Merging Partial Behavioral Models

Arvind Easwaran, CIS700-03
Preliminaries

- Behavioral Model
 - Model describing behavioral aspect of a software system
- Examples
 - State-based: Labeled Transition System (LTS)
 - Scenario-based: Message Sequence Charts (MSC)
- Complete Behavioral Model
 - Describes all possible behaviors of a software system
Motivation

- Construction of complete models is a complex task
- Partial behavioral models
 - Specified by different users with different viewpoints
 - Covering different components of a system
 - Multiple descriptions of the same component
 - Scenario based partial descriptions (MSCs)
State-based specifications

- State-based models are more amenable to verification
- Synthesis of state-based model from partial scenario specifications (LTS from MSC)
- LTS models are inherently absolute (disallow all transitions not explicitly shown in the model)
- But model absoluteness is limiting (partial scenarios)
- Requires state-based models which can explicitly model unknown(partial) behaviors
 - Modal Transition Systems (MTS), Partial LTS
 - MTS from MSC
Model Merging

- Analysis effective in state-based models describing complete behavior of system
- Justifies merging of partial models (merging MTSs for different scenarios)

Problem
- How to merge MTSs describing different, yet overlapping aspects of a system
- How to combine MTSs of the same aspect specified by different users with different viewpoints
Labeled Transition System

- \(\text{Act} \) be a universal set of observable actions
- \(\text{Act}_\tau = \text{Act} \cup \{ \tau \} \) where \(\tau \) is internal action
- Labeled Transition System (LTS)
 \[P = \langle S, L, \Delta, s_0 \rangle \] where
 - \(S \) is a set of states
 - \(L \subseteq \text{Act}_\tau \) is a set of action labels
 - \(\Delta \subseteq (S \times L \times S) \) is a transition relation
 - \(s_0 \in S \) is the initial state
- \(\alpha P = L \setminus \{ \tau \} \) denotes observable action set
Modal Transition System

- Modal Transition System (MTS) extends LTS with an additional set of uncertain transitions
- $\text{MTS } M = \langle S, L, \Delta^r, \Delta^p, s_0 \rangle$, $\Delta^r \subseteq \Delta^p$
- Δ^r represents required transitions and $\Delta^p \setminus \Delta^r$ represents maybe transitions
- LTS is a special type of MTS
Example

D

Aq_read Aq_read

Re_read Re_read

F

Aq_read ? Aq_write

Re_read ? Aq_read ?

Re_write
MTS Semantics

- $\text{MTS } M = \langle S, L, \Delta^r, \Delta^p, s_0 \rangle$
- $M \xrightarrow{r} M'$ if $M' = \langle S, L, \Delta^r, \Delta^p, s'_0 \rangle$ and $(s_0, l, s'_0) \in \Delta^r$
- $M \xrightarrow{m} M'$ if $M' = \langle S, L, \Delta^r, \Delta^p, s'_0 \rangle$ and $(s_0, l, s'_0) \in \Delta^p \setminus \Delta^r$
- M proscribes l $(M \not\xrightarrow{l})$ if M cannot transit on l
Semantics Contd.

- $\omega = \omega_1 \cdots \omega_k \in \text{Act}_\tau$
- $(M \xrightarrow{\omega} N) \Rightarrow$
 - $\exists M_0, \cdots, M_k; M_0 = M, M_k = N$
 - $\forall i, (M_i \xrightarrow{\omega_{i+1}} M_{i+1}), 0 \leq i < k$
- $M \xrightarrow{l} M'$ denotes $M \xrightarrow{\tau^*l\tau^*} M'$
Semantics Contd.

- \((M \xrightarrow{\omega_m} N) \Rightarrow \)
 - \(\exists M_0, \cdots, M_k; M_0 = M, M_k = N\)
 - \(\forall i, (M_i \xrightarrow{\omega_{i+1}^p} M_{i+1}), 0 \leq i < k\)
 - \(\exists M_j, (M_j \xrightarrow{\omega_{j+1}^m} M_{j+1}), 0 \leq j < k\)

- \(M \xrightarrow{\tau^* l_m} M'\) denotes
 - \(\exists M'', M \xrightarrow{\tau^* m} M''\)
 - \(M'' \xrightarrow{\tau^* r} M'\)
MTS Refinement

- Refinement of a MTS results in a more concrete model than the original
- Some knowledge over maybe behavior is gained
- “More defined than” relation
- Intuitively, refinement converts some maybe transitions to required ones and some other maybe transitions are removed completely
Refinement Definition

- \(\rho \) be universe of MTSs
- \(M \preceq N \) when \(\alpha M = \alpha N \) and
 - \((M, N) \) contained in some refinement relation \(R \subseteq \rho \times \rho \)
 - \(\forall l \in Act_\tau, \)
 1. \((M \rightarrow^l_r M') \Rightarrow ((\exists N', N \rightarrow^l_r N') \land (M', N') \in R) \)
 2. \((N \rightarrow^l_p N') \Rightarrow ((\exists M', M \rightarrow^l_p M') \land (M', N') \in R) \)
Label Hiding

