
Merging Partial Behavioural Models

Sebastian Uchitel
Department of Computing

Imperial College
180 Queen’s Gate

London, SW7 2RH, UK

s.uchitel@doc.ic.ac.uk

Marsha Chechik
Department of Computer Science

University of Toronto
40 St. George Street

Toronto, Ontario, Canada M5S 2E4

chechik@cs.toronto.edu

ABSTRACT
Constructing comprehensive operational models of intended
system behaviour is a complex and costly task. Conse-
quently, practitioners have adopted techniques that support
incremental elaboration of partial behaviour descriptions. A
noteworthy example is the wide adoption of scenario-based
notations such as message sequence charts. Scenario-based
specifications are partial descriptions that can be incremen-
tally elaborated to cover the system behaviour that is of
interest. However, how should partial behavioural models
described by different stakeholders with different viewpoints
covering different aspects of behaviour be composed? How
should partial models of component instances of the same
type be put together?

In this paper, we propose model merging as a general so-
lution to these questions. We formally define model merg-
ing based on observational refinement and show that merg-
ing consistent models is a process that should result in a
minimal common refinement. Because minimal common re-
finements are not guaranteed to be unique, we argue that
the modeller should participate in the process of elaborating
such a model. We also discuss the role of the least common
refinement and the greatest lower bound of all minimal com-
mon refinements in this elaboration process. In addition, we
provide algorithms for i) checking consistency between two
models; ii) constructing their least common refinement if one
exists; iii) supporting the construction of a minimal common
refinement if there is no least common refinement.

1. INTRODUCTION
State-based behaviour modeling and analysis has been

shown to be successful in uncovering subtle design errors [3].
However, the adoption of such technologies by practitioners
has been slow. Partly, this is due to the difficulty of con-
structing behavioural models – this task requires consider-
able expertise in modeling notations that developers often
lack. In addition, and perhaps more importantly, the bene-
fits of the analysis appear after comprehensive behavioural

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

models have been built: classical state-based modeling ap-
proaches are generally not suited for providing early feed-
back, when system descriptions are still partial.

In contrast, interaction-based specifications, such as mes-
sage sequence charts [11], are becoming increasingly popu-
lar. These scenario-based notations are partial behavioural
descriptions that promote incremental elaboration of system
behaviour.

Lately, there has been interest in developing an under-
standing and exploiting the relation between interaction-
based and state-based modeling techniques [20]. In particu-
lar, several approaches to the synthesis of state-based models
from scenarios-based specifications (e.g. [23, 14]) have been
developed. These approaches aim to combine the benefits
of the incremental elaboration in interaction-based specifi-
cations with the behavioural analysis in state-based models.

A current limitation of synthesis approaches is that the
models being synthesized, e.g., labeled transition systems
(LTSs) [13], are assumed to be complete descriptions of the
system behaviour up to some level of abstraction, i.e., the
state machine is assumed to completely describe the sys-
tem behaviour with respect to a fixed alphabet of actions.
This completeness assumption is limiting, considering that
interaction-based specifications are inherently partial.

A more appropriate type of state-based model to synthe-
size is the one in which currently unknown aspects of be-
haviour can be explicitly modelled. Hence, these models
can distinguish between positive, negative and unknown be-
haviours. Positive behaviour refers to the behaviour the
system is expected to exhibit; negative behaviour refers to
the behaviour the system is expected to never exhibit; un-
known behaviour could become positive or negative, but the
choice has not yet been made. State-based models that dis-
tinguish between these kinds of behaviour are referred to
as partial behavioural models, e.g., Partial Labelled Transi-
tion Systems (PLTSs) [22], multi-valued state machines [6],
Modal Transition Systems (MTSs) [15], Mixed Transition
Systems [5] and multi-valued Kripke structures [2].

Although synthesis of partial behavioural models can pro-
vide substantial benefits [22], we have found that such mod-
els lack a specific concept that is particularly helpful in the
context of behavioural model elaboration, namely, model
merging. Scenarios are typically provided by different stake-
holders with different viewpoints [9], describing different,
yet overlapping aspects [4] of the same system. How should
these partial models be put together? Alternatively, con-
sider combining behavioural models of component instances
of the same type. Typically, several instances of the same

component may appear in a given scenario, e.g., several in-
stances of a client component that concurrently access a
server. Standard approaches to synthesis produce a sep-
arate behavioural model for each client instance (e.g. [23,
14]). However, it is reasonable to integrate all models of
all client instances into a model for the client component
type because all clients should share the same characteris-
tics. How can these partial models be composed?

Composition of behavioural models is an old idea [18,
8]; however, its main focus has been on parallel composi-
tion which describes how two different components work
together. In the context of model elaboration, what we are
interested in is composing two partial descriptions of the
same component to obtain a more elaborate version of both
original partial descriptions. We call this operation a merge.

In this paper, we introduce the notion of merging in the
context of an adaptation of MTSs [15]. We argue that the
core concept underlying model merging is that of common
observational refinement and define consistency as the exis-
tence of a common observational refinement. We show that
merging consistent models is a process that should result in
a minimal common observational refinement and discuss the
role of the least common observational refinement and the
greatest lower bound of all minimal common observational
refinements in this process. We also provide algorithms that
under a determinacy condition automatically check consis-
tency, construct the least common observational refinement
if there is one, and support the construction of a minimal
common observational refinement otherwise.

The rest of this paper is organized as follows. In Section 2,
we define MTSs and observational refinement. Section 3 de-
scribes merging MTSs. Section 4 presents the algorithms
associated with the merging. We review related work in Sec-
tion 5 and conclude the paper with a discussion, summary
and directions for future research. Due to space restrictions,
this paper does not include a more complex example to illus-
trate our approach; however, one can be found online [21].

2. BACKGROUND
In this section, we define, exemplify and discuss labelled

transition systems, modal transition systems and refinement.
We start with the familiar concept of labeled transition

systems (LTSs) [13] which are widely used for modelling
and analyzing the behaviour of concurrent and distributed
systems [3]. An LTS is a state transition system where tran-
sitions are labelled with actions. The set of actions of an
LTS is called its communicating alphabet and constitutes
the interactions that the modelled system can have with
its environment. In addition, LTSs can have transitions la-
belled with τ , representing actions that are not observable
by the environment. Examples of a graphical representation
of LTSs are models A and B, given in Figure 1. In this pa-
per, the state labelled 0 is assumed to be the initial state of
the transition system, unless stated otherwise.

Definition 1. (Labeled Transition Systems) Let States
be a universal set of states, Act be a universal set of ob-
servable action labels, and let Actτ = Act ∪ {τ}. A labeled
transition system (LTS) is a tuple P = (S, L, ∆, s0), where
S ⊆ States is a finite set of states, L ⊆ Actτ is a set of la-
bels, ∆ ⊆ (S×L×S) is a transition relation between states,
and s0 ∈ S is the initial state. We use αP = L \ {τ} to
denote the communicating alphabet of P .

