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Background
• There has been a significant growth 

in the use of software from sources 
not fully trusted.
– Document handlers and viewers

• Real audio, ghostview.
– Games, P2P applications

• File-sharing, Instant messaging.
– Freeware, shareware, trialware, mobile 

code.
• “How can we trust the code?”
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State of the Art
• Very little OS support for coping with 

such untrusted applications.

• Code Signing in recent OS’s
– Useful only in verifying code from 

trusted producers.

• Approaches towards handling 
untrusted code 
– Execution monitoring
– Static analysis
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State of the Art
• Execution Monitoring

– Policy violations are detected at runtime
– User prompted for additional access 

• Unclear whether this solves the problem
– Terminate the program.

• Causes Inconvenience,  Initiate clean-up.

• Static Analysis
– No runtime aborts, but…
– Only effective when operating on 

source code. Applications are typically 
binaries.
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State of the Art
• Proof Carrying Codes (PCC) 

– code producer must prove code is “secure”
• how does the producer know what is secure?

– proofs are difficult to develop
• In practice, used for simple properties, e.g., type 

safety

Need to combine convenience with 
enforcing consumer specified 
security policies.
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Need for new approach
• Neither code producer nor code 

consumer can unilaterally determine 
security needs
– producer does not know consumer security 

policies
– consumer does not know access needs of 

a program

• Need an approach that enables the 
two parties to collaborate/coordinate 
for security



CIS 700 

Model-Carrying Code
• Key idea: code producer provides 

code, plus a high-level model of its 
behavior
– model bridges semantic gap between low-

level binary code and high-level security 
policies (of consumer)

– producer need not guess consumer 
security policies

– models being much simpler than programs, 
automation of consistency checking is 
feasible (between consumer policy and the 
model)
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MCC Framework
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Security Assurance in MCC
• Security assurance broken down 

into:
– Policy Conformance
– Model Soundness

• Policy conformance: model satisfies 
policy
– B[M]    B[P]
– since models are much simpler than 

programs, automated verification is feasible
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Security Assurance in MCC
• Model soundness: program behavior 

is consistent with the model
– B[A]     B[M]
– Can use a variety of techniques

• Runtime monitoring of system calls or resource-
access ops

• model-signing: producer vouches for accuracy 
of model

• PCC: proof of model soundness
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Outline

• Security Policies
• Model Generation
• Verification
• Enforcement
• Implementation and Conclusion
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Security Policies
• What are the policies of interest?
• How can they be specified ?

• Since enforcement relies on 
execution monitoring only 
enforceable properties are of interest 
(Safety Properties)
– E.g. access control, resource usage
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Security Policy Language
• Behaviors are modeled in terms of 

externally observable events.
– E.g., System calls, function calls etc.

• Enforcement of policies will require secure 
interception of arbitrary system / function 
calls.
– Not possible for function calls in binaries

• EFSA express negation of policies i.e. they  
accept traces that violate the intended 
policy.
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Security Policies
• The formalism used for specifying 

policy language is that of the EFSA (or 
also using regular expressions)
– The ability to remember arguments 

enhances the expressive power of the 
policy language.

• EFSA based policies are expressed in 
Behavior Monitoring Specification 
Language (BMSL)  
– Equivalently in Regular expressions over 

events
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Security Policy Language
• Events are classified into 

– Primitive events 
• For system calls there are two associated 

primitive events: One corresponding to the 
invocation and the other to the exit

– Abstract Events
• Classes of primitive events
• In general may be patterns of events 

– Different kinds of Patterns that are of interest are 
defined in the paper : Event occurrence, 
alternation, repetition, etc.
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Examples

Prevent writes to all files and reads from admFiles.



CIS 700 

Examples 

Delete only files that the application created.
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Examples

No network access and no file writes
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Model Generation
• In MCC, the code producer 

generating the model is unaware of 
the consumer security policies. 
– A single model usable by all consumers 

must be generated by an automated 
process.

– This bears more similarity with 
behavioral models for intrusion 
detection.

MCC uses model extraction via 
machine learning from execution 
traces.
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Overview of the FSA Algorithm
• Learning FSA from strings( traces) is 

computationally hard.
– Strings do not give any clue to the state 

of the automata. 
• E.g. Looking at abcda, we cannot tell that the 

2 a’s correspond to the same state.

• Key Idea:  State-related information 
can be obtained if the location from 
where the system call was made is 
known.
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Example
Example program

• S0;
• While(…){
• S1;
• If (…) S2;
• else S3;
• If (S4) … ;
• else S2;
• S5;
• }
• S3;
• S4;

Traces be 
S0/1 S3/10 S4/11,
S0/1 S1/3 S2/4 S4/6 S5/8 S1/3 S3/5 S4/6 S2/7 S5/8 S3/10 S4/11.
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Example

Traces be 
S0/1 S3/10 S4/11,
S0/1 S1/3 S2/4 S4/6 S5/8 S1/3 S3/5 S4/6 S2/7 S5/8 S3/10 S4/11.

Model  learnt from the above traces
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Overview of the Algorithm
• The above notion of location has to 

be extended when dealing with 
libraries. 
– This is remedied by using the location 

within the executable from where the 
call was invoked.

