
Model Carrying Code
An approach for safe execution of untrusted

applications

Presented by

Madhukar Anand

CIS 700

Background
• There has been a significant growth

in the use of software from sources
not fully trusted.
– Document handlers and viewers

• Real audio, ghostview.
– Games, P2P applications

• File-sharing, Instant messaging.
– Freeware, shareware, trialware, mobile

code.
• “How can we trust the code?”

CIS 700

State of the Art
• Very little OS support for coping with

such untrusted applications.

• Code Signing in recent OS’s
– Useful only in verifying code from

trusted producers.

• Approaches towards handling
untrusted code
– Execution monitoring
– Static analysis

CIS 700

State of the Art
• Execution Monitoring

– Policy violations are detected at runtime
– User prompted for additional access

• Unclear whether this solves the problem
– Terminate the program.

• Causes Inconvenience, Initiate clean-up.

• Static Analysis
– No runtime aborts, but…
– Only effective when operating on

source code. Applications are typically
binaries.

CIS 700

State of the Art
• Proof Carrying Codes (PCC)

– code producer must prove code is “secure”
• how does the producer know what is secure?

– proofs are difficult to develop
• In practice, used for simple properties, e.g., type

safety

Need to combine convenience with
enforcing consumer specified
security policies.

CIS 700

Need for new approach
• Neither code producer nor code

consumer can unilaterally determine
security needs
– producer does not know consumer security

policies
– consumer does not know access needs of

a program

• Need an approach that enables the
two parties to collaborate/coordinate
for security

CIS 700

Model-Carrying Code
• Key idea: code producer provides

code, plus a high-level model of its
behavior
– model bridges semantic gap between low-

level binary code and high-level security
policies (of consumer)

– producer need not guess consumer
security policies

– models being much simpler than programs,
automation of consistency checking is
feasible (between consumer policy and the
model)

CIS 700

MCC Framework

CIS 700

Security Assurance in MCC
• Security assurance broken down

into:
– Policy Conformance
– Model Soundness

• Policy conformance: model satisfies
policy
– B[M] B[P]
– since models are much simpler than

programs, automated verification is feasible

CIS 700

Security Assurance in MCC
• Model soundness: program behavior

is consistent with the model
– B[A] B[M]
– Can use a variety of techniques

• Runtime monitoring of system calls or resource-
access ops

• model-signing: producer vouches for accuracy
of model

• PCC: proof of model soundness

CIS 700

Outline

• Security Policies
• Model Generation
• Verification
• Enforcement
• Implementation and Conclusion

CIS 700

Outline

• Security Policies
• Model Generation
• Verification
• Enforcement
• Implementation and Conclusion

CIS 700

MCC Framework

CIS 700

Security Policies
• What are the policies of interest?
• How can they be specified ?

• Since enforcement relies on
execution monitoring only
enforceable properties are of interest
(Safety Properties)
– E.g. access control, resource usage

CIS 700

Security Policy Language
• Behaviors are modeled in terms of

externally observable events.
– E.g., System calls, function calls etc.

• Enforcement of policies will require secure
interception of arbitrary system / function
calls.
– Not possible for function calls in binaries

• EFSA express negation of policies i.e. they
accept traces that violate the intended
policy.

CIS 700

Security Policies
• The formalism used for specifying

policy language is that of the EFSA (or
also using regular expressions)
– The ability to remember arguments

enhances the expressive power of the
policy language.

• EFSA based policies are expressed in
Behavior Monitoring Specification
Language (BMSL)
– Equivalently in Regular expressions over

events

CIS 700

Security Policy Language
• Events are classified into

– Primitive events
• For system calls there are two associated

primitive events: One corresponding to the
invocation and the other to the exit

– Abstract Events
• Classes of primitive events
• In general may be patterns of events

– Different kinds of Patterns that are of interest are
defined in the paper : Event occurrence,
alternation, repetition, etc.