Existing semantics for LTSs assume that an LTS gives
a complete behavioural description with respect to its al-
phabet. Consider the LTS A which models a read lock.
Starting in state 0, this model allows sequences of alternat-
ing acquireReadLock and releaseReadLock actions, and, by
the completeness assumption, does not allow two acquire-
ReadLocks actions without having a releaseReadLock ac-
tion in between. LTS A is modelling a lock that can be held
by at most one reader at any time. Model B, on the other
hand, allows two readers to hold the lock simultaneously. A
and B are not considered to be equivalent under any of the
standard equivalence relations such as strong bisimulation,
trace, observational, or failure equivalence [8, 18].

Modal transition systems (MTSs) allow explicit modelling
of what is not known about the behaviour of a system.
MTSs extend LTSs with an additional set of transitions that
model the interactions with the environment that the sys-
tem cannot be guaranteed to provide, but equally cannot be
guaranteed to prohibit.

Definition 2. (Modal Transition Systems) A modal tran-
sition system (MTS) M is a structure (S,L, ∆r, ∆p, s0),
where ∆r ⊆ ∆p, (S, L, ∆r, s0) is an LTS representing re-
quired transitions of the system and (S, L, ∆p, s0) is an LTS
representing possible (but not necessarily required) transi-
tions of the system. We use αM = L \ {τ} to denote the
communicating alphabet of M .

Figure 1 shows a graphical representation of some MTSs.
For example, the MTS C models a partial policy for a read
lock that can be acquired by at least one reader at any time,
but does not rule out concurrent readers. Transition labels
that have a question mark are those in ∆p − ∆r. We refer
to these as “maybe” transitions, to distinguish them from
required transitions (those in ∆r). Note that LTSs are a
special type of MTSs that do not have maybe transitions;
thus, models A and B can be considered MTSs as well.

Given an MTS M = (S, L, ∆r, ∆p, s0), we say that M

transitions on ` through a required transition (denoted M
`

−→r

M ′) if M ′ = (S,L, ∆r, ∆p, s′0) and (s0, `, s
′
0) ∈ ∆r. Simi-

larly, M transitions on ` through a maybe transition (M
`

−→m

M ′) if (s0, `, s
′
0) ∈ ∆p − ∆r. M

`
−→p M ′ refers to possible

transitions ((s0, `, s
′
0) ∈ ∆p). We write M

`
−→p to mean

∃M ′ · M
`

−→p M ′. We say that M proscribes ` (M
`

6−→)
if M cannot transit on ` through maybe or required tran-
sitions. Finally, for an MTS M = (S, L, ∆r, ∆p, s0) and a
state n ∈ S, we denote changing the initial state of M from
s0 to n as Mn. For example, some transitions of the MTS

C, shown in Figure 1, are C0
acquireReadLock

−→r C1 (between states

0 and 1), and C1
releaseReadLock

−→m C1 (self-loop in state 1).
In this presentation, we associate each MTS with its com-

municating alphabet, extending the presentation of [15]. The
communicating alphabet is the set of events that are rele-
vant to the model, i.e., the scope of a partial description.
Allowing models to have different scopes is fundamental for
merging descriptions of different concerns and viewpoints.
In addition, our choice is in line with process algebra se-
mantics such as FSP [17].

Refinement of MTSs captures the notion of elaboration
of a partial description into a more comprehensive one, in
which some knowledge over the maybe behaviour has been

A: 0 1

releaseReadLock

acquireReadLock

B: 0 1

releaseReadLock

acquireReadLock

2

releaseReadLock

acquireReadLock

C: 0 1

releaseReadLock?

acquireReadLock

acquireReadLock?

releaseReadLock?
D: 0 1

releaseReadLock

acquireReadLock

2

releaseReadLock

acquireReadLock

acquireReadLock?

releaseReadLock?

E : 0 1

releaseReadLock

acquireReadLock

2

releaseReadLock

acquireReadLock

acquireWriteLock?

3

releaseWriteLock?

releaseWriteLock?
acquireWriteLock? acquireReadLock?

releaseReadLock?

F : 0 1

releaseReadLock?

acquireReadLock?

acquireWriteLock

2

releaseWriteLock

releaseReadLock?
acquireReadLock?

G : 0 1

releaseReadLock?

acquireReadLock?

acquireWriteLock

2

releaseWriteLock

H: 0 1

releaseReadLock

acquireReadLock

2

releaseReadLock

acquireReadLock

acquireWriteLock

3

releaseWriteLock

H′: 0 1

releaseReadLock

acquireReadLock

2

releaseReadLock

acquireReadLock

acquireWriteLock

3

releaseWriteLock
acquireReadLock?
releaseReadLock?

Figure 1: LTSs and MTSs: A: at most one reader can acquire the lock; B: at most two readers can hold
the lock concurrently. C: at least one reader can access the lock; D: at least two readers can hold the lock
concurrently; E: readers cannot acquire the lock if it is held by writers; F: at most one writer can access
the lock but not while readers hold it; G: at most one reader and writer and can access the lock but not
concurrently; H: maximum two concurrent readers and one writer, readers and writers exclude each other.
H′: at least two concurrent readers and maximum one writer, readers and writers exclude each other.

gained. It can be seen as being a “more defined than” rela-
tion between two partial models. Intuitively, refinement in
MTSs is about converting maybe transitions into required
transitions or removing them altogether: an MTS N refines
M if N preserves all of the required and all of the proscribed
behaviours of M . Alternatively, an MTS N refines M if N
can simulate the required behaviour of M , and M can sim-
ulate the possible behaviour of N .

Definition 3. (Refinement) Let ℘ be the universe of MTSs.
N is a refinement of M , written M � N , when αM = αN
and (M, N) is contained in some refinement relation R ⊆
℘ × ℘ for which the following holds for all ` ∈ Actτ :

1. (M
`

−→r M ′)⇒ (∃N ′ · N
`

−→r N ′ ∧ (M ′, N ′) ∈ R)

2. (N
`

−→p N ′)⇒ (∃M ′ · M
`

−→p M ′ ∧ (M ′, N ′) ∈ R)

Note that the second condition guarantees that if N has a
required transition, M has a maybe or a required transition,
whereas if N has a maybe transition, then M has a maybe
transition – otherwise, the first condition is violated.

Consider the MTSs shown in Figure 1. The MTS C is re-
fined by the LTS A (C � A), incorporating the new knowl-
edge that the maybe self-loop at state C1 should be re-
moved. The refinement relation between these models is
R = {(C0,A0), (C1,A1)}. The LTS B refines C (C � B), with
the refinement relation R = {(C0,B0), (C1,B1), (C1,B2)}. Fi-
nally, the MTS D refines C via the relation R = {(C0,D0), (C1,
D1), (C1,D2)}.

Although refinement captures the notion of model elabo-
ration, it requires the alphabets of the processes being com-
pared to be equal. In practice, model elaboration can lead
to augmenting the alphabet of the system model to describe
behavioural aspects that previously had not been taken into
account. To capture this aspect of model elaboration, we in-
troduce two concepts: hiding and observational refinement.