- Refinement requires alphabets of models to be same
- Hiding makes set of actions of a model unobservable to environment
- All transitions labeled with the hidden action are replaced with \(\tau \)
- \(M@\alpha X \) denotes MTS with label set \(X \)
 - All labels not in \(X \) are replaced with \(\tau \)
Observational Refinement (OR)

- $M \leq_o N$ when $\alpha M = \alpha N$ and
 - (M, N) is contained in some refinement relation $R \subseteq \rho \times \rho$
 - $\forall l \in Act,$
 - $(M \xrightarrow{\hspace{1cm}}^l M') \Rightarrow$
 $((\exists N', N \xrightarrow{\hspace{1cm}}^l N') \land (M', N') \in R)$
 - $(N \xrightarrow{\hspace{1cm}}^l N') \Rightarrow$
 $((\exists M', M \xrightarrow{\hspace{1cm}}^l M') \land (M', N') \in R)$
Example

Aq_read

Re_read

D

Re_write ?

Aq_read

Aq_read

E

Aq_write ?

Re_read

Re_read

Re_read

Aq_read

Aq_read ?
MTS Merging

- Knowledge from two partial models (MTS) used to generate a unified MTS
- Merging is about finding a common refinement of the two models
- Models being merged can have different action labels
- P is a common observational refinement of M and N if $(\alpha P \supseteq (\alpha M \cup \alpha N))$, $(M \preceq_o P@\alpha M)$ and $(N \preceq_o P@\alpha N)$
Example

D

F

Aq_read
Aq_read
Aq_read

Re_read
Re_read
Re_read

Aq_write

Re_read
Re_read
Aq_read

Re_write
Example Contd.

H

3
Aq_write

0
Re_read

1
Aq_read

2
Re_read

H'

3
Aq_write

0
Re_read

1
Aq_read

2
Re_read

Aq_read

Re_read

Re_read

Merging Partial Behavioral Models – p.19/41
Example Contd.

\[
\begin{align*}
\text{H@X} & \quad \downarrow \\
\text{D, H’@X} & \quad \\
\text{F@X} &
\end{align*}
\]
Least Common Refinement

- H and H' are both common refinements of D and F
- H' is the preferred common refinement; H proscribes three or more readers which is not required.
- P is the least common refinement (LCR) of M and N if P is a common refinement of M and N, $\alpha P = (\alpha M \cup \alpha N)$, and for any common refinement Q of M and N, $P \preceq_o Q \otimes \alpha P$.
- But common refinement or LCR need not exist for two MTSs.
Model Consistency

- Two MTSs M and N are consistent if and only if there exists an MTS P such that P is a common refinement of M and N.
- Consistency does not guarantee the existence of LCR.
- An MTS P is minimal common refinement (MCR) of M and N if P is a common refinement of M and N, $\alpha P = (\alpha M \cup \alpha N)$, and there is no MTS $Q \not\equiv P$ such that Q is a common refinement of M and N and $Q \preceq_\alpha P \preceq_\alpha P$.
Example

A

0

1

Re_read

Aq_read

B

0

1

2

Re_read

Re_read

Aq_read

Aq_read
Example
Example Contd.

O

0 -- b --> 1

1 -- a --> 0

1 -- c --> 2

O

K

L

I

J, K@c, L@c, O@c

I@c
Greatest Lower Bound

- Merging consistent models with no LCR will result in any one of the MCRs
- A better approach would be to find the greatest lower bound (glb) of all MCRs
- The user can then build one of the MCRs using this glb model
- glb is unique with respect to observational equivalence
• glb always exists
• glb itself might not be a common refinement of the models being merged
• Let M and N be consistent. Q is a lower bound of all MCRs if $\alpha Q = (\alpha M \cup \alpha N)$ and for any MCR P, it holds that $Q \preceq_o P$. Q is a glb if for any other lower bound Q', it holds that $Q' \preceq_o Q$
• If P is a LCR, then P is also the glb of all MCRs of M and N
Example
Algorithms

- Consistency checking between two partial models
- Constructing LCR if it exists
- Supporting construction of MCRs using glb
- $+_u$ Operator
 - Used for consistency checking
 - Gives a upper bound for all MCRs
- $+_l$ Operator
 - Gives a lower bound (approximate glb)
 - Used to construct the LCR or one of the MCRs
\[u \text{ Operator} \]