CIS 700

Examples

Prevent writes to all files and reads from admFiles.

CIS 700

Examples

Delete only files that the application created.

CIS 700

Examples

No network access and no file writes

CIS 700

Outline

• Security Policies
• Model Generation
• Verification
• Enforcement
• Implementation and Conclusion

CIS 700

MCC Framework

CIS 700

Model Generation
• In MCC, the code producer

generating the model is unaware of
the consumer security policies.
– A single model usable by all consumers

must be generated by an automated
process.

– This bears more similarity with
behavioral models for intrusion
detection.

MCC uses model extraction via
machine learning from execution
traces.

CIS 700

Overview of the FSA Algorithm
• Learning FSA from strings(traces) is

computationally hard.
– Strings do not give any clue to the state

of the automata.
• E.g. Looking at abcda, we cannot tell that the

2 a’s correspond to the same state.

• Key Idea: State-related information
can be obtained if the location from
where the system call was made is
known.

CIS 700

Example
Example program

• S0;
• While(…){
• S1;
• If (…) S2;
• else S3;
• If (S4) … ;
• else S2;
• S5;
• }
• S3;
• S4;

Traces be
S0/1 S3/10 S4/11,
S0/1 S1/3 S2/4 S4/6 S5/8 S1/3 S3/5 S4/6 S2/7 S5/8 S3/10 S4/11.

CIS 700

Example

Traces be
S0/1 S3/10 S4/11,
S0/1 S1/3 S2/4 S4/6 S5/8 S1/3 S3/5 S4/6 S2/7 S5/8 S3/10 S4/11.

Model learnt from the above traces

CIS 700

Overview of the Algorithm
• The above notion of location has to

be extended when dealing with
libraries.
– This is remedied by using the location

within the executable from where the
call was invoked.

• Obtained by a “walk” up the program stack.

CIS 700

Overview of the Algorithm
• The model extractor consists of an

online and an offline component.
– The Online component consists of a

runtime environment to intercept system
calls and a logger that records system
calls and arguments into a file

– The offline component has two parts :
The EFSA learning algorithm and the
log-file parser.

– The learning algorithm is comprised of
learning argument values and learning
argument relationships.

CIS 700

Learning Argument Values
• There may be a need to learn

absolute values (e.g., filenames)

• This is accomplished by recording
values along with each system call. A
threshold can be used beyond which
the values are aggregated.
– In principle, the algorithm should

support a variety of aggregation
algorithms but they claim that in
practice there are only two: Longest
common prefix and Union on sets.

CIS 700

Learning Argument Relationships
• Important aspect here is learning

temporal relationships.
– Identify which pair of system calls needs

to be considered.
• The algorithm relies on the fact that

relationships of interest are those
that have arguments of the same kind
– E.g, we might be interested in equality of

file descriptors but not in inequalities.
– In their implementation only equality

over integers and strings and prefixes
and suffixes over strings are considered

CIS 700

Learning Argument Relationships
• First, a distinct state variable is

associated with the triple
(system call, invocation location, argument number)

• Each variable that is a candidate for
an equality relationship is stored in a
hash table, indexed by its most
recent value.
– The hash table for different arguments

will be different.

CIS 700

Example
• Separate hash tables for process ids and

file descriptors
• fd will be associated with a list of variables

whose most recent value is fd.
• When another system call with variable v

with value fd’ is made,
– V = lookup (fd’)
– If this is the first time, associate v with V
– If not, then, there is already a set V’ associated

with v. Hence associate V ∩ V’ with v.
– Delete previous value fdold of v and add v to V.

Note that relationships may weaken but never
strengthened.

CIS 700

Learning Argument Relationships
• For prefix and suffix relationships, a

trie data structure is used. (It can be
viewed as a tree-structured FSA for
matching strings).

• Finally a pruning mechanism is used
to remove redundant relationships.