Hiding is an operation that makes a set of actions of a
model unobservable to its environment by reducing the al-
phabet of the model and replacing transitions labelled with
an action in the hiding set by τ , as shown in Figure 2.

M
`

−→γM′

(M\X)
`

−→γ(M′\X)

` 6∈ X,
γ ∈ {r, m}

M
`

−→γM′

(M\X)
τ

−→γ(M′\X)

` ∈ X,
γ ∈ {r, m}

Figure 2: Rules for the hiding operator.

(a)
E@X

H@X

G@X

F@X

C

A D

B

H′
@X

6

J
JJ]

�
�
��

6

y

yy

y

y

(b)

F

G

E

H′

H

�

6

6

��7 y

y

y

y

y

Figure 3: Observational refinements (with-
out transitive relations) between mod-
els in Figure 1: (a): over the alphabet
X = {acquireReadLock, releaseReadLock}; (b): over the
alphabet X ∪ {acquireWriteLock, releaseWriteLock}.

Definition 4. (Hiding) Let M = (S, L, ∆r, ∆p, s0) be
an MTS and X ⊆ Act be a set of observable actions. M
with the actions of X hidden, denoted M\X, is an MTS

(S, L\X, ∆r′

, ∆p′

, s0), where ∆r′

and ∆p′

are the smallest
relations that satisfy the rules in Figure 2. We use M@αX

to denote M\(Act\X).

Let w = w1, . . . , wk be a word over Actτ . Then M
w

−→r

N means that there exist M0, . . . , Mk such that M0 = M ,

Mk = N , and Mi

wi+1
−→r Mi+1 for 0 ≤ i < k. We use M

`
=⇒r

M ′ to denote M
τ∗`τ∗

−→r M ′. On the other hand, M
w

−→m

N means that there exist M0, . . . , Mk such that M0 = M ,

Mk = N , Mi

wi+1
−→p Mi+1, for 0 ≤ i < k, and ∃j · 0 ≤

j ≤ k · Mj

wj+1

−→m Mj+1, i.e., there is at least one maybe

transition on some letter of w. We use M
`

=⇒m M ′ to

denote ∃M ′′ ·M
τ∗`

−→m M ′′ and M ′′ τ∗
−→r M ′, i.e., the maybe

transition precedes ` on the path from M to M ′. Finally,
for γ ∈ {r, m, p}, we extend =⇒γ to words in the same way
as we do for −→γ .

To compare a model with another one with an augmented
alphabet, we must hide the additional actions in the second
model and then use observational refinement – effectively,
refinement that ignores differences in τ transitions.

Definition 5. (Observational Refinement) N is an ob-
servational refinement of M , written M �O N , if αM =
αN and (M, N) is contained in some refinement relation
R ⊆ ℘ × ℘ for which the following holds for all ` ∈ Act:

1. (M
`

=⇒r M ′)⇒ (∃N ′ · N
`

=⇒r N ′ ∧ (M ′, N ′) ∈ R)

2. (N
`

=⇒p N ′)⇒ (∃M ′ · M
`

=⇒p M ′ ∧ (M ′, N ′) ∈ R)

These conditions exclude the case in which N has a required
transition on `, whereas M has a maybe transition.

Consider again the MTSs shown in Figure 1. In model
E , if a process acquires the write lock, then the read lock
cannot be acquired until the write lock is released. Note
that this model does not indicate that processes are ac-
tually allowed to acquire the write lock, as these transi-
tions are maybe. Hiding the actions acquireWriteLock and
releaseWriteLock, results in an MTS just like E but with
labels acquireWriteLock? and releaseWriteLock? changed
to τ?. Furthermore, the resulting model is observationally
refined by the MTS D:

E ′ = E \ {acquireWriteLock, releaseWriteLock} �O D

where the refinement relation is:

R = {(E ′
0,D0), (E

′
1,D1), (E

′
2,D2), (E

′
3,D0)}

In fact, E ′ is also a refinement of D via the inverse of R. We
say that E ′ and D are observationally equivalent, written
E ′ ≡O D.

Figure 3 depicts observational refinements that hold be-
tween models in Figure 1. Each graph relates models with
the same alphabet: X = {acquireReadLock, releaseRead-
Lock} in Figure 3(a) and

Y = X ∪ {acquireWriteLock, releaseWriteLock}

in Figure 3(b). Nodes with multiple labels indicate models
that are observationally equivalent. Note that models A, B,
C, and D have the alphabet X. Consequently, they cannot
be related through observational refinement to models with
an augmented alphabet Y , i.e. E , F , G, H, and H′. For
this reason, A through D do not appear in Figure 3(b).
However, these models can be related through observational
refinement to E , F , G, H, and H′ if the latter have their
alphabets restricted to X, and are depicted in Figure 3(a).

3. MERGING MODELS
In this section, we introduce the notion of merging modal

transition systems. Figure 4 provides an abstract summary
of the concepts discussed in this section. In this figure, ar-
rows depict observational refinements (i.e., an edge from P
to Q indicates that Q is a refinement of P). All models are
assumed to have the same alphabet, and transitive relations
are not depicted.

The intuition we wish to capture by merging is that of aug-
menting the knowledge we have of the behaviour of a system
by taking what we know from the two partial descriptions of
the system. Clearly, the notion of refinement underlies this
intuition as it captures the “more defined than” relation be-
tween two partial models. Hence, merging two models of
the same system is about finding a common refinement for
these models, i.e., finding a model that is more defined than
both.

It is possible that the models being merged have different
alphabets. Merging these models results in a model whose

(a)

refinementsrefinement
commonLeast Common

M N

ofof andM N andM N

(b)

M

refinements

glb of all minimal
common refinements

N

Minimal
common

of M and N

of M and N

of M
Common refinements

Nand

Figure 4: Building common refinement for models
M and N : (a) M and N have the least common re-
finement; (b) M and N have no least common re-
finement.

alphabet is a superset of the original ones. Hence, the merge
of two partial behavioural models should be an observational
refinement of each with appropriately restricted alphabets.

Definition 6. (Common Observational Refinement) A
modal transition system P is a common refinement of modal
transition systems M and N if αP ⊇ (αM ∪ αN), M �O

P@αM and N �O P@αN .

From this point on, when we refer to common refinement,
we always mean observational refinement.

Refer to Figure 1 for the following example. The MTS F
specifies the writers policy for acquiring a read-write lock:
i) readers exclude writers, ii) writers exclude readers, iii) at
most one writer can have the lock at any given time, iv) the
number of concurrent readers allowed is not known. We can
merge F with the MTS D that states that there can be at
least two concurrent readers. Model H is a common refine-
ment of these models. Note that D �O H\{acquireWriteLock,

releaseWriteLock} holds via the relation

R = {(D0,H0), (D1,H1), (D2,H2), (D0,H3)}

and F �O H holds via the relation

R = {(F0,H0), (F1,H3), (F2,H2), (F2,H1)}

H is a refinement of D and F and thus can simulate the
required behavior of D and F . For example, like D, H allows
up to two readers to access the lock concurrently, e.g., the
trace

acquireReadLock, acquireReadLock,
releaseReadLock, releaseReadLock, . . .

