
Model-driven Test Generation

Oleg Sokolsky

September 22, 2004

Outline and scope

• Classification of model-driven testing
• Conformance testing for communication

protocols
• Coverage-based testing

– Coverage criteria
– Coverage-based test generation

• Can we do more? (open questions)

Testing classification

• By component level
– Unit testing
– Integration testing
– System testing

• By abstraction level
– Black box
– White box
– Grey box ???

Testing classification

• By purpose
– Functional testing
– Performance testing
– Robustness testing
– Stress testing

• Who performs testing?
– Developers
– In-house QA
– Third-party

Functional testing

• An implementation can exhibit a variety of
behaviors

• For each behavior, we can tell whether it is
correct or not

• A test can be applied to the implementation
and accept or reject one or more behaviors
– The test fails if a behavior is rejected

• A test suite is a finite collection of tests
– Testing fails if any test in the suite fails

Formal methods in testing

• “Testing can never demonstrate the absence of
errors, only their presence.”

Edsger W. Dijkstra
• How can formal methods help?
• Add rigor!

– Reliably identify what should to be tested
– Provide basis for test generation
– Provide basis for test execution

Model-driven testing

• Rely on a model of the system
– Different interpretations of a model

• Model is a requirement
– Black-box conformance testing
– QA or third party

• Model is a design artifact
– Grey-box unit/system testing
– QA or developers

Conformance testing

• A specification prescribes legal behaviors
• Does the implementation conform to the

specification?
– Need the notion of conformance

• Not interested in:
– How the system is implemented?
– What went wrong if an error is found?
– What else the system can do?

Test hypothesis

• How do we relate beasts of different species?
– Implementation is a physical object
– Specification is a formal object

• Assume there is a formal model that is faithful
to implementation
– We do not know it!

• Define conformance between the model and
the specification
– Generate tests to demonstrate conformance

Conformance testing with LTS

• Requirement is specified as a labeled transition
system

• Implementation is modeled as an input-output
transition system

• Conformance relation is given by ioco
– [Tretmans96]
– Built upon earlier work on testing preorders

Historical reference

• Process equivalences:
– Trace equivalence/preorder is too coarse
– Bisimulation/simulation is too fine

• Middle ground:
– Failures equivalence in CSP
– may- and must-testing by Hennessy
– Testing preorder by de Nicola
– They are all the same!

• Right notion but hard to compute

Testing architecture

• Implementation
relation

• Test generation
algorithm

• Test execution
engine

Input-Output Transition Systems

dime, nickel coffee, tea

from user to machine from machine to user
initiative with user initiative with machine
machine cannot refuse user cannot refuse

input output
LI LU

LI ∩ LU = ∅ LI ∪ LU = L

dime

coffee

nickel

tea

S1 S2

S3 S4

S0

!

??

!

LI = { ?dime, ?nickel }

LU = { !coffee, !tea }

Input-Output Transition Systems

LI = { ?dime, ?nickel }

LU = { !coffee, !tea }

Input-Output Transition Systems

IOTS (LI ,LU) ⊆ LTS (LI ∪ LU)

IOTS is LTS with Input-Output
and always enabled inputs:

for all states s,

for all inputs ?a ∈ LI :

?dime
?nickel

?dime
?nickel

?dime
?nickel

?dime
?nickel

?dime

!coffee

?nickel

!tea

S ?a

Preorders on IOTS

implementation
i

specification
s

environment
e

environment
e

imp

s ∈ LTS(LI∪LU)i ∈ IOTS(LI,LU)

imp ⊆ IOTS (LI,LU) x LTS (LI∪LU)

Observing IOTS where system inputs
interact with environment outputs, and vice versa

Preorders on IOTS

implementation
i

specification
s

environment
e

environment
e

imp

s ∈ LTS(LI∪LU)i ∈ IOTS(LI,LU)

i imp s ⇔ ∀ e ∈ E . obs (e, i) ⊆ obs (e, s)

↓
IOTS(LU,LI)

