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Outline and scope

• Classification of model-driven testing
• Conformance testing for communication 

protocols
• Coverage-based testing

– Coverage criteria
– Coverage-based test generation

• Can we do more? (open questions)



Testing classification

• By component level
– Unit testing
– Integration testing
– System testing

• By abstraction level
– Black box
– White box
– Grey box ???



Testing classification

• By purpose
– Functional testing
– Performance testing
– Robustness testing
– Stress testing

• Who performs testing?
– Developers
– In-house QA
– Third-party



Functional testing

• An implementation can exhibit a variety of 
behaviors

• For each behavior, we can tell whether it is 
correct or not

• A test can be applied to the implementation 
and accept or reject one or more behaviors
– The test fails if a behavior is rejected

• A test suite is a finite collection of tests
– Testing fails if any test in the suite fails



Formal methods in testing

• “Testing can never demonstrate the absence of 
errors, only their presence.”

Edsger W. Dijkstra
• How can formal methods help?
• Add rigor!

– Reliably identify what should to be tested
– Provide basis for test generation
– Provide basis for test execution



Model-driven testing

• Rely on a model of the system
– Different interpretations of a model

• Model is a requirement
– Black-box conformance testing
– QA or third party

• Model is a design artifact
– Grey-box unit/system testing
– QA or developers



Conformance testing

• A specification prescribes legal behaviors
• Does the implementation conform to the 

specification?
– Need the notion of conformance

• Not interested in:
– How the system is implemented?
– What went wrong if an error is found?
– What else the system can do?



Test hypothesis

• How do we relate beasts of different species?
– Implementation is a physical object
– Specification is a formal object

• Assume there is a formal model that is faithful 
to implementation
– We do not know it!

• Define conformance between the model and 
the specification
– Generate tests to demonstrate conformance



Conformance testing with LTS

• Requirement is specified as a labeled transition 
system

• Implementation is modeled as an input-output 
transition system

• Conformance relation is given by ioco
– [Tretmans96]
– Built upon earlier work on testing preorders



Historical reference

• Process equivalences:
– Trace equivalence/preorder is too coarse
– Bisimulation/simulation is too fine

• Middle ground:
– Failures equivalence in CSP
– may- and must-testing by Hennessy
– Testing preorder by de Nicola
– They are all the same!

• Right notion but hard to compute



Testing architecture

• Implementation 
relation

• Test generation 
algorithm

• Test execution 
engine



Input-Output Transition Systems
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Input-Output Transition Systems

LI =  { ?dime, ?nickel }

LU =  { !coffee, !tea }

Input-Output Transition Systems

IOTS (LI ,LU )   ⊆ LTS (LI ∪ LU ) 

IOTS is LTS with Input-Output
and always enabled inputs:

for all states  s,

for all inputs  ?a ∈ LI :
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S ?a



Preorders on IOTS

implementation
i

specification
s

environment
e

environment
e

imp

s ∈ LTS(LI∪LU)i ∈ IOTS(LI,LU)

imp ⊆ IOTS (LI,LU)  x LTS (LI∪LU)

Observing IOTS where system inputs
interact with environment outputs, and vice versa



Preorders on IOTS

implementation
i

specification
s

environment
e

environment
e

imp

s ∈ LTS(LI∪LU)i ∈ IOTS(LI,LU)

i imp s ⇔ ∀ e ∈ E .  obs ( e, i ) ⊆ obs (e, s )

↓
IOTS(LU,LI)



Input-Output Testing Relation

implementation
i

specification
s

environment
e

environment
e

≤iot

s ∈ LTS(LI∪LU)

i ≤iot s  ⇔ ∀ e ∈ IOTS(LU,LI) .obs ( e, i ) ⊆ obs (e, s )

i ∈ IOTS(LI,LU)

obs ( e, p )   =   (  traces (e||p ),  qtraces (e||p )  )

qtraces(p) = σ ∈ L*. p after σ refuses LU



Testing preorders – a side note

• One of the reasons for using IOTS over LTS is 
that ≤iot is computationally simpler than 
conventional testing preorder
– Testing preorder requires us to compare sets of 

pairs (trace, refusal set)
– At the same time ≤iot allows us to use inclusion of 

weakly quiescent traces:
• inputs can never be refused by i, and 

outputs can never be refused by e
• i after σ refuses A    ⇒ A = ∅ or  A = LU



Representing quiescence

• Extend IOTS with quiescent transitions
– deterministic δ-trace automata
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δδ

∆p:p:



Conformance relation ioconf

• Finally…
i ≤iot s ⇔ ∀ σ∈L*.out( ∆i after σ ) ⊆ out( ∆s after σ )