Like F , H allows one writer to access the lock (e.g., the trace
acquireWriteLock, releaseWriteLock, . . .). On the other
hand, F and D can simulate the possible behaviour of H, i.e.
H cannot introduce behaviour that is proscribed in F or D.
If H had (possible) traces allowing concurrent access to the
lock by readers and writers, e.g., acquireWriteLock, acquire-
ReadLock, . . ., H would not be a refinement of F nor D, as
these are not possible in F or D.

Note that common refinement allows H to proscribe traces
that were possible in F or D. In other words, H may not
be able to simulate the possible behaviour of D and F . For
example, the trace

acquireReadLock, acquireReadLock, acquireReadLock, . . .

I: 1 2

b?

a?

c?

0 J :
1

c

0

K: 1 2

b

a?

c

0 L: 1 2

b?

a

c

0 M:
1 2

b?

a?

c

0

c

N : 1 2

b?

a?

c

0
τ O: 1 2

b

a

c

0 P: 1 2

b?

a?

c

0 V:
1 2

b? c

0

W:
1 2

b c

0
X :

1 3 20

a

a

b

c

Y:
1,1 3,3 2,20,0

a

a

b

c

1,2
2,1

a

Figure 5: Example MTS I and J ; their minimal common refinements K and L; models M and N which are
not common refinements of I and J ; O: the least upper bound of I and J ; P: the greatest lower bound of
minimal refinements of I and J . W: a minimal common refinement of V and J . X : a non-deterministic MTS
and Y: composition of X with itself that is not a refinement of X .

(a)

y

y

y

6

6N@{c}, O@{c}

I@{c}

P@{c}

J , K@{c}
L@{c}, M@{c}

(b)
L

M, N

K

O

P

I

6

�
���

�
��7

@
@@I

@
@@I

y

y

yy

y

y

Figure 6: Relationships between some MTSs in Fig-
ure 5: (a) with respect to the alphabet {c}; (b) with
respect to the alphabet {a, b, c}.

that allows three or more concurrent readers, is a possible
trace of F and D, but is proscribed in H.

Consequently, the merged model H introduces knowledge
that neither of the original models has, e.g., proscribing
three or more concurrent readers. Instead, we prefer a less
refined model H′ that does not make such restrictions. H′

is called the least common refinement of D and F .

Definition 7. (Least Common Refinement) A modal tran-
sition system P is the least common refinement of modal
transition systems M and N if P is a common refinement
of M and N , αP = αM ∪ αN , and for any common refine-
ment Q of M and N , P � Q@αP .

The merge of modal transition systems cannot be defined
as their least common refinement for two reasons. Firstly,
it is possible that there is no common refinement at all.
Secondly, it is possible that a common refinement exists, but
there is no least one. We discuss these possibilities below.

Consider again the models in Figure 1. Models A and B
do not have a common refinement: suppose some model P
is a common refinement of A and B, with αP = αA = αB,
and w = acquireReadlock, acquireReadlock. We know

that B
w

=⇒r B2, and because B �O P , then ∃P ′ such that
P

w
=⇒r P ′. Since A �O P , trace w should be possible in

A, which is a contradiction. In fact, model A is inconsistent
with all models that give concurrent read access to more
than one process, namely B, D, E , H and H′, as shown in
Figure 3(a).

Definition 8. (Consistency) Two MTSs M and N are
consistent if there exists an MTS P such that P is a common
refinement of M and N .

Consistency does not guarantee the existence of the least
common refinement. Consider the models shown in Fig-

ure 5. Models I and J do have common refinements, e.g.,
K, L and O, but no least common refinement. Intuitively,
to find the least common refinement between I and J , we
must refine I into I ′ so that (I′ \ {a, b})

c
=⇒r. Hence, we

must transform the maybe transition on c in I to a required
transition and also transform one of the maybe transitions
on a or b. If we transform all three transitions, we obtain
the model O. If we choose not to transform the transition ei-
ther on a or on b, then we obtain the models K and L. Note
that these common refinements are not comparable (neither
is a refinement of the other) because of the different choices
made on which maybe transition to make required.

It is not possible to find common refinements of I and J
which are less refined than K and L. For example, P is less
refined than both but is not a refinement of J . Hence, we
refer to K and L as the minimal common refinements of I
and J . Note that models M and N are incorrect attempts
of building minimal common refinements of I and J . These
are not refinements of I because they both can transit on
c from the initial state through (a sequence of) required
transitions, while I cannot do so from its initial state.

Definition 9. (Minimal Common Refinement) An MTSs
P is a minimal common refinement of MTSs M and N if
P is a common refinement of M and N , αP = αM ∪ αN ;
and there is no MTSs Q 6≡ P such that Q is a common
refinement of M and N and Q@αP � P .

Remark 1. If P is the least common refinement of M
and N , it is also a minimal common refinement. In addi-
tion, if P is the only minimal common refinement of M and
N , then it is also their least common refinement. Finally, if
M and N are consistent, then they have a minimal common
refinement.

If two models are consistent but have no least common
refinement, then their merge could result in any of their
minimal common refinements. However, any choice of min-
imal common refinement rules out the others! Hence, it is
helpful to find a model that characterizes the point in which
incompatible decisions must be made in order to merge two
models and produce a minimal common refinement. This
model is the greatest lower bound (glb) of all minimal com-
mon refinements. The glb is the most refined model from
which we can arrive through refinement to any of the min-

imal common refinements. The glb always exists and is al-
ways unique with respect to observational equivalence. Note
that the glb itself may not be a common refinement of the
models being merged.

For example, the glb of the minimal common refinements
of the models I and J (see Figure 5) is the model P. Note
that this model is not a refinement of J , but could be re-
fined to become one. Further, any refinement of this model
rules out the possibility of arriving at one of the minimal
refinements (K or L).

The relationship between modes I through N is shown in
Figure 6. As in Figure 3, each graph relates models with the
same alphabets. Since J does not have a or b in its alphabet,
it cannot be compared to the other models unless these have
their alphabets restricted to αJ . Hence, J does not appear
in Figure 6(b), where arrows depict observational refinement
between models over the alphabet {a, b, c}. However, J
does appear in Figure 6(a), where the compared models have
the alphabet {c}.

Definition 10. (Greatest lower bound) Let M and N be
consistent modal transition systems. We say that an MTS
Q is a lower bound of all minimal common refinements of
M and N if αQ = αM ∪ αN and for any minimal common
refinement P of M and N , it holds that Q � P . We say
that a lower bound of all minimal common refinements of
M and N is the greatest lower bound (glb) if for any other
lower bound Q′, it holds that Q′ � Q.

Remark 2. If P is the least common refinement of M
and N , then, by Remark 1, P is also the glb of all minimal
common refinements of M and N .

