
Runtime Atomicity Analysis
of Multi-threaded Programs

Focus is on the paper:

“Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs”
by C. Flanagan and S. Freund

presented by Sebastian Burckhardt
University of Pennsylvania

CIS 700 – Runtime Verification Seminar
Wednesday, October 20, 2004

-2-

Outline of talk

• Verification of multithreaded programs in
general

• Atomizer: the core concepts
– Dynamic analysis
– Reduction
– Lock set algorithm

• Atomizer: the improvements
• Atomizer: evaluation

-3-
Correctness of Multithreaded

Programs
• “Multithreaded” means: concurrent,

communication by shared memory
• Reasoning quite challenging even for experts
• Typically, programmers use fairly low-level

synchronization primitives
– Mutex, Locks
– Semaphores
– Monitors (re-popularized by Java)

• To make it worse, performance matters
(otherwise, why bother with multiple threads?)

-4-

Non-dynamic verification

• We won’t talk about these today.
– Restrict design space

• type systems
• special-purpose languages
• Design paradigms

– Static analysis
• Lexical
• Control flow
• Data flow

-5-

Checking concurrent executions

• Problem: number of possible concurrent
executions very large

• Approach I: Check them all
– means: model check the concurrent model
– not practical without heavy abstraction

• Approach II: Check just one
– this is the regular “testing” method

• Approach III: Check one, and extrapolate
– look for bad things that “could” happen

-6-
What are the bad things we can

look for?
• Deadlock
• Races

– Definition of “race”: Two threads are allowed to
access same variable at the same time, and at least
one access is a write

• View inconsistency
– intuitive description: grouping of variables

inconsistent among threads
• Lack of atomicity

-7-
What are we looking for?

• Deadlock
– look for inconsistent order of lock acquisition

• Races
– look for variables that aren’t consistently protected

by some lock, by tracking locks held during each
access (e.g. “Eraser” Lockset alg)

• View inconsistency
– track variable sets associated which each lock (e.g.

in JPaX, JNuke)
• Atomicity

– Reduction-based (e.g. Atomizer)
– Block based (e.g. Wang/Stoller’s tool)

-8-

Atomicity Checking: Advantages

• Can find bugs that are resistant to regular
testing, and race detection

• Good correspondence with programming
methodology
– easy to understand the idea
– can verify interfaces, encouraging code reuse
– programmer can gain confidence in code by

validating atomicity assumptions
• Scalable

– has been applied to >100k lines of Java code

-9-

Example: java.lang.StringBuffer
public final class StringBuffer {

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length();
...
...
...
sb.getChars(0, len, value, count);
...

}

public synchronized int length() { ... }
public synchronized void getChars(...) { ... }

}

-10-

Example: java.lang.StringBuffer
public final class StringBuffer {

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length();
... // another thread can modify sb here
... // => len is no longer the correct length of len
... // but there is no race.
sb.getChars(0, len, value, count);
...

}

public synchronized int length() { ... }
public synchronized void getChars(...) { ... }

}

-11-

Definition

• A block of code is ‘atomic’ if for every legal
execution of the program, there is an equivalent
legal execution within which the entire block
executes without preemption.

• Executions are “equivalent” iff
– the (dynamic) instruction stream per thread is

identical
– the same read reads the value of the same write

-12-

How does it work? (1)

• Identify blocks that are supposed to be
atomic
– use heuristics

• exported methods
• synchronized methods
• synchronized blocks

– allow user annotations
• can ‘turn off’ the checking if there are false bugs
• can do additional checks by declaring atomic
/*# atomic */ void getChars() { ... }

-13-

How does it work? (2)

• Perform instrumentation on the source code level
– could also be done at the bytecode level
– Instrumented source code produces event stream

during execution

• Analyze event stream on-line (Atomizer) or off-
line.
– For each block that is supposed to be atomic, check

whether there is an equivalent execution in which it is
scheduled contiguously.

-14-

How does it work? (3)
• We can’t possibly check all possible executions

to find an equivalent atomic one
• Idea: Find a large class of instruction sequences

for which we can always guarantee that it can
be shuffled into an uninterrupted sequence by
local, pairwise swaps.

• Then, warn user if supposedly atomic block
does not belong to this class

• -> Lipton’s theory of reduction (1975)

-15-
Semantic model

• Dynamic instruction stream of each thread
consists of 4 types of instructions:

– rd(x,v) read value v from shared var x
– wr(x,v) write value v to shared var x
– acq(m) acquire lock m
– rel(m) release lock m

-16-

Left-movers

• Can always swap an rel(m) with an
interleaved instruction j1 of another thread
to its left. Call this a left-mover.

• Reason
– can always release lock earlier
– read/write matching not affected by move

j0 j1 j2
i0 rel(m) i2

j0 j1 j2
i0 rel(m) i2

-17-

Right-movers

• Can always swap an acq(m) with an
interleaved instruction j1 of another thread
to its right. Call this a right-mover.

• Reason
– lock is still available (j1 can not be acq(m))
– read/write matching not affected by move

j0 j1
i0 acq(m) i2

j0 j1
i0 acq(m) i2

-18-

Non-movers

• Neither rd(x,v) nor wr(x,v) can in general
be swapped with an adjacent interleaved
instruction of another thread. Call them
non-movers.

wr(x,v)
rd(x,v)

rd(x,v)
wr(x,v)

wr(x,v)
rd(x,v)

wr(x,v)
wr(x,v)

-19-

Both-movers

• If an access rd(x,v),wr(x,v) goes to a
variable protected by a lock which is held
by this thread, it is a both-mover.