• Allow underspecification
– restrict to traces of s
i ioconf s =def

∀σ∈traces(∆s)∩L*.out(∆i after σ) ⊆ out(∆s after σ)
• ioconfF: use arbitrary F instead of traces of s
• Conformance relation ioco accounts for 

repetitive quiescence



Test cases

• A test case is a deterministic IOTS(LU,LI) with 
finite behaviors
– Note reversed inputs and outputs
– Do not allow choice between outputs or 

between input and output
• Verdict function ν: S → {fail,pass}
• Test run: i passes t =def

(i||t) after σ deadlocks ⇒
ν(t after σ)=pass

?dime

!coffee !tea

pass

pass

fail

fail



Test generation

• Test suite Ts for a specification s is complete:
i ioconf s iff ∀t∈Ts . i passes t

• Test suite Ts is sound if
i ioconf s ⇒ ∀t∈Ts . i passes t

• Complete test suites are usually infinite
– Aim at generating sound test suites



Test generation algorithm

• Gen( ∆s, F )
– Choose non-deterministically:
1. t = stop and ν (t) = pass

2. t = a . Gen(∆’s, F after a), with ∆s → ∆’s
ν (t) = pass

3.

a

{ } { }

pass fail)stop(
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Example

• F = dime.coffee
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Wrong 
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Test purposes

• Where does F come from?
• Test purposes:

– Requirements, use cases
– Automata, message sequence charts

• Test purposes represent “interesting” or 
“significant” behaviors
– Define “interesting” or “significant”…

• Can we come up with test purposes 
automatically?



Summary: conformance testing

• Advantages:
– Very rigorous formal foundation
– Size of the test suite is controlled by use 

cases
• Disadvantages:

– How much have we learned about the system 
that passed the test suite?

– Does not guarantee coverage



Coverage-based testing

• Traditional:
– Tests are derived from the implementation 

structure (code)
• Model-driven:

– Cover the model instead of code
– Model should be much closer to the 

implementation in structure
• Relies on coverage criteria



Coverage criteria and tests

• [HongLeeSokolskyUral02]
• Control flow: 

– all-states
– all-transitions

• Data flow: 
– all-defs
– all-uses 
– all-inputs
– all-outputs

• Test is a linear sequence of inputs and outputs



Specifications: EFSM

• Transition systems equipped with variables
• Transitions have guards and update blocks

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1



Coverage criteria

• Each coverage criterion is represented by a set 
of temporal logic formulas
– WCTL: a subset of CTL

• Atomic propositions p1,…,pn
• Temporal operators EX, EU, EF
• Conjunctions: at most one non-atomic conjunct
• Negations is applied only to atomic propositions
• Unrestricted disjunctions
• E.g.: EF(p1 & EFp2)

– WCTL formulas have linear witnesses



All-states coverage criterion

• Requires every state be covered at least once
• With every state s, associate EF(s & EFexit)

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

EF(idle & EFexit)
EF(busy & EFexit)

IDLE BUSY



All-transitions coverage criterion

• Requires every transition be covered at least 
once

• With every transition t, associate EF(t & EFexit)

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

EF(t1 & EFexit)
EF(t2 & EFexit)
EF(t3 & EFexit)
EF(t4 & EFexit)
EF(t5 & EFexit)

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1



Data flow: definitions and uses

• Definition: a value is assigned to a variable
• Use: a value of a variable is used in an 

expression
• Variables are defined and used in transitions
• Definition-use pair: (v,t,t’)

– v is defined by t
– v is used by t’
– There is a path from t to t’ free from other 

definitions of v



Covering a du-pair

• With a du-pair (v, t, t’), associate 
– EF(t & EXE[!def(v) U (t’ & EFexit)]) 
– def(v) : disjunction of all transitions that 

define v

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

t1: insert[m+x<=5]
/m:=m+x

t2: coffee[m>1]
/m:=m-1

EF(t1 & EXE[!(t1 | t2) U (t2 & EFexit)])



Data-flow coverage criteria

• All-defs coverage criterion: a definition-clear path
– from every definition to some use

• All-uses coverage criterion: a definition-clear path
– from every definition to every use

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

All-uses coverage criterion
EF(t1 & EXE[!(t1 | t2) U (t1 & EFexit)])
EF(t1 & EXE[!(t1 | t2) U (t2 & EFexit)])
EF(t1 & EXE[!(t1 | t2) U (t4 & EFexit)])
EF(t1 & EXE[!(t1 | t2) U (t5 & EFexit)])
EF(t2 & EXE[!(t1 | t2) U (t1 & EFexit)])
EF(t2 & EXE[!(t1 | t2) U (t2 & EFexit)])
EF(t2 & EXE[!(t1 | t2) U (t4 & EFexit)])
EF(t2 & EXE[!(t1 | t2) U (t5 & EFexit)])