In conclusion, what should the result of merging two con-
sistent modal transition systems M and N be? If M and N
have the least common refinement, then this is the desired
result of the merge. However, if M and N are consistent but
do not have the least common refinement, then the merge
process should result in one of the minimal common refine-
ments of M and N . Model merging should support the
modeller in choosing which minimal common refinement is
the most appropriate. This can be done by producing the
glb of all minimal common refinements of M and N and
supporting its elaboration to produce a minimal common re-
finement. This would allow the modeller to choose, possibly
after validating with stakeholders, which is the appropriate
way of combining two different descriptions of the behaviour
of the same system.

4. MERGE ALGORITHMS
In this section, we present several algorithms for comput-

ing the merge of two MTSs. The basis of our algorithms
is the +u operator. We discuss the use of this operator for
checking consistency and its limitations for building the least
and the minimal common refinements. We also present the
+l operator and show how it can be used to build the least
common refinement or a lower bound to all minimal com-
mon refinements. In the latter case, we show how to support
the elaboration to obtain a minimal common refinement.

4.1 Building a Common Refinement
We first introduce the +u operator and then show that

assuming consistency and the determinacy condition, M +u

N is a common refinement of M and N and also an upper
bound to all minimal common refinements of M and N .

TD
M

`
−→rM′

M+uN
`

−→rM′+uN
` 6∈ αN DT

N
`

−→rN′

M+uN
`

−→rM+uN′

` 6∈ αM

TM
M

`
−→rM′, N

`
−→mN′

M+uN
`

−→rM′+uN′

` 6= τ MT
M

`
−→mM′, N

`
−→rN′

M+uN
`

−→rM′+uN′

` 6= τ

DM
N

`
−→mN′

M+uN
`

−→rM+uN′

` 6∈ αM MD
M

`
−→mM′

M+uN
`

−→rM′+uN
` 6∈ αN

TT
M

`
−→rM′, N

`
−→rN′

M+uN
`

−→rM′+uN′

` 6= τ MM
M

`
−→mM′, N

`
−→mN′

M+uN
`

−→mM′+uN′

` 6= τ

Figure 7: Rules for the +u operator.

Definition 11. (The +u Operator) Let M and N be
MTSs where M = (SM , LM , ∆r

M , ∆p
M , s0M) and N = (SN , LN ,

∆r
N , ∆p

N , s0N). M+uN is an MTS (SM×SN , LM∪LN , ∆r, ∆p,
(s0M , s0N)), where ∆r and ∆p are the smallest relations that
satisfy the rules given in Figure 7.

We explain the rules of Figure 7 below. Intuitively, the
models being merged are run in parallel, synchronizing on
shared actions and producing transitions in the merged model
that amount to merging knowledge from both models. This
means that maybe transitions in one model can be overrid-
den by transitions that are known to be required or pro-
scribed in the other. For instance, if M can transit on `
through a maybe transition, and N can do so via a required
transition, then M +u N can transit on ` through a required
transition as well, as indicated by rules TM and MT in Fig-
ure 7. If M can transit on ` through a maybe transition and
N cannot transit on `, then M +u N cannot transit on `.

For cases in which there is an agreement between both
models, the rules are as expected. If both M and N can
transit on ` over required transitions, then M +u N can do
so as well, as indicated by the rule TT in Figure 7. Maybe
transitions in both models are treated similarly (see rule
MM), and if neither models can transit on `, then the com-
position cannot either.

The rules discussed so far create a composition that is a
refinement of the original models: all required transitions are
clearly preserved in the composition; furthermore, maybe
transitions are introduced into the composition only if one of
the original models has a maybe transition. We now address
the problem of handling states in which the models disagree
on whether the action is allowed or proscribed. Such states
are disagreement states, formally defined below.

Definition 12. (Disagreement States) Let M and N be
MTSs where M = (SM , LM , ∆r

M , ∆p
M , s0M) and N = (SN , LN ,

∆r
N , ∆p

N , s0N). We say that (m, n) ∈ (SM × SN) is a dis-
agreement state if there exists a label ` ∈ (αM ∩ αN) for

which (1) Mm
`

−→r and Nn

`

6−→ or (2) Mm

`

6−→ and Nn
`

−→r.

Consider the models I and J of Figure 5. We have that

J
c

−→r J1 but that I
c

6−→. If we allow I +u J to transition
on c, i.e., (I +u J)

c
−→m, then (I+u J)@αI is not a refine-

ment of I. Instead, (I +u J) should not have a transition
on c. However, we must guarantee that (I +u J)@αJ is a

refinement of J . Hence, because J
c

−→r J1, (I +u J)@αJ
should be able to transit through required τ transitions to
a state in which it can then make a required transition on c

((I +u J)@αJ
c

=⇒r).
Special care needs to be taken when merging models with

different alphabets. If a label ` does not belong to the alpha-
bet of one of the models, this means that this model is not

concerned with `. Hence, if one of the models can transit on
` through a required transition, then the composition can
do so too, but the state of the other model is unchanged, as
` is out of the scope. This is captured by TD and DT rules
in Figure 7 (“D” stands for “do not care”). Similarly, if one
model does not care about ` and the other cannot transit
on it, then the composition should not either.

A similar reasoning could be applied to explain rules MD
and DM in Figure 7; however, note that these rules state
that if M can transit on ` through a maybe transition and `
is not in N ’s alphabet, then M+uN can transit on ` through
a required transition rather than a maybe. For example,
applying the +u operator to the models I and J in Figure 5,
results in the model O, which is their common refinement.

To prove that +u builds common refinements, we need to
ensure that the models are consistent (see Section 4.2). We
also must limit non-determinism in the models being com-
posed. Consider the modal transition system X shown in
Figure 5. Composing this model with itself should yield X ,
whereas computing Y = X +u X yields a model which is
not a refinement of X . The problem here is with the non-
deterministic behaviour of X . From state 0, X can transition
on a to either state 1 or state 2, and transitions enabled and
proscribed in these states are different. Our +u operator
cannot cope with such non-deterministic choices, so for the
remainder of this paper, we assume that the models being
composed satisfy the determinacy condition, i.e. they do not
produce a composite state where there is a non-deterministic
choice on some label ` that leads to states that are not ob-
servationally equivalent.

Definition 13. (Determinacy Condition) Let M = (SM ,
LM , ∆r

M , ∆p
M , s0M) be an MTS. We say that Ms is non-

deterministic on ` if there are states q and r in M such that

Ms
`

−→p Mq, Ms
`

−→p Mr, and Mq 6≡ Mr.
Let N = (SN , LN , ∆r

N , ∆p
N , s0N) be an MTS. We say

that the determinacy condition holds for a composition C =
(SM ×SN , LC , ∆r

C , ∆p
C , (s0M , s0N)) if for all reachable states

(m, n) of C and all labels ` ∈ LM ∩ LN , it is not the case
that Mm and Nn are non-deterministic on `.