- **TD** \(\forall l \notin \alpha N \ (M \xrightarrow{l} M') \Rightarrow (M +_u N \xrightarrow{r} M' +_u N) \)
- **TM** \(\forall l \notin \tau (M \xrightarrow{r} M') \land (N \xrightarrow{m} N') \Rightarrow (M +_u N \xrightarrow{r} M' +_u N') \)
- **MD** \(\forall l \notin \alpha N \ (M \xrightarrow{m} M') \Rightarrow (M +_u N \xrightarrow{r} M' +_u N) \)
- **TT** \(\forall l \notin \tau (M \xrightarrow{r} M') \land (N \xrightarrow{r} N') \Rightarrow (M +_u N \xrightarrow{r} M' +_u N') \)
- **MM** \(\forall l \notin \tau (M \xrightarrow{m} M') \land (N \xrightarrow{m} N') \Rightarrow (M +_u N \xrightarrow{m} M' +_u N') \)
Disagreement states

- \(M = \langle S_M, L_M, \Delta^r_M, \Delta^p_M, s_{0M} \rangle \)
- \(N = \langle S_N, L_N, \Delta^r_N, \Delta^p_N, s_{0N} \rangle \)
- \((m, n) \in (S_M \times S_N)\) is a disagreement state if \(\exists l \in (\alpha M \cap \alpha N) \) such that
 - \(M_m \xrightarrow{r} \) and \(N_n \xrightarrow{l} \) or
 - \(M_m \xrightarrow{l} \) and \(N_n \xrightarrow{r} \)
- Consistent models ensure disagreement states can progress using unobservable actions
Determinacy Condition

- $C = \langle S_M \times S_N, L_C, \Delta_C^r, \Delta_C^p, (s_{0m}, s_{0n}) \rangle$
- Determinacy condition holds if $\forall (m, n) \in C$ and all $l \in L_M \cap L_N$ it is not the case that M_m and N_n are non-deterministic on l
- Consistent M and N, $(M +_u N)$ satisfying determinacy \Rightarrow
 - $M +_u N$ is a common observational refinement
 - For every Q that is a MCR, $Q@\alpha(M +_u N) \leq_o (M +_u N)$
Example

\[X \]

\[Y \]
Consistency Checker

Algorithm: Consistency check

- INPUT: MTSs M and N
- OUTPUT: If M and N not consistent, return one of the disagreement states else return null
• Build $M +_u N$ marking disagreement states
• For each marked state (m, n)
 • If $N_n \not\xrightarrow{l}$
 • If $\forall \omega \in (\text{Act}_\tau \setminus \alpha M)^*, N_n \not\xrightarrow{\omega}$
 • Return (m, n)
• Else if $M_m \not\xrightarrow{l}$ **Similar as above**
• Else return null
\[+_l \text{ Operator} \]

- **DM** \(\forall l \not\in \alpha M \ (N \xrightarrow{l_m} N') \Rightarrow ((M +_l N) \xrightarrow{l_m} M +_l N') \)
- **MD** \(\forall l \not\in \alpha N \ (M \xrightarrow{l_m} M') \Rightarrow ((M +_l N) \xrightarrow{l_m} M' +_l N) \)
- If \(M \) and \(N \) are consistent and \((M +_l N)\) satisfies the determinacy condition, then for any MCR \(Q \) of \(M \) and \(N \), \((M +_l N) \preceq_o Q @ \alpha(M +_l N) \)
- \((M +_l N)\) approximates the glb of \(M \) and \(N \)
DM and MD rules

- To obtain exact glb, DM and MD rules should convert some maybe transitions into required transitions
- If all are converted we get $M +_u N$
- If none are converted we get $M +_l N$
- If DM and MD rules are never applied then $+_u \equiv +_l$ and they produce LCR
Elaboration

- Refinement of lower bound obtained using $+\ell$ into a MCR
- Algorithm: Elaboration
 - INPUT: MTSs M and N; consistent and satisfy determinacy
 - OUTPUT: MTS P which is the required MCR/LCR
• Build $P = M + l N$ marking disagreement states
• For each marked state (m,n) if $N \not\rightarrow^l$
• Build $T = \{ \omega \in (\alpha N \setminus \alpha M)^* : \exists N', (N_n \rightarrow^l_m N'_n) \wedge (N'_n \rightarrow^l_m N''_n) \}$
• User chooses $\omega' \in T$ (If $|T| = 1$ we get LCR)
• Replace maybe transitions with required ones; $(M_m + l N_n) \rightarrow^\omega_r (M_m + l N'_n)$
• Else if $M_m \not\rightarrow^l$ **similar as above**
Complexity Analysis

- S_M and S_N are states of M and N
- T_M and T_N are transitions; T_i is $O(S_i \times L_i)$
- Potential size of state space of common refinement is $S = O(|S_M| \times |S_N|)$
- Consistency check is similar to weak bisimulation $O(L \times S \times T)$
- Computing $+_u$ and $+_l$ does not increase this complexity
- Use BFS for computing T in the elaboration algorithm
References