Data flow chains

• Affect pair (v, t, v’, t’): the value of v used by t
affects the value of v’ defined at t’
– Either t=t’ ((v,t) directly affects (v’,t’)) or
– there is a du-pair (v’’,t,t’’) s.t. (v,t) directly affects 

(v’’,t) and (v’’,t’’) affects (v’,t’)

t5: display/y:=m

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

(x, t1) directly affects (m, t1)t1: insert[m+x<=5]
/m:=m+x

(x, t1) affects (y, t5)

t1: insert[m+x<=5]
/m:=m+x

t5: display/y:=m



Data flow chain coverage

• Affect pair (v, t, v’, t’)
– May consist of an arbitrary number of 

definition-use pairs
– We extend CTL with least fixpoint operators

• Alternatively, we can use (alternation-free) mu-
calculus

• All-inputs coverage criterion 
– Requires a path from every input to some

output be covered at least once
• All-outputs coverage criterion

– Requires a path from every input to every
t t b  d t l t 



Test Generation

Model
checker

System 
model

Logic
formula

True or
false

Witness or 
counterexample

Coverage
criterion

Model
checker

System 
model

A set of 
logic
formulas

A set of
witnesses



Test Generation

• Generating a witness for a formula
– Cost: the length of a witness
– A minimal-cost witness for a formula 

• Existing model checkers generate a minimal-cost 
witness by breadth-first search of state space

E[    U    ]



Test Generation

• Costs
– The total length of witnesses or
– The number of witnesses

• Both optimization problems are NP-hard

E[    U    ]

E[    U    ]

E[    U    ]

E[    U    ]



Coverage for distributed systems

• What if our system is a collection of 
components?

• Possible solutions:
– Generate tests for each components

• Clearly unsatisfactory; does not test integration
– Generate tests from the product of 

component models
• Too many redundant tests

• Non-determinism is another problem



Example

• Producer-consumer with acknowledgements



Covering product transition system

• Linear tests bring trouble:
send?.ack!.recv! 
– May fail if the system chooses a different path

• Tests differ in interleavings
of independent events
– No need to test 

send?.ack!.recv! 
send?.recv!.ack!
separately

• State explosion in test suite!

send?

recv!

ack!

ack!
recv!

recv! send?
τ τ

send?

recv!τ

recv!

τ τ



Partial orders for test generation

• Use event structures instead of transition 
systems [Heninger97]

• Test generation covers the event structure
• Allows natural generation of distributed 

testers



Prime event structures (PES)

• Set of events E
– Events are occurrences of actions

• Causality relation
– Partial order

• Conflict relation 
– irreflexive and symmetric

• Labeling function
• Finite causality
• Conflict inheritance

EE×⊆p

EE×⊆#

AEl →:
{ } finite is eee p'|'

eeeeee ′′⇒′′′∧′ ## p



Producer-consumer PES

• Structure is infinite
– Initial part is shown

• Causally unrelated and
non-conflicting events
can occur together

• Behaviors will start
repeating
– Can stop with

finite structure



Test generation with PES

• Project PES on observable actions, propagating 
conflicts

• Every path in the PES should be covered
• Tests consist of distributed 

testers with coordination 
messages between tests
– Coordination messages are 

inserted when there is a 
causal edge between 
locations

ARS
startstartstart

send?

ack!recv! recv!



Summary: coverage-based testing

• Advantages: 
– Exercise the specification to the desired 

degree
– Does not rely on test purpose selection

• Disadvantages:
– Large and unstructured test suites
– If the specification is an overapproximation, 

tests may be infeasible



Generation of test purposes

• Recent work: [HenningerLuUral-03]
• Construct PES
• Generate MSC (message sequence charts) to 

cover PES
• Use MSC as test purposes in ioco-based test 

generation



Controllability of testing

• Conformance testing may not provide enough 
guarantees
– With branching tests, test purpose behavior 

may be avoided
– What if I never

see ack?

• Problem: inherent uncertainty in the system



How to contain uncertainty?

• Avoidance (no need to increase control)
– During testing, compute confidence measure

• E. g., accumulate coverage
– Stop at the desired confidence level

• Prevention (add more control)
– Use instrumentation to resolve uncertainty
– What to instrument?

• Use model for guidance
• Anyone needs a project to work on?



Test generation tools

• TorX
– Based on ioco
– On-the-fly test generation and execution
– Symbolic testing (data parameterization)
– LOTOS, Promela, …
– http://fmt.cs.utwente.nl/tools/torx/

• TGV
– Based on symbolic ioconf
– LOTOS, SDL, UML
– http://www.irisa.fr/pampa/VALIDATION/TGV/TGV.html

http://fmt.cs.utwente.nl/tools/torx/
http://www.irisa.fr/pampa/VALIDATION/TGV/TGV.html
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