It is important to note that the determinacy condition is
weaker than simply requiring MTSs to be deterministic. For
example, in Figure 1, state 3 of E has a non-deterministic
choice over label releaseWriteLock. However, in E +u F ,
this state is reached when F is in state 1, which is determin-
istic on releaseWriteLock. The same happens with state
2 of F which is non-deterministic on releaseReadLock, but
in E +u F , this state is reached when E is in states 1 or 2,
both of which are deterministic on releaseReadLock. Thus,
E +u F satisfies the determinacy condition, so the merge is
possible. On the other hand, X +u X does not satisfy it in
state (0, 0), and so the merge cannot be performed.

Theorem 1. (+u builds common observational refinements)
If M and N are consistent modal transition systems and
M +u N satisfies the determinacy condition, then M +u N

is a common observational refinement of M and N .

Proof. The proof proceeds by showing that the rules
TT, MM, MT, TM, DM, DT, MD, and DM in Figure 7
make the composition preserve required transitions of M
and N , while the fact that no other rules are present en-
sures that M and N preserve the maybe transitions of the

composition. There are two main points that the proof ad-
dresses: non-deterministic choice and disagreement states.
Non-deterministic choice is handled the same way as prov-
ing that the parallel composition of deterministic processes
can simulate the composed processes [18]. The proof that
disagreement states still result in a common refinement even
though no transitions are produced in this case by the rules
in Figure 7, follows from consistency of M and N . Con-
sistency guarantees that if a reachable state (m, n) has a

disagreement on ` and Mm

`

6−→, then M must be able to
transit through maybe transitions on actions that are unob-
servable to N and reach a state from which it can transit on
`, i.e., ∃w ∈ (Actτ \αN)∗ and ∃m′ such that Mm

w
=⇒p Mm′

and Mm′

`
−→r. The MD rule converts maybe transitions

that are unobservable to N into required transitions in the

composite model, guaranteeing that (Mm +u Nn)
`

−→r.

Finally, we address the precision of the +u operator: this
operator does not build minimal common refinements. For
example, I+uJ = O, whereas minimal common refinements
of I and J are K and L (see Figure 5). In fact, +u produces
an overapproximation, or an upper bound with respect to
the refinement ordering, of all minimal common refinements
of the composed models, which is reflected in its name: “u”
in +u stands for upper bound. We address this problem in
Section 4.3.

Theorem 2. (+u is an upper bound of all minimal com-
mon refinements) If M and N are consistent and M +u N
satisfies the determinacy condition, then for every Q that is
a minimal common refinement of M and N , it holds that
Q@α(M +u N) �0 M +u N .

Proof. Any minimal common refinement Q of models M

and N differs from M +u N only from the result of applying
MD and MD rules: some required transitions of M +u N
can be maybe transitions in Q.

4.2 Checking Consistency
We now present an algorithm for checking consistency of

two MTSs under the assumption of the determinacy condi-
tion.

To check consistency of two MTSs M and N , we use the
+u operator to build a composite model of M and N and
meanwhile check what happens when a disagreement state
is reached. The algorithm is shown in Figure 8.

Theorem 3. (Consistency check algorithm is sound) If
M +u N satisfies the determinacy condition, Algorithm 1
called with parameters M and N returns null if and only if
M and N are consistent.

Proof. The proof of the ⇐ direction follows directly
from Theorem 1. The proof of the ⇒ direction is based
on the similar reasoning as the proof of Theorem 1.

Refer to MTSs in Figure 1. Algorithm 1, applied to in-
consistent models A and B, would return the pair (1, 2) sig-
naling that this disagreement state (in which A proscribes
the occurrence of acquireReadLock in state 1 while B has a
required transition on the same label in state 2) is a source
of inconsistency. If the algorithm is applied to models G and
B, then the pair (2, 1) would be returned, signaling an in-
consistency based on the fact that G constrains the number

Algorithm 1. (Consistency Check)

Input: MTSs M and N .
Output: if M and N are consistent, return null;

otherwise, return a disagreement state.

1: Build M +u N , marking each disagreement state
2: For each marked state (m,n)

3: If Nn

`

6−→

4: If Nn

w.`

6−→ for some w ∈ (Actτ\αM)∗

5: Return (m, n)

6: If Mm

`

6−→

7: If Mm

w.`

6−→ for some w ∈ (Actτ\αN)∗

8: Return (m, n)
9: Return null

Figure 8: Algorithm for checking consistency be-
tween two MTSs.

DM
N

`
−→mN′

M+lN
`

−→mM+lN
′

` 6∈ αM MD
M

`
−→mM′

M+lN
`

−→mM′+lN
` 6∈ αN

Figure 9: Two rules for the +l operator.

of readers to 1, while B allows two readers. Similarly, the
algorithm would detect the inconsistencies between pairs (G
and D) and (G and E).

4.3 Building a Lower Bound of the Merge
As we noted earlier, the operator +u computes a common

refinement of consistent models M and N , but this refine-
ment may not necessarily be minimal. Instead, we wish to
provide an algorithm for constructing the least common re-
finement of M and N , if there is one, or the set of minimal
common refinements otherwise. Here we present the +l op-
erator and show that under the assumption of determinacy,
it is a lower bound to all minimal common refinements. In
Section 4.4, we discuss how to elaborate this model to be-
come a minimal common refinement.

Recall that +u introduces imprecision through DM and
MD rules, making the corresponding transition in M +u N
required. Operator +l, defined below, relaxes these restric-
tions.

Definition 14. (The +l Operator) The +l operator is
defined as +u, but replacing MD and DM rules of Figure 7
with those in Figure 9.

Computing I+lJ for the models shown in Figure 5 yields
P, but as we discussed in Section 3, this model is not a
refinement of J . Neither of the maybe transitions on a or
on b in J have been converted to required transitions. +l

computes an underapproximation, or the lower bound (thus
the meaning of “l” in its name) of all minimal refinements
of the models being merged, as stated below.

Theorem 4. (+l is a lower bound of all minimal common
refinements) If M and N are consistent and M +lN satisfies
the determinacy condition, then for any minimal common
refinement Q of M and N , M +l N �0 Q@α(M +l N).

Thus, M +l N approximates the greatest lower bound of
M and N from below, and it would be reasonable to ex-
pect that our merge algorithms compute it and then help
the modeller refine it into the minimal common refinement

of his/her choice. Unfortunately, +l does not necessarily
compute the actual glb. Consider merging the models J
and V (see Figure 5). Their least common refinement is W.
However, V +l J results in V which is not a refinement of
J . The point is that DM and MD rules for the merge op-
erator should convert some maybe transitions into required
transitions. But which transitions should be converted? If
all are, as in the computation of +u, then minimality is lost.
The right rules for computing glb for all minimal common
refinements are somewhere between the MD and DM rules
of +u and +l. The choice of which transitions should be
converted is discussed in Section 4.4.

Clearly, if the DM and MD rules are never applied, then
M +u N = M +l N . Further, both operators produce the
least common refinement of M and N , if one exists and
the determinacy condition holds. In particular, when mod-
els being merged have the same alphabet and no maybe τ
transitions, then DM and MD rules are not applied.