Input-Output Testing Relation

implementation
i

specification
s

environment
e

environment
e

≤iot

s ∈ LTS(LI∪LU)

i ≤iot s ⇔ ∀ e ∈ IOTS(LU,LI) .obs (e, i) ⊆ obs (e, s)

i ∈ IOTS(LI,LU)

obs (e, p) = (traces (e||p), qtraces (e||p))

qtraces(p) = σ ∈ L*. p after σ refuses LU

Testing preorders – a side note

• One of the reasons for using IOTS over LTS is
that ≤iot is computationally simpler than
conventional testing preorder
– Testing preorder requires us to compare sets of

pairs (trace, refusal set)
– At the same time ≤iot allows us to use inclusion of

weakly quiescent traces:
• inputs can never be refused by i, and

outputs can never be refused by e
• i after σ refuses A ⇒ A = ∅ or A = LU

Representing quiescence

• Extend IOTS with quiescent transitions
– deterministic δ-trace automata

?dime
?nickel

?dime
?nickel

?dime
?nickel

?dime
?nickel

?dime

!coffee

?nickel

!tea

?dime
?nickel

?dime
?nickel

?dime
?nickel

?dime
?nickel

?dime

!coffee

?nickel

!tea

δ

δδ

∆p:p:

Conformance relation ioconf

• Finally…
i ≤iot s ⇔ ∀ σ∈L*.out(∆i after σ) ⊆ out(∆s after σ)

• Allow underspecification
– restrict to traces of s
i ioconf s =def

∀σ∈traces(∆s)∩L*.out(∆i after σ) ⊆ out(∆s after σ)
• ioconfF: use arbitrary F instead of traces of s
• Conformance relation ioco accounts for

repetitive quiescence

Test cases

• A test case is a deterministic IOTS(LU,LI) with
finite behaviors
– Note reversed inputs and outputs
– Do not allow choice between outputs or

between input and output
• Verdict function ν: S → {fail,pass}
• Test run: i passes t =def

(i||t) after σ deadlocks ⇒
ν(t after σ)=pass

?dime

!coffee !tea

pass

pass

fail

fail

Test generation

• Test suite Ts for a specification s is complete:
i ioconf s iff ∀t∈Ts . i passes t

• Test suite Ts is sound if
i ioconf s ⇒ ∀t∈Ts . i passes t

• Complete test suites are usually infinite
– Aim at generating sound test suites

Test generation algorithm

• Gen(∆s, F)
– Choose non-deterministically:
1. t = stop and ν (t) = pass

2. t = a . Gen(∆’s, F after a), with ∆s → ∆’s
ν (t) = pass

3.

a

{ } { }

pass fail)stop(
fail)(pass)(

)(|.)(,|stop.

 otherwise ; if
otherwise ;if

F
Foutt

outxtxoutxLxxt

S

SxSU

∉=

∈∨∆∈=

∆∈+∆∉∈= ∑∑

εν
εδν

Example

• F = dime.coffee

?dime
?nickel

?dime
?nickel

?dime
?nickel

?dime
?nickel

?dime

!coffee

?nickel

!tea

δ

δδ

∆p:

?dime

!coffee !tea

pass

pass

fail

fail

ε not in
F after dime

and not
quiescent

quiescent

Wrong
outputRight

output

output-
enabled

Test purposes

• Where does F come from?
• Test purposes:

– Requirements, use cases
– Automata, message sequence charts

• Test purposes represent “interesting” or
“significant” behaviors
– Define “interesting” or “significant”…

• Can we come up with test purposes
automatically?

Summary: conformance testing

• Advantages:
– Very rigorous formal foundation
– Size of the test suite is controlled by use

cases
• Disadvantages:

– How much have we learned about the system
that passed the test suite?

– Does not guarantee coverage

Coverage-based testing

• Traditional:
– Tests are derived from the implementation

structure (code)
• Model-driven:

– Cover the model instead of code
– Model should be much closer to the

implementation in structure
• Relies on coverage criteria

Coverage criteria and tests

• [HongLeeSokolskyUral02]
• Control flow:

– all-states
– all-transitions

• Data flow:
– all-defs
– all-uses
– all-inputs
– all-outputs

• Test is a linear sequence of inputs and outputs

Specifications: EFSM

• Transition systems equipped with variables
• Transitions have guards and update blocks

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

Coverage criteria

• Each coverage criterion is represented by a set
of temporal logic formulas
– WCTL: a subset of CTL