CIS 700

Example

CIS 700

Example

Model for the above program

CIS 700

Outline

• Security Policies
• Model Generation
• Verification
• Enforcement
• Implementation and Conclusion

CIS 700

MCC Framework

CIS 700

Verification
• It is concerned with determining

whether or not a model M satisfies a
security policy P
– We need to check whether B[M] ∩ B[Pc]=Φ

• Thus the verification procedure has
to build a product automaton M X Pc.

• Then, if there are feasible paths to the
final states, then the policy is violated
and M x Pc is the representation of all
such violations.

CIS 700

Verification
• EFSA’s have infinite domain

variables
• The computation of the product

automata has to be extended
from that of the FSA’s.
– The state variables of MP is the union of

state variables in M and P.
– The start state of MP is a tuple (m0, p0),

FMP FM X FP is the final state set.

CIS 700

Verification
• M : δ(s, (e,C1,A1)) = s’ and

Pc : δ(p, (e,C2,A2)) = p’ then (and only then)
M X Pc : δ((s,p), (e, C1^C2, A1U A2)) = (s’,p’)

• The general problem of satisfiability of
arbitrary arithmetic constraints is
undecidable for EFSA over infinite
domain.
– Restrict them to subsets containing = and
≠ relationships.

CIS 700

Conflict Presentation
• Important to give the verifier a

comprehensive view of violation.
• Due to the size of the product, “as is”

view is not clear and precise.
• Present the violation by projecting it

onto the policy automaton.
• Due to merges of transitions, a

refinement of violation is presented.

CIS 700

Example
• Open events corresponding to

different files may need to be
combined above a threshold.
– File names /tmp/a1, … /tmp/a3,
/etc/xyz, /var/f1, /var/f2 may be
combined to /tmp/a* , /etc/xyz,
/var/f1, /var/f2

• Even better : Use a catalog of polices,
and present the ones that are
compatible with given code.

CIS 700

Outline

• Security Policies
• Model Generation
• Verification
• Enforcement
• Implementation and Conclusion

CIS 700

MCC Framework

CIS 700

Enforcement
• The runtime monitoring consists of

intercepting system calls, obtaining
argument values and matching them
against models.

• If the application violates the
behavior captured by the model, the
enforcement module aborts the
program. Then either,
– Producer intentionally misrepresented

the application behavior
• Termination is the right choice here.

CIS 700

Enforcement
– Model does not capture all behaviors.

• Termination may or may not be the correct
choice but the only solution.

• In either case, safety is maintained.

• Policy Enforcement Vs Model
Enforcement
– Model EFSA captures a subset of

behaviors of policy EFSA. Hence it is a
conservative strategy.

– Model EFSA are larger but deterministic.

CIS 700

Outline

• Security Policies
• Model Generation
• Verification
• Enforcement
• Implementation and Conclusion

CIS 700

Implementation tidbits
• Security Policies

– Policy specified in BMSL.
– BMSL specification compiled into EFSA.

• Model generation
– Implemented using execution monitoring
– Offline process and hence not optimized

• Verifier
– XSB Prolog implementation (supports

memoization).
• Model Enforcement

– Uses a in-kernel module to perform
system call interposition.

CIS 700

Results

CIS 700

MCC Conclusion
• Supports code from untrusted

producers
• Synergy with existing approaches

– Cryptographic signing
• Signed models (certifying model soundness)

– Proof-carrying code:
• for verifying model soundness

• Enables producers and consumers to
jointly determine security needs.
– Mitigate security risks, while enjoying the

functionality provided by mobile code

CIS 700

References

• R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar and
Dan DuVarney, Model -Carrying Code: A Practical Approach for
Safe Execution of Untrusted Applications, ACM Symposium on
Operating Systems Principles. (SOSP'03; Bolton Landing, New York;
October 2003).

• Z. Liang, V.N. Venkatakrishnan and R. Sekar, Isolated program
execution: An application transparent approach for executing
untrusted programs, Annual Computer Security Applications
Conference. Las Vegas, December 2003.

