Model Carrying Co

An approach for safe execution of unt
applications

Presented by

Miihukar Anand

Background

* There has been a significant grow
in the use of software from source
not fully trusted.

— Document handlers and viewers
* Real audio, ghostview.

— Games, P2P applications
* File-sharing, Instant messaging.

— Freeware, shareware, trialware, mobile
code.

« “How can we trust the code?”

.

State of the Art

* Very little OS support for coping
such untrusted applications.

 Code Signing in recent OS’s

— Useful only in verifying code from
trusted producers.

 Approaches towards handling
untrusted code

— Execution monitoring

- Static uSHE

State of the Art

« Execution Monitoring
— Policy violations are detected at run

— User prompted for additional acces
* Unclear whether this solves the proble

— Terminate the program. |
- Causes Inconvenience, Initiate clean-up.

« Static Analysis
— No runtime aborts, but...

— Only effective when operating on
source code. Applications are typically
binaries.

.

State of the Art
* Proof Carrying Codes (PCC)

— code producer must prove code is “secur
* how does the producer know what is secure

— proofs are difficult to develop

* |n practice, used for simple properties, €:9:; type
safety

Need to combine convenience with
enforcing consumer specified
security policies.

T

Need for new approach

* Neither code producer nor code
consumer can unilaterally determi
security needs
— producer does not know consumer se

policies 4
— consumer does not know access needs of
da program

* Need an approach that enables the
two parties to collaborate/coordinate
for security

.

Model-Carrying Code

* Key idea: code producer provide
code, plus a high-level model of it
behavior

— model bridges semantic gap between
level binary code and high-level se¢
policies (of consumer)

— producer need not guess consumer
security policies

— models being much simpler than programs,
automation of consistency checking is
feasible (between consumer policy and the

model) -

MCC Framework

Policy

Conflict
Feedback

NS

Model
[Generator J_' Model

Untruated/
@/

Producer-side

f Verifier
Model
Enforcement

Consumer—side

Policy
Selection

Enforcement

Security Assurance in M

» Security assurance broken down
into:
— Policy Conformance
— Model Soundness

* Policy conformance: model satisfies
policy
— B[M] < BJ[P]

— since models are much simpler than
programs, automated verification is feasible |

—T-

Security Assurance in M

 Model soundness: program beha
Is consistent with the model

— B[A] ¢ B[M]
— Can use a variety of techniques

* Runtime monitoring of system calls or
access ops

* model-signing: producer vouches for accuracy
of model

« PCC: proof of model soundness

ource-

e

Outline

« Security Policies
 Model Generation
* Verification
 Enforcement

* Implementation and Conclusion

-

Outline

* Security Policies
 Model Generation
* Verification
 Enforcement

* Implementation and Conclusion

e

MCC Framework

Policy

Conflict
Feedback

NS

Model
[Generator J_' Model

Untruated/
@/

Producer-side

f Verifier
Model
Enforcement

Consumer—side

Policy
Selection

Enforcement

Security Policies

 What are the policies of interest?
 How can they be specified ?

* Since enforcement relies on
execution monitoring only
enforceable properties are of interest
(Safety Properties)

— E.g. access control, resource usage

.

Security Policy Languag

e Behaviors are modeled in terms of
externally observable events.

— E.g., System calls, function calls etc.

 Enforcement of policies will require
interception of arbitrary system / function
calls.

— Not possible for function calls in binaries

 EFSA express negation of policies i.e. they
accept traces that violate the intended
policy.

—T-

Security Policies

* The formalism used for specifyin
policy language is that of the EFS
also using regular expressions)
— The ability to remember arguments

enhances the expressive power of
policy language. |

 EFSA based policies are expressed in
Behavior Monitoring Specification
Language (BMSL)
— Equivalently in Regular expressions over
events

.

Security Policy Languag

« Events are classified into

— Primitive events

* For system calls there are two associat
primitive events: One corresponding to
invocation and the other to the exit

— Abstract Events
« Classes of primitive events

 In general may be patterns of events

— Different kinds of Patterns that are of interest are
defined in the paper : Event occurrence,
alternation, repetition, etc.

—T-

Examples

List admFiles = {*“/etc/f1”, “/etc/f27};
any* - open(f, mode) | ((f in admFiles)
| | (mode = O_RDONLY))

admbFiles := “fetc/*”, “/var/*”

>G>Q other

open(f, mode) | (f € admFiles) ||
(mode == O_RDONLY)

(a) Access control policy

Prevent writes to all files and reads from admFiles.

——

Examples

List fileList = { }:
(FileCreateOp(t) | add(f, fileList) | | other)*
- (FileDeleteOp(g) | !(g in fileList))

\

other m FileCreateOp(f) |
add(f.fileList)
FileDeleteOp(g) |

g ¢ fileList
any O

(b) History-sensitive policy

Delete only files that the application created.