• Atomic propositions p1,…,pn
• Temporal operators EX, EU, EF
• Conjunctions: at most one non-atomic conjunct
• Negations is applied only to atomic propositions
• Unrestricted disjunctions
• E.g.: EF(p1 & EFp2)

– WCTL formulas have linear witnesses

All-states coverage criterion

• Requires every state be covered at least once
• With every state s, associate EF(s & EFexit)

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

EF(idle & EFexit)
EF(busy & EFexit)

IDLE BUSY

All-transitions coverage criterion

• Requires every transition be covered at least
once

• With every transition t, associate EF(t & EFexit)

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

EF(t1 & EFexit)
EF(t2 & EFexit)
EF(t3 & EFexit)
EF(t4 & EFexit)
EF(t5 & EFexit)

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

Data flow: definitions and uses

• Definition: a value is assigned to a variable
• Use: a value of a variable is used in an

expression
• Variables are defined and used in transitions
• Definition-use pair: (v,t,t’)

– v is defined by t
– v is used by t’
– There is a path from t to t’ free from other

definitions of v

Covering a du-pair

• With a du-pair (v, t, t’), associate
– EF(t & EXE[!def(v) U (t’ & EFexit)])
– def(v) : disjunction of all transitions that

define v

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

t1: insert[m+x<=5]
/m:=m+x

t2: coffee[m>1]
/m:=m-1

EF(t1 & EXE[!(t1 | t2) U (t2 & EFexit)])

Data-flow coverage criteria

• All-defs coverage criterion: a definition-clear path
– from every definition to some use

• All-uses coverage criterion: a definition-clear path
– from every definition to every use

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m t5: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

All-uses coverage criterion
EF(t1 & EXE[!(t1 | t2) U (t1 & EFexit)])
EF(t1 & EXE[!(t1 | t2) U (t2 & EFexit)])
EF(t1 & EXE[!(t1 | t2) U (t4 & EFexit)])
EF(t1 & EXE[!(t1 | t2) U (t5 & EFexit)])
EF(t2 & EXE[!(t1 | t2) U (t1 & EFexit)])
EF(t2 & EXE[!(t1 | t2) U (t2 & EFexit)])
EF(t2 & EXE[!(t1 | t2) U (t4 & EFexit)])
EF(t2 & EXE[!(t1 | t2) U (t5 & EFexit)])

Data flow chains

• Affect pair (v, t, v’, t’): the value of v used by t
affects the value of v’ defined at t’
– Either t=t’ ((v,t) directly affects (v’,t’)) or
– there is a du-pair (v’’,t,t’’) s.t. (v,t) directly affects

(v’’,t) and (v’’,t’’) affects (v’,t’)

t5: display/y:=m

IDLE BUSY

t1: insert[m+x<=5]
/m:=m+x

t4: display/y:=m

t3: done

t2: coffee[m>1]
/m:=m-1

(x, t1) directly affects (m, t1)t1: insert[m+x<=5]
/m:=m+x

(x, t1) affects (y, t5)

t1: insert[m+x<=5]
/m:=m+x

t5: display/y:=m

Data flow chain coverage

• Affect pair (v, t, v’, t’)
– May consist of an arbitrary number of

definition-use pairs
– We extend CTL with least fixpoint operators

• Alternatively, we can use (alternation-free) mu-
calculus

• All-inputs coverage criterion
– Requires a path from every input to some

output be covered at least once
• All-outputs coverage criterion

– Requires a path from every input to every
t t b d t l t

Test Generation

Model
checker

System
model

Logic
formula

True or
false

Witness or
counterexample

Coverage
criterion

Model
checker

System
model

A set of
logic
formulas

A set of
witnesses

Test Generation

• Generating a witness for a formula
– Cost: the length of a witness
– A minimal-cost witness for a formula

• Existing model checkers generate a minimal-cost
witness by breadth-first search of state space

E[U]

Test Generation

• Costs
– The total length of witnesses or
– The number of witnesses

• Both optimization problems are NP-hard

E[U]

E[U]

E[U]

E[U]

Coverage for distributed systems

• What if our system is a collection of
components?

