of actual execution

= Complementary methodology to formal verification and
program testing

= Prevention, avoidance, and detection & recovery

The MaC Framework

nstrumentatio

Static Phase

Program Filter

Run-time Phﬁse

Automatic .

Event

v

Recognizer

Automatic
anslation

high-level
behavior
——

Automatic
anslation

Run-time
Checker

Case Studies

Experience/case studies in medical
devices

= CARA infusion pump system
= Requirements modeling and analysis
= Design specification and analysis
= Hardware in-the-loop simulation

* Blood bank policy and DBSS

= Extracting formal models from FDA guidelines
= Test generation from models

= (evaluation of DBSS for conformance to the FDA
guidelines)

= (testing DBSS)

CARA case study

= The CARA (Computer Assisted
Resuscitation Algorithm) infusion
pump control system is being
developed by WRAIR (Walter Reed
Army Institute of Research)

= Goals:

= Study applicability of state-of-the-
art formal techniques for

development of safety critical
embedded systems

= System modeling from
requirements

= Formulation and checking of
properties on models

* General properties

Infusion Pump

W

» Specific safety properties Patient .2-:' —y
(from requirements) N

---'-"-._'-._._J

Blood Pressure
Monitor

@ Etc.

Corstrey (e

Check for Check CTL Run real Compare Check LTL

Completeness, Properties hardware models Properties

Non-determinism

Interfaces of CARA Simulation

Status Data
/ Message

Java GUI

Manual

CHARON
simulation

Data processing EXtern al
| Java Class

A

<

. Cuff Pressure
. AL Pressure
. PW Pressure

Driven voltage h] .
(control flow rate / | J N I [(P:Iugt_'m]
umping speed . Continui y
PUMPINg specd) . Occ Ok
. AirOk
. back EMF
\ 4 . Impedance

Hardware Setup

Eggl:harun: Test Yersion ¥0.9
File Edit Project Simulate Check Options

=10l x|

I Project: SimCARA

DEE 28 o

SImMCARA.cn

@ agents
@ [mades

mode M GetPointChecker() {

read analog real gTime:

read discrete real CE_ctrlValue:
read analog real CC_setPoint;
write discrete bool CE_reach3P:
private discrete real t;

private discrete int wt;

mode Unknown = M_empty():

mode Check = M ewptyi):
wode Falling = M_emwpty():
wode Forld = M_ewpty():

trans tolnknomm from default to Tnknowm)

do {}

trans toCheck from Tnknowm to Check whe
do {}

trans backWaitl from Check to Unknowm whe
do {}

trans toFalling £rom Check to Falling
when (CE_ctrlWalue < CC_szetFoint
do {t = gTine}

trans backCheck from Falling to Check
when (CE_ctrlWalue »>= CC_zetPoint

SimCARA.Ch

IStatu 5 text

EEicara Simulation GUI

rChange the CARA running condition

Click Conditions bttorn!

If you weant to change CARA environment,

=10 %]

rSoft Button Display

‘ Change SetPoint... ”InitialSetPDintiS?U

— Alarm Message

Blarm Message

=

|

— How to fix alarms

Howe to repait alarm

=

1

[»]

Cuff Pressure

Arterial Line

Pulse Wave

Control Source

Control Value

‘ Terminate Auto-...

Change Conditons ...
rPump Status Display rinfusion Display
Plug in well backEMF 1.0
Continuity wrell Impedance unknown
Air Ok wrell Current CARA mode |Auto-Control
Occ Ok wrell Current flow Rate urkn o
hack EMF well Infusion volume unknawn
Impedance well Diriven Woltage unknowt
r—Alarm Display rReal-Time Data Display

urikn o

urikn o

urikn o

urikn o

urikn o

Hardware in-the-loop Simulation

= We connected the
CHARON Simulator and
GUI to the hardware
setup.

= The hardware consists of
four components:
= M100 Infusion Pump
= 2 1000mL flasks
= Pressure Sensor
= A/D interface

Blood Bank Case Study

The FDA Code of Federal
Regulations (CFR) requirements
are complemented by an
explanatory guidance memo.

Extract formal models from
documents and then analyze for

" errors such as incompleteness;

= jnconsistencies between
documents; and

= requirements traceability and
maintenance.
DBSS (Defense Blood Standard
System) is the system used by
the Army to keep track of their
blood supply.

o

my

* Inconsistency
 Incompleteness

25

Our approach

= CFR and Memo documents
are translated into formal
models.

Merge multiple models into a
single model to

= Verify using formal methods
techniques

= Generate test suite
= Working on semi-automatic

way to extract models using
NLP techniques

= Army’s DBSS

Policy Modeling and Verification
3
e [— 18

Manual
Translation

NLFSMs !

and Mergin
Programmer
Test Script l
Generation Program
1. Write NL Requirements Tool Code
2. Extract formal System Specification
(EFSMs) v 4
3. Programmer implements system - Ce”T”l‘;"’t‘t'O“ 6
4. Create Test Scripts P Y Serints —_—
5. Tester runs scripts on implementation Tester
6. Certifier uses test results and properties to 1 ? il
decide if implementation passes \
Certification | s — | TEst
Criteria Outcomes
Certifier
Yes/No

Outcome

The HASTEN Project

= High Assurance Systems Tools and ENvironments
(HASTEN)

= Develop techniques and tools for “end-to-end” software
engineering of embedded systems
= Requirements capture
= Specification, analysis, simulation

= |mplementation generation and validation: code generation,
testing

= Deployed system monitoring, checking, and steering

» |ntegrated use of tools and artifacts
= Vertical integration: multiple uses of models
= Horizontal integration: multiplicity of techniques

= Case Studies and Tech Transfers

Opportunities and Challenges

Modeling challenges
= Semi-automatic extraction of formal models from informal docs
= Composition of partial, heterogeneous models
Open-source requirements and models
= Multiple use and sharing of modeling artifacts
= Assess to domain experts & Model validation
= Certification based on models
= Benchmarks for tool evaluation
Support for system integration
= Applying model-based techniques to legacy code
= Extracting behavioral interfaces
= Compositional real-time scheduling framework
Certification challenges
= Metrics based on formal method foundations

The End.

	CIS 700-3: Selected Topics in Embedded Systems
	Course requirements
	List of possible topics
	Embedded Systems
	Software Development Process
	RTG: Real-Time Systems Group
	Modeling languages and tools
	CHARON language
	Charon toolset
	CHARON Environment
	Example: Four Legged Robot
	CHARON Code Generator
	Bridging the gap between specification and implementation
	Model-based testing
	Model-based test generation
	Testing-based Validation
	Model-based testing
	Run-time verification and checking
	The MaC Framework
	Case Studies
	Experience/case studies in medical devices
	CARA case study
	Interfaces of CARA Simulation
	Hardware in-the-loop Simulation
	Blood Bank Case Study
	Our approach
	Policy Modeling and Verification
	The HASTEN Project
	Opportunities and Challenges
	The End.