Examples

any™ - ((socket(d, f)| d '= PF_LOCAL)
| | FileWriteOp(g))

other

socket(domain. flags)

| domamn !'= PF_LOCJAL FileWriteOP()

ny Q

(c) Sensitive file read policy

No network access and no file writes

Outline

« Security Policies
 Model Generation
* Verification
 Enforcement

* Implementation and Conclusion

e

MCC Framework

Policy

Conflict
Feedback

NS

Model
[Generator J_' Model

Untruated/
@/

Producer-side

f Verifier
Model
Enforcement

Consumer—side

Policy
Selection

Enforcement

Model Generation

* In MCC, the code producer
generating the model is unaware
the consumer security policies.

— A single model usable by all consu
must be generated by an automat
process.

— This bears more similarity with
behavioral models for intrusion
detection.

MCC uses model extraction via
machine learning from execution

Overview of the FSA Algorit

* Learning FSA from strings(trace
computationally hard.

— Strings do not give any clue to the

of the automata.

* E.g. Looking at abcda, we cannot tel
2 a’s correspond to the same state.

 Key Idea: State-related information
can be obtained if the location from
where the system call was made is

known.

—T-

Example

Example program

. SO;

. While(...){

. S1;

. If (...) S2;
. else S3;
. If (S4) ... ;
. else S2;
. S5;

y }

. S3;

. S4;

Traces be

S0/1 S3/10 S4/11,
S0/1 S1/3 S2/4 S4/6 SSI8 S1/3 S3/5 S4/6 S2/7 S5/8 S3/10 S4/11.

e

Example

Traces be
S0/1 S3/10 S4/11,
S0/1 S1/3 S2/4 S4/6 S5/8 S1/3 S3/5 S4/6 S2/7 S5/8 S3/10 S

Model learnt from the above traces

.

Overview of the Algorith

e The above notion of location has
be extended when dealing with
libraries.

— This is remedied by using the locati
within the executable from where
call was invoked.

» Obtained by a “walk” up the program stack.

—T-

Overview of the Algorith

 The model extractor consists of a
online and an offline component.

— The Online component consists of
runtime environment to intercept sy
calls and a logger that records sy
calls and arguments into a file

— The offline component has two parts :
The EFSA learning algorithm and the
log-file parser.

— The learning algorithm is comprised of
learning argument values and learning

argument relatiihips.

Learning Argument Valu

 There may be a need to learn
absolute values (e.g., filenames)

* This is accomplished by recordin
values along with each system
threshold can be used beyond wh|ch
the values are aggregated. |
— In principle, the algorithm should

support a variety of aggregation
algorithms but they claim that in

practice there are only two: Longest
common prefix and Union on sets.

—T-

Learning Argument Relation

* Important aspect here is learning
temporal relationships.

— Ildentify which pair of system calls n
to be considered.

* The algorithm relies on the fact
relationships of interest are those
that have arguments of the same kind"

— E.g, we might be interested in equality of
file descriptors but not in inequalities.

— In their implementation only equality
over integers and strings and prefixes |
and suffixes over strings are considered

—T-

Learning Argument Relation

* First, a distinct state variable Is
associated with the triple

(system call, invocation location, argument num

- Each variable that is a candidate
an equality relationship is stor
hash table, indexed by its most
recent value.

— The hash table for different arguments
will be different.

—T-

Example

 Separate hash tables for process ids
file descriptors

 fd will be associated with a list of varia
whose most recent value is fd.

 When another system call with variab
with value fd’ is made,
— V = lookup (fd’)
— If this is the first time, associate v with V

— If not, then, there is already a set V' associated
with v. Hence associate V N V' with v.

— Delete previous value fd,, of v and add v to V.

Note that relationships may weaken but never

strengthened. -

Learning Argument Relation

* For prefix and suffix relationships
trie data structure is used. (It can

viewed as a tree-structured FSA f
matching strings).

* Finally a pruning mechanism is used
to remove redundant relationships.

e

Example

int main(int argc, char *argv[]) {
int sd, rc. i, log_fd.out_fd.flag = 1:
struct sockaddr_in remoteServAddr;
char recvline[SIG_SIZE+1]. sendline[SIG_SIZE+1]:
char buf[READ _SIZE];

init_remote_server_addr(&remoteServAddr....),
init_sendmsgi sendline,...);
sd = socket(PF_INET,.SOCK_STREAM.0), «
connect({sd, (struct sockaddr®)&remoteServ Addr,sizeof(...)); <
send(sd, sendline, strlen(sendline +1.0). «
recvisd, recvline, SIG_SIZE.D); 4
recvline[SIG_SIZE] ="0";
log_fd = open{"/var/log/httpd/access_log” . O_RDONLY'). 4
out_fd = open("/tmp/logfile” O_CREAT|O_WRONLY). 4
close(sd); «
while (flag!=0) {
i=0:
do {
re=read(log_fd.buf+i,1). -
if (rc == 0) flag =0,
1 while (bufi++] '= "\n" && flag = 0);
buffi]="\0";
if (strstribuf,recvline) !=0)
write{out_fd.recvline, S1G_SIZE); 4

}
close(log_fd). -«

close(out_fd), «
return 0,

Example

read(logfd, .. .)
open(*/tmp/logtile”,

&

O_WRONLY, out_fd) close(sd) q
-
read(log fd, ...)
O_RDONLY.log fd) \
)
@ @ read(log_fd, .

connect(sd, .. .) write{out_ fd,)
recv(sd, ..