• Possible solutions:
– Generate tests for each components

• Clearly unsatisfactory; does not test integration
– Generate tests from the product of

component models
• Too many redundant tests

• Non-determinism is another problem

Example

• Producer-consumer with acknowledgements

Covering product transition system

• Linear tests bring trouble:
send?.ack!.recv!
– May fail if the system chooses a different path

• Tests differ in interleavings
of independent events
– No need to test

send?.ack!.recv!
send?.recv!.ack!
separately

• State explosion in test suite!

send?

recv!

ack!

ack!
recv!

recv! send?
τ τ

send?

recv!τ

recv!

τ τ

Partial orders for test generation

• Use event structures instead of transition
systems [Heninger97]

• Test generation covers the event structure
• Allows natural generation of distributed

testers

Prime event structures (PES)

• Set of events E
– Events are occurrences of actions

• Causality relation
– Partial order

• Conflict relation
– irreflexive and symmetric

• Labeling function
• Finite causality
• Conflict inheritance

EE×⊆p

EE×⊆#

AEl →:
{ } finite is eee p'|'

eeeeee ′′⇒′′′∧′ ## p

Producer-consumer PES

• Structure is infinite
– Initial part is shown

• Causally unrelated and
non-conflicting events
can occur together

• Behaviors will start
repeating
– Can stop with

finite structure

Test generation with PES

• Project PES on observable actions, propagating
conflicts

• Every path in the PES should be covered
• Tests consist of distributed

testers with coordination
messages between tests
– Coordination messages are

inserted when there is a
causal edge between
locations

ARS
startstartstart

send?

ack!recv! recv!

Summary: coverage-based testing

• Advantages:
– Exercise the specification to the desired

degree
– Does not rely on test purpose selection

• Disadvantages:
– Large and unstructured test suites
– If the specification is an overapproximation,

tests may be infeasible

Generation of test purposes

• Recent work: [HenningerLuUral-03]
• Construct PES
• Generate MSC (message sequence charts) to

cover PES
• Use MSC as test purposes in ioco-based test

generation

Controllability of testing

• Conformance testing may not provide enough
guarantees
– With branching tests, test purpose behavior

may be avoided
– What if I never

see ack?

• Problem: inherent uncertainty in the system

How to contain uncertainty?

• Avoidance (no need to increase control)
– During testing, compute confidence measure

• E. g., accumulate coverage
– Stop at the desired confidence level

• Prevention (add more control)
– Use instrumentation to resolve uncertainty
– What to instrument?

• Use model for guidance
• Anyone needs a project to work on?

Test generation tools

• TorX
– Based on ioco
– On-the-fly test generation and execution
– Symbolic testing (data parameterization)
– LOTOS, Promela, …
– http://fmt.cs.utwente.nl/tools/torx/

• TGV
– Based on symbolic ioconf
– LOTOS, SDL, UML
– http://www.irisa.fr/pampa/VALIDATION/TGV/TGV.html

http://fmt.cs.utwente.nl/tools/torx/
http://www.irisa.fr/pampa/VALIDATION/TGV/TGV.html

	Model-driven Test Generation
	Outline and scope
	Testing classification
	Testing classification
	Functional testing
	Formal methods in testing
	Model-driven testing
	Conformance testing
	Test hypothesis
	Conformance testing with LTS
	Historical reference
	Testing architecture
	Input-Output Transition Systems
	Input-Output Transition Systems
	Preorders on IOTS
	Preorders on IOTS
	Input-Output Testing Relation
	Testing preorders – a side note
	Representing quiescence
	Conformance relation ioconf
	Test cases
	Test generation
	Test generation algorithm
	Example
	Test purposes
	Summary: conformance testing
	Coverage-based testing
	Coverage criteria and tests
	Specifications: EFSM
	Coverage criteria
	All-states coverage criterion
	All-transitions coverage criterion
	Data flow: definitions and uses
	Covering a du-pair
	Data-flow coverage criteria
	Data flow chains
	Data flow chain coverage
	Test Generation
	Test Generation
	Test Generation
	Coverage for distributed systems
	Example
	Covering product transition system
	Partial orders for test generation
	Prime event structures (PES)
	Producer-consumer PES
	Test generation with PES
	Summary: coverage-based testing
	Generation of test purposes
	Controllability of testing
	How to contain uncertainty?
	Test generation tools