Theorem 5. (Sufficient condition for +l to be the least
common refinement) M +lN is the least common refinement
of M and N if M and N are consistent, the determinacy
condition holds for M +l N , and MD and DM rules have
not been used.

In practice, we have found that the +l operator produces
the least common refinement in many model merging con-
texts. In particular, it suffices for the readers and writers
policies of Figure 1 and for the example in [21].

When none of the sufficient conditions of Theorem 5 hold,
then the +l operator produces a model that can be refined
into a minimal common refinement of both models by choos-
ing an appropriate subset of maybe transitions generated by
MD and DM rules and converting them into required tran-
sitions, as described below.

4.4 Elaboration
The goal of merging two consistent models is to arrive at

their minimal common refinement. We now show how to
refine a lower bound of all minimal common refinements,
obtained via +l, into a minimal common refinement.

The reason why +l operator builds a lower bound to all
minimal common refinements and may not even be a com-
mon refinement itself is that DM and MD rules result in
maybe transitions, whereas sometimes required transitions
should be produced instead. Suppose M +N Q is being con-
structed and disagreement state (m, n) is reached. With-

out loss of generality, assume that Mm
`

−→r Nn′ whereas

Nn

`

6−→. Since M and N are assumed to be consistent,
there exists w ∈ (αN\αM)∗ and states n′ and n′′ of N such

that Nn
w

=⇒m Nn′ and Nn′

`
−→m Nn′′ . We know from the

DM rule that (Mm +l Nn)
w

=⇒m (Mm +l Nn′) and from

rule TM – that (Mm +l Nn′)
`

−→r (Mm′ +l Nn′′). Hence,

(Mm +l Nn)\αM
`

=⇒m (Mm′ +l Nn′′)\αM . However, to ob-

tain a minimal common refinement, because Mm
`

−→r Mm′ ,

we need to obtain (Mm+lNn)\αM
`

=⇒r (Mm′+lNn′′)\αM .
In cases where the least common refinement exists, only one
w can be produced, and this transformation can be fully
automated. In cases where more than one w satisfies the
above condition, several minimal common refinements are
possible. To obtain one, we need to pick a w from the
above set and transform (Mm +l Nn)

w
=⇒m (Mm +l Nn′)

Algorithm 2. (Elaboration Algorithm)

Input: Consistent MTSs M and N that satisfy the
determinacy condition.

Output: A minimal common refinement P of M and N and
a boolean flag set to true iff P is their least common
refinement.

1: f := true
2: Build P = M +l N , marking each disagreement state
3: For each marked state (m,n)

4: If Nn

`

6−→
5: Build set T with all w where w ∈ (αN\αM)∗ such

that ∃Nn′ where Nn
w

=⇒m Nn′ and Nn′

`
−→m Nn′′

6: If |T | > 1
7: f := false /* No least common refinement*/
8: w′ := User choice of the element of T
9: Else
10: w′ := w ∈ T /* this w is unique */
11: Replace maybe transitions in P with required

transitions such that (Mm +l Nn)
w

=⇒r (Mm +l Nn′)

12: Else /* Mm

`

6−→ */
13: Treatment is similar to the above case
14: Return f and P

Figure 10: An Elaboration Algorithm.

into (Mm +l Nn)
w

=⇒r (Mm +l Nn′). Further, different w

traces can be used to give feedback to the user to support
him/her in choosing the minimal common refinement that
is most appropriate for the problem being modelled. The
elaboration algorithm is shown in Figure 10.

Note that we have to be careful in step 5 of the algorithm:
potentially, there can be an infinite number of w traces from
which a modeller could choose if there are maybe loops in
N . An implementation of this elaboration process needs to
provide a subset of such traces, in particular, by putting a
bound on the number of times a maybe loop is taken. In fact,
it is likely that once a disagreement state with several refine-
ment options has been identified, the modeller would want
to evaluate the options by inspecting or animating the mod-
els. Hence, step 5 could be simplified to checking whether
the disagreement state has more than one refinement option,
rather than computing all the options, and then requesting
the user to convert one maybe transition to a required one.

An execution of the algorithm for models I and J of
Figure 5 identifies the pair (0, 0) as a disagreement state on
action c, and displays a? and b? as the options for refining
the composition to achieve a minimal common refinement.
Depending on the choice, either model K or L would be
reached.

We now look at complexity of our algorithms for merg-
ing models M and N with SM and SN states and TM and
TN transitions (Ti is O(Si × Li)). The potential size of the
state space of a minimal common refinement of M and N is
S = O(|SM | × |SN |). Checking whether M and N are con-
sistent is very similar to checking weak bisimulation, and
takes O(L + S × T) [1], where T is the number of transi-
tions and L = |LM ∪ LN | is the total number of actions in
the merged model. Computing +u and +l does not increase
this complexity. Finally, we analyze complexity of the elab-
oration algorithm. Step 5 of the algorithm can produce an
exponential number of w, even if the number of times each
maybe loop is N traversed a finite number of times. In fact,

since these words are to be displayed to the user, it does not
make sense to compute more than a few different w’s. In
this case, step 5 can be done by breadth-first search in the
τ -graph of N , taking O(TN).

5. DISCUSSION AND RELATED WORK
Although our work discusses merging of MTSs [15], this

notion is applicable to other partial behavioural models such
as Partial Labelled Transition Systems (PLTS) [22], multi-
valued state machines [6], and Mixed Transition Systems [5].
The underlying principle of all of these should be common
observational refinement, although the exact definition of
merge operators will differ according to the specific charac-
teristics of each formalism.

To the best of our knowledge, there is no prior work specif-
ically on merging models that describe the observable be-
haviour of a system. On the other hand, merging operational
specifications in which system states are explicitly described
is frequently done (e.g. [24, 19, 7, 10]). In [24], states are
modelled as valuations of state propositions, and states with
compatible valuations can be merged. In [7], states can be
merged only if they have the same label. [19] proposes a
more general approach, but the emphasis of this work is on
preserving model structure (i.e., the states and the acces-
sibility relation between them) rather than preserving be-
havioural properties. Our approach differs from the work
on computing least common generalizations from examples,
as merge preserves simulation (which is stronger than trace
inclusion) on required transitions and (in the opposite di-
rection) on possible transitions. Hussain and Huth [10] also
study the problem of finding a common refinement between
multiple MTSs, focusing on the complexity of the relevant
model-checking decision procedures. Instead, we address the
more general problem of supporting engineering activities in
model elaboration; we see merging as the process of select-
ing the most appropriate common refinement. In addition,
we consider merging models with different alphabets. The
goal of the work by Larsen et al. [16] is to decompose a com-
plete specification into several partial ones to enable com-
positional proofs. In doing so, they define a sufficient con-
dition for constructing common refinements in MTSs with
the same alphabet. Their condition is more restrictive than
our determinacy condition.