• Obtained by a “walk” up the program stack.
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Overview of the Algorithm
• The model extractor consists of an 

online and an offline component.
– The Online component consists of a 

runtime environment to intercept system 
calls and a logger that records system 
calls and arguments into a file

– The offline component has two parts : 
The EFSA learning algorithm and the 
log-file parser.

– The learning algorithm is comprised of 
learning argument values and learning 
argument relationships.
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Learning Argument Values
• There may be a need to learn 

absolute values ( e.g., filenames)

• This is accomplished by recording 
values along with each system call. A 
threshold can be used beyond which 
the values are aggregated.
– In principle, the algorithm should 

support a variety of aggregation 
algorithms but they claim that in 
practice there are only two: Longest 
common prefix and Union on sets.
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Learning Argument Relationships
• Important aspect here is learning 

temporal relationships.
– Identify which pair of system calls needs 

to be considered.
• The algorithm relies on the fact that 

relationships of interest are those 
that have arguments of the same kind
– E.g, we might be interested in equality of 

file descriptors but not in inequalities.
– In their implementation only equality 

over integers and strings and prefixes 
and suffixes over strings are considered
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Learning Argument Relationships
• First, a distinct state variable is 

associated with the triple 
(system call, invocation location, argument number)

• Each variable that is a candidate for 
an equality relationship is stored in a 
hash table, indexed by its most 
recent value.
– The hash table for different arguments 

will be different.
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Example
• Separate hash tables for process ids and 

file descriptors
• fd will be associated with a list of variables 

whose most recent value is fd.
• When another system call with variable v

with value fd’ is made,  
– V = lookup (fd’)
– If this is the first time, associate v with V
– If not, then, there is already a set V’ associated 

with v. Hence associate V ∩ V’ with v.
– Delete previous value fdold of v and add v to V.

Note that relationships may weaken but never 
strengthened.
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Learning Argument Relationships
• For prefix and suffix relationships, a 

trie data structure is used. ( It can be 
viewed as a tree-structured FSA for 
matching strings).

• Finally a pruning mechanism is used 
to remove redundant relationships.
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Example

Model for the above program
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Verification
• It is concerned with determining 

whether or not a model M satisfies a 
security policy P
– We need to check whether B[M] ∩ B[Pc]=Φ

• Thus the verification procedure has 
to build a product automaton M X Pc.

• Then, if there are feasible paths to the 
final states, then the policy is violated 
and M x Pc is the representation of all 
such violations.
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Verification
• EFSA’s have infinite domain 

variables 
• The computation of the product 

automata has to be extended 
from that of the FSA’s.
– The state variables of MP is the union of 

state variables in M and P.
– The start state of MP is a tuple (m0, p0), 

FMP FM X FP is the final state set.
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Verification
• M : δ(s, (e,C1,A1))  = s’ and 

Pc : δ(p, (e,C2,A2))  = p’ then (and only then) 
M X Pc : δ((s,p), (e, C1^C2, A1U A2))  = (s’,p’)

• The general problem of satisfiability of 
arbitrary arithmetic constraints is 
undecidable for EFSA over infinite 
domain.
– Restrict them to subsets containing = and 
≠ relationships.
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Conflict Presentation
• Important to give the verifier a 

comprehensive view of violation.
• Due to the size of the product, “as is” 

view is not clear and precise.
• Present the violation by projecting it 

onto the policy automaton.
• Due to merges of transitions, a 

refinement of violation is presented.
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Example
• Open events corresponding to 

different files may need to be 
combined above a threshold.
– File names /tmp/a1, … /tmp/a3, 
/etc/xyz, /var/f1, /var/f2 may be 
combined to /tmp/a* , /etc/xyz, 
/var/f1, /var/f2

• Even better : Use a catalog of polices, 
and present the ones that are 
compatible with given code.
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Enforcement
• The runtime monitoring consists of 

intercepting system calls, obtaining 
argument values and matching them 
against models.

• If the application violates the 
behavior captured by the model, the 
enforcement module aborts the 
program. Then either,
– Producer intentionally misrepresented 

the application behavior
• Termination is the right choice here.
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Enforcement
– Model does not capture all behaviors.

• Termination may or may not be the correct 
choice but the only solution.

• In either case, safety is maintained.

• Policy Enforcement Vs Model 
Enforcement
– Model EFSA captures a subset of 

behaviors of policy EFSA. Hence it is a 
conservative strategy.

– Model EFSA are larger but deterministic.
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Outline
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Implementation tidbits
• Security Policies

– Policy specified in BMSL.
– BMSL specification compiled into EFSA.

• Model generation
– Implemented using execution monitoring
– Offline process and hence not optimized

• Verifier
– XSB Prolog implementation (supports 

memoization).
• Model Enforcement

– Uses a in-kernel module to perform 
system call interposition.
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Results
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MCC Conclusion
• Supports code from untrusted 

producers
• Synergy with existing approaches

– Cryptographic signing
• Signed models (certifying model soundness)

– Proof-carrying code:
• for verifying model soundness

• Enables producers and consumers to 
jointly determine security needs.
– Mitigate security risks, while enjoying the 

functionality provided by mobile code
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