@ send(sd. . ..) c]nse(]ng_fd] @ c]c-se(out_fd]
-

Model for the above program

——

socket(PF_INET. ... sd) T open(“/var/log/htipd/access log™,

-

write(out_fd, .

Outline

« Security Policies
 Model Generation
* Verification
 Enforcement

* Implementation and Conclusion

—T-

MCC Framework

Policy

Conflict
Feedback

NS

Model
[Generator J_' Model

Untruated/
@/

Producer-side

f Verifier
Model
Enforcement

Consumer—side

Policy
Selection

Enforcement

Verification

* It is concerned with determining
whether or not a model M satisfie
security policy P

* Thus the verification procedure has
to build a product automaton m X Pe.

 Then, if there are feasible paths to the
final states, then the policy is violated
and M x Pc is the representation of all
such violations.

-

Verification

« EFSA’s have infinite domain
variables

 The computation of the produ
automata has to be extende
from that of the FSA'’s.

— The state variables of MP is the union of
state variables in M and P.

— The start state of MP is a tuple (m, py),
Fup & Fu X Fp Is the final state set.

-

Verification

« M:d(s, (¢,C,,A,)) =s’and
Pc:o(p, (e,C,A,)) = p’then (and only the
M X Pc:3((s,p), (e, C,AC,, AJUAS)) = (S

* The general problem of satisfiabili
arbitrary arithmetic constraints'is
undecidable for EFSA over infinite
domain.

— Restrict them to subsets containing = and
relationships.

-

Conflict Presentation

* Important to give the verifier a
comprehensive view of violation.

* Due to the size of the product, “a
view is not clear and precise.

* Present the violation by projecting it
onto the policy automaton.

* Due to merges of transitions, a
refinement of violation is presented.

—T-

Example

e Open events corresponding to

different files may need to be
combined above a threshold.

— File names /7tmp/al, .. /tmp/as3,
/etc/xyz, /var/fl, /var/f2
combined to /tmp/a* , /ete/Xyz,
/var/Ttl, /var/f2

* Even better : Use a catalog of polices,
and present the ones that are
compatible with given code.

-

be

Outline

« Security Policies
 Model Generation
* Verification
 Enforcement

* Implementation and Conclusion

—T-

MCC Framework

Policy

Conflict
Feedback

NS

Model
[Generator J_' Model

Untruated/
@/

Producer-side

f Verifier
Model
Enforcement

Consumer—side

Policy
Selection

Enforcement

Enforcement

The runtime monitoring consists
intercepting system calls, obtaini
argument values and matching th
against models.

If the application violates the
behavior captured by the model, the
enforcement module aborts the
program. Then either,

— Producer intentionally misrepresented
the application behavior

* Termination is the right choice here.

Enforcement

— Model does not capture all behavio

 Termination may or may not be the corr
choice but the only solution.

* In either case, safety is maintaine

* Policy Enforcement Vs Model
Enforcement

— Model EFSA captures a subset of
behaviors of policy EFSA. Hence it is a
conservative strategy.

— Model EFSA are larger but deterministic.

Outline

« Security Policies
 Model Generation
* Verification
 Enforcement

* Implementation and Conclusion

e

Implementation tidbits

* Security Policies
— Policy specified in BMSL.
— BMSL specification compiled into E
 Model generation
— Implemented using execution mo ring
— Offline process and hence not optimized
* Verifier

— XSB Prolog implementation (supports
memoization).

 Model Enforcement
— Uses a in-kernel module to perform

system call h ition.

Results

=

Application | Program Model Size Enforcement Overhead Verification
Size (KB) | States | Transitions | Relationships | Interception | Total | Time (msec.) | Space (MB)
only
xpdf 1.0 906 125 455 305 2% 30% 1.00 0.5
gaim (.53 3173 283 937 432 2% 21% 1.80 0.7
http-analyze
2413 333 158 391 247 0% 24% 0.70 04

MCC Conclusion

* Supports code from untrusted
producers

* Synergy with existing approache
— Cryptographic signing
« Signed models (certifying model soun

— Proof-carrying code:
* for verifying model soundness

 Enables producers and consumers to
jointly determine security needs.
— Mitigate security risks, while enjoying the

functionality provi d by mobile code

ess)

References

 R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar and
Dan DuVarney, Model -Carrying Code: A Practical Approach for
Safe Execution of Untrusted Applications, ACM Symposium on
Operating Systems Principles. (SOSP'03; Bolton Landing, New York;
October 2003).

« Z. Liang, V.N. Venkatakrishnan and R. Sekar, Isolated program
execution: An application transparent approach for executing
untrusted programs, Annual Computer Security Applications
Conference. Las Vegas, December 2003.

5700