Our work focuses on operational descriptions. However,
an alternative approach is to specify observable behaviour
declaratively [12]. Declarative specifications based on clas-
sical logics are partial, yet they do not need to describe the
unknown properties explicitly: such properties are those for
which neither truth nor falsity can be inferred from the rest
of the specification. Merging declarative behavioural spec-
ifications comes naturally as the conjunction of the corre-
sponding theories; however, understanding which behaviours
are possible is fairly difficult. Further, as in the case of op-
erational descriptions, not all pairs of models have the least
common refinement. Thus, some support for constructing
an approximation of minimal common refinements and elab-
orating it into a desired minimal refinement is needed. To
the best of our knowledge, there are no approaches that pro-
vide such support.

Larsen and Thomsen [15] define a parallel composition
operator over MTSs. Its intent is different from the ones
presented in this paper. Parallel composition assumes that
models being composed describe different systems, whereas

MT
M

`
−→mM′, N

`
−→rN′

M‖N
`

−→mM′‖N′

` 6= τ TM
M

`
−→rM′, N

`
−→mN′

M‖N
`

−→mM′‖N′

` 6= τ

Figure 11: Two rules for the parallel composition
operator.

merging treats those as different models of the same sys-
tem. Note the difference between the TM and MT rules for
parallel composition, shown in Figure 11, with those for +u

and +l: the combined model has a maybe transition in the
former case and a required transition in the latter.

It is also important to note that our approach does not
address ontological issues regarding the labels used in mod-
els being merged. Here we assume that labels have been
used consistently according to one common ontology.

6. SUMMARY AND FUTURE WORK
The motivation for the work presented in this paper comes

from the need to support the elaboration of partial behavioural
models. In particular, our work has been motivated by exist-
ing limitations of scenario-based model synthesis techniques,
hence the focus on observable behaviour rather than on the
model structure. However, our work could also be applica-
ble in the context of composing models that cover different
viewpoints [9] or aspects [4].

We have argued that observational refinement is the for-
mal underlying principle of model merging of partial be-
havioural models and that merging is a process that should
produce a minimal common observational refinement of two
consistent models. Modulo the determinacy condition, we
have presented an algorithm for checking model consistency
and algorithms for supporting the merge process. For the
case in which there is only one minimal common refinement
(i.e. the least common refinement exists), we have presented
an algorithm that can build it automatically. For the other
case, we have presented an algorithm that computes the
lower bound of all minimal common refinements, which can
then be elaborated by the modeller into the desired minimal
common refinement.

In the near future, we expect to work on the efficiency of
the algorithms presented in this paper and produce imple-
mentations for them. Experimentation using model merging
remains to be done, and we aim to apply the algorithms in
the context which has motivated our work, namely, scenario-
based model synthesis and elaboration. We also intend to
work on ways in which the determinacy condition for merg-
ing behavioural models can be weakened.

ACKNOWLEDGMENTS
We thank Arie Gurfinkel and Shiva Nejati for their com-
ments on an earlier draft of this paper and also Michael
Huth for his comments on this line of work. We acknowl-
edge EPSRC grant READS GR/S03270/01 and NSERC for
partially funding this work.

7. REFERENCES
[1] A. Bouali and R. de Simone. “Symbolic Bisimulation

Minimization”. In Proceedings of CAV’92, pages
96–108, 1992.

[2] M. Chechik, B. Devereux, S. Easterbrook, and
A. Gurfinkel. “Multi-Valued Symbolic
Model-Checking”. ACM TOSEM, 12(4):1–38, 2003.

[3] E. Clarke and J. M. Wing. “Formal Methods: State of
the Art and Future Directions”. ACM Computing
Surveys, 28(4):626–643, 1996.

[4] S. Clarke and R. J. Walker. “Composition Patterns:
An approach to Designing Reusable Aspects”. In
Proceedings of ICSE’01, pages 5–14, May 2001.

[5] D. Dams. Abstract Interpretation and Partition
Refinement for Model Checking. PhD thesis,
Eindhoven University of Technology, 1996.

[6] R. Diaz-Redondo, J. Pazos-Arias, and
A. Fernandez-Vilas. “Reusing Verification Information
of Incomplete Specifications”. In Proceedings of the
Workshop on Component-Based SE, 2002.

[7] S. Easterbrook and M. Chechik. “A Framework for
Multi-Valued Reasoning over Inconsistent
Viewpoints”. In Proceedings of ICSE’01, pages
411–420, May 2001.

[8] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, Englewood Cliffs, New Jersey, 1985.

[9] A. Hunter and B. Nuseibeh. “Managing Inconsistent
Specifications: Reasoning, Analysis and Action”.
ACM TOSEM, 7(4):335–367, 1998.

[10] A. Hussain and M. Huth. “On Model Checking
Multiple Hybrid Views”. Submitted for publication,
July 2004.

[11] ITU. “Message Sequence Charts”. Technical Report
Recommendation Z.120, International
Telecommunications Union. Telecommunication
Standardisation Sector, 2000.

[12] D. Jackson. “Alloy: a Lightweight Object Modelling
Notation”. ACM TOSEM, 11(2):256–290, 2002.

[13] R. Keller. “Formal Verification of Parallel Programs”.
Communications of the ACM, 19(7):371–384, 1976.

[14] I. Krueger, R. Grosu, P. Scholz, and M. Broy. “From
MSCs to Statecharts”. In F. J. Rammig, editor,
Distributed and Parallel Embedded Systems. Kluwer
Academic Publishers, 1999.

[15] K. Larsen and B. Thomsen. “A Modal Process Logic”.
In Proceedings of LICS’88, pages 203–210, 1988.

[16] K. G. Larsen, B. Steffen, and C. Weise. “A Constraint
Oriented Proof Methodology based on Modal
Transition Systems”. In Proceedings of TACAS’95,
pages 13–28, May 1995.

[17] J. Magee and J. Kramer. Concurrency: State Models
and Java Programs. John Wiley & Sons Ltd., New
York, 1999.

[18] R. Milner. Communication and Concurrency.
Prentice-Hall, London, 1989.

[19] M. Sabetzadeh and S. Easterbrook. “Analysis of
Inconsistency in Graph-Based Viewpoints: A
Category-Theoretic Approach”. In Proceedings of
ASE’03, pages 12–21, October 2003.

[20] ICSE Workshop on Scenarios and State Machines:
Model, Algorithms and Tools (SCESM), 2002-2004.

[21] S. Uchitel and M. Chechik. “Merging MTSs for a B2B
E-Commerce Site”,
http://www.doc.ic.ac.uk/~su2/merge/examples.

[22] S. Uchitel, J. Kramer, and J. Magee. “Behaviour
Model Elaboration using Partial Labelled Transition
Systems”. In Proceedings of ESEC/FSE’03, pages
19–27, 2003.

[23] S. Uchitel, J. Kramer, and J. Magee. “Synthesis of
Behavioural Models from Scenarios”. IEEE TSE,
29(2):99–115, 2003.

[24] J. Whittle and J. Schumann. “Generating Statechart
Designs from Scenarios”. In Proceedings ICSE’00,
pages 314–323, 2000.