• Reason
– j1 can not be an access to x

• Suppose for now we know which locks can
protect a variable

j1
acq(m) rd(x,v) rel(m)

-20-

Lipton’s Reduction
• Let’s denote the instructions as follows: L for

left-mover, R for right-mover, N for non-mover, B
for both-mover

• Then any execution sequence matching the
following regular expression is equivalent to an
atomic one:

(R + B)* (N + ε) (L + B)*

• Examples: RL RBL NLLLB RNL BBB
• But not: NN LR

-21-

• Say the method “copy()”

• produces the dynamic instruction stream

• is it atomic?
– For now, assume all methods of class A are synchronized

Example

b1 acq(m) rd(x,4) wr(y,4) rel(m) b3

public class A {
private int x, y;
public synchronized void copy() {
y = x;

}
... (more methods) ...

}

-22-

Example

acq(m) b1 rd(x,4) b2 wr(y,4) b3 rel(m)
acq(m) b1 rd(x,0) b2 wr(x,1) b3 rel(m)

b1 acq(m) rd(x,4) wr(y,4) b2 rel(m) b3
b1 acq(m) rd(x,0) wr(x,1) b2 rel(m) b3

b1 acq(m) rd(x,4) wr(y,4) rel(m) b3
b1 acq(m) rd(x,0) wr(x,1) rel(m) b2 b3

-23-

Implementation

• Can efficiently check if blocks match
(R + B)* (N + ε) (L + B)*
by using an online automaton.

• Problem: to classify variable accesses
correctly, we need to know which locks
protect which

-24-

Which locks with which field?
fields may not be protected by this object’s lock
public class A2 {
private int x,y;
public synchronized swap() { int z = y; y = x; x = z;}
public int getX() { return x; }
public int getY() { return y; }
...

}

field may be protected by a different object’s lock
public class A2 {
private int x,y;
Integer mylock = new Integer(0);
public copy() { synchronized(mylock) { y = x; } }
public int getX() { synchronized(mylock) { return x; } }
public int getY() { synchronized(mylock) { return x; } }
...

}

-25-

Basic “Eraser” lockset algorithm
• Argue: “If a variable is consistently protected by some

lock, this lock must be held during all accesses to that
variable”

• Dynamically, we can look at the set of locks helds
during each access so far, and keep track of their
intersection
– If the intersection is empty, there seems to be no consistent

locking discipline - classify access as a non-mover
– Otherwise, there seems to be a consistent locking discipline -

classify access as a both-mover
• What about re-classifying accesses if changes occur

during runtime?
– can’t be done on-line, but could be done off-line

-26-

Improve Classification (1)

• Avoid flagging some
classic, safe usages
– thread-local

variables: need no
lock to protect them

– initialization: one
thread initializes
data, then passes it
to another thread,
thread-local from
there on

– Write once, read
many times • Track state for each field

– use lock set for classification
only if in state Shared Modified

-27-

Improve Classification (2)

• Re-entrant locks
– re-entrant acquires and releases are both-movers

• Redundant locks
– if a lock is only accessed by one thread, it is

redundant (thread-local locks)
– if lock B is always held while accessing lock A, lock

A is redundant (protected locks)
– redundant acquires and releases are both-movers
– can classify locks using the same lockset and

thread-access algorithms as for fields

-28-

Improve Classification (3)
• “Benign” read/write races
public class A2 {
private int x;
public int read() { return x; }
synchronized void inc() { x = x + 1; }

}

• read() and inc() are atomic... (more or less)

– track separate lockset containing locks held during
all writes (= superset of locks held during all
accesses)

– classify read as both-mover if current thread holds a
write lock, even if access-protecting lockset is empty

-29-

It’s not that easy

• Unsynchronized reads and writes
– are not atomic if more than 32 bit quantity

• more rules exists (e.g. volatile vs. non-volatile)

– are not guaranteed to proceed in order
• only synchronization events are sequentially

consistent.
• memory model relative to hardware is specified (?)
• memory model of hardware is not specified.
• does anybody know?

– does Atomizer need adjustments for non-
sequentially consistent machines?

-30-

Evaluation

-31-

Effect of improvements

-32-
Atomizer paper: contributions

• Concise review of concepts
– Formal semantics for multithreaded programs
– Reduction idea, Lockset algorithm

• Description of the algorithm and some
improvements
– Formal description of the algorithm, formulation of

theorem describing its correctness, in provable detail
– Mentions optimizations: handle re-entrant locks,

thread-local locks, protected Locks, write-protected
data

• Experimental evaluation of the tool
– performance, scale, usability

-33- Bibliography

	Runtime Atomicity Analysisof Multi-threaded Programs
	Outline of talk
	Correctness of Multithreaded Programs
	Non-dynamic verification
	Checking concurrent executions
	What are the bad things we can look for?
	What are we looking for?
	Atomicity Checking: Advantages
	Example: java.lang.StringBuffer
	Example: java.lang.StringBuffer
	Definition
	How does it work? (1)
	How does it work? (2)
	How does it work? (3)
	Semantic model
	Left-movers
	Right-movers
	Non-movers
	Both-movers
	Lipton’s Reduction
	Example
	Example
	Implementation
	Which locks with which field?
	Basic “Eraser” lockset algorithm
	Improve Classification (1)
	Improve Classification (2)
	Improve Classification (3)
	It’s not that easy
	Evaluation
	Effect of improvements
	Atomizer paper: contributions
	Bibliography

