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Abstract 
 This paper presents a Feedback Control real-time Scheduling (FCS) framework for adaptive real-
time systems. An advantage of the FCS framework is its use of feedback control theory (rather than ad 
hoc solutions) as a scientific underpinning. We apply a control theory based methodology to 
systematically design FCS algorithms to satisfy the transient and steady state performance specifications 
of real-time systems. In particular, we establish dynamic models of real-time systems and develop 
performance analyses of FCS algorithms, which are major challenges and key steps for the design of 
control theory based adaptive real-time systems. We also present a FCS architecture that allows plug-ins 
of different real-time scheduling policies and QoS optimization algorithms. Based on our framework, we 
identify different categories of real-time applications where different FCS algorithms should be applied. 
Performance evaluation results demonstrate that our analytically tuned FCS algorithms provide robust 
transient and steady state performance guarantees for periodic and aperiodic tasks even when the task 
execution times vary by as much as 100% from the initial estimate. 

1. Motivation and Introduction 
Real-time scheduling algorithms fall i nto two categories: static and dynamic scheduling. In static 
scheduling, the scheduling algorithm has complete knowledge of the task set and its constraints, such as 
deadlines, computation times, precedence constraints, and future release times. The Rate Monotonic (RM) 
algorithm and its extensions [15][19] are static scheduling algorithms and represent one major paradigm 
of real-time scheduling. In dynamic scheduling, however, the scheduling algorithm does not have 
complete knowledge of the task set or its timing constraints. For example, new task activations, not 
known to the algorithm when it is scheduling the current task set, may arrive at a future unknown time. 
Dynamic scheduling can be further divided into two categories: scheduling algorithms that work in 
resource sufficient environments and those that work in resource insufficient environments. Resource 
sufficient environments are systems where the system resources are suff icient to a priori guarantee that, 
even though tasks arrive dynamically, at any given time all the tasks are schedulable. Under certain 
conditions, Earliest Deadline First (EDF) [19][31] is an optimal dynamic scheduling algorithm in 
resource suff icient environments. EDF is a second major paradigm for real-time scheduling. While real-
time system designers try to design the system with suff icient resources, because of cost and 
unpredictable environments, it is sometimes impossible to guarantee that the system resources are 
suff icient. In this case, EDF’s performance degrades rapidly in overload situations. The Spring scheduling 
algorithm [34] can dynamically guarantee incoming tasks via on-line admission control and planning and 
thus is applicable in resource insuff icient environments. Many other algorithms [31] have also been 
developed to operate in this way. These admission-control-based algorithms represent the third major 
paradigm for real-time scheduling. However, despite the significant body of results in these three 
paradigms of real-time scheduling, many real world problems are not easily supported. While algorithms 
such as EDF, RM and the Spring scheduling algorithm can support sophisticated task set characteristics, 
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they are all "open loop" scheduling algorithms. Open loop refers to the fact that once schedules are 
created they are not "adjusted" based on continuous feedback. While open-loop scheduling algorithms can 
perform well i n predictable environments in which the workloads can be accurately modeled (e.g., 
traditional process control systems), they can perform poorly in unpredictable environments, i.e., systems 
whose workloads cannot be accurately modeled. For example, systems with open-loop schedulers such as 
the Spring scheduling algorithm are usually designed based on worst-case workload parameters. When 
accurate system workload models are not available, such an approach can result in a highly underutili zed 
system based on an extremely pessimistic estimation of workload.  

In recent years, a new category of soft real-time applications executing in open and unpredictable 
environments is rapidly growing [32]. Examples include open systems on the Internet such as online 
trading and e-business servers, and data-driven systems such as smart spaces, agile manufacturing, and 
defense applications such as C4I. For example, in an e-business server, neither the resource requirements 
nor the arrival rate of service requests are known a priori. However, performance guarantees are required 
in these applications. Failure to meet performance guarantees may result in loss of customers, financial 
damage, liabilit y violations, or even mission failures. For these applications, a system design based on 
open loop scheduling can result in an extremely expensive and underutili zed system.  

As a cost-effective approach to achieve performance guarantees in unpredictable environments, 
adaptive scheduling algorithms have been recently developed. While early research on real-time 
scheduling was concerned with guaranteeing complete avoidance of undesirable effects such as overload 
and deadline misses, adaptive real-time systems are designed to handle such effects dynamically. There 
remain many open research questions in adaptive real-time scheduling. In particular, how can a system 
designer specify the performance requirement of an adaptive real-time system? And how can a designer 
systematically design a scheduling algorithm to satisfy system performance specifications? The design 
methodology for automatic adaptive systems has been developed in feedback control theory [12]. 
However, feedback control theory has been mostly applied in mechanical and electrical systems. In trying 
to apply feedback control theory to a computer systems domain, the modeling and implementation of 
adaptive real-time systems face significant research challenges. Some of those challenges are answered in 
this paper. 

Recently, several works have applied control theory to computing systems. For example, several 
papers [3][9][10][11] presented flexible scheduling techniques to improve digital control system 
performance. These techniques are tailored to the specific characteristics of digital control systems instead 
of general adaptive real-time computing systems. Li and Nahrstedt [18] utili zed control theory to develop 
a feedback control loop to guarantee desired network packet rate in a distributed visual tracking system. 
Hollot et. al. [13] apply control theory to analyze a congestion control algorithm on IP routers. A control-
theoretical approach has also been applied to provide QoS guarantees in web servers [2][4][21] and e-
mail servers [25]. While these works use control theory analysis on computing systems, they do not 
directly address timing constraints, which is the key requirement of real-time systems.  

Transient state performance of adaptive real-time systems has received special attention in recent 
years. For example, Brandt et. al. [8] evaluated a dynamic QoS manager by measuring the transient 
performance of applications in response to QoS adaptations. Rosu et. al. [27] proposed a set of 
performance metrics to capture the transient responsiveness of adaptations and its impact on applications. 
The paper proposed metrics that are similar to settling time and steady-state error metrics found in control 
theory.   

However, to the authors' best knowledge, no unified framework exists to date for designing an 
adaptive real-time computing system from performance specifications of desired dynamic response. In 
this paper we present Feedback Control real-time Scheduling (FCS), an analytical framework that maps 
QoS control in adaptive real-time systems to feedback control theory. Our control theoretical framework 
includes the following elements: 

 
• A scheduling architecture that maps the feedback control structure to adaptive resource 

scheduling in real-time systems, 
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• A set of performance specifications and metrics to characterize both transient and steady state 
performance of adaptive real-time systems, and 

• A control theory based design methodology for resource scheduling algorithms to satisfy system 
performance specifications. 

 
In contrast to ad hoc approaches that rely on laborious design/tuning/testing iterations, FCS enables 
system designers to systematically design adaptive real-time systems with established analytical methods 
to achieve desired performance guarantees in unpredictable environments. 

The feedback control real-time scheduling architecture is described in Section 2. Performance 
specifications and metrics for adaptive real-time systems are presented in Section 3. The control theory 
based design methodology is presented in Section 4. An analytical model for generic CPU bound real-
time systems is established in Section 5. Based on this model, the design and analysis of a set of FCS 
algorithms are given in Section 6. Performance evaluation results of these scheduling algorithms are 
presented in Section 7. Finally, we conclude this paper in Section 8. 
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Figure 1: Feedback Control Real-Time Scheduling Architecture 

2. Feedback Control Real-Time Scheduling Architecture 
Our feedback control real-time scheduling (FCS) architecture (Figure 1) is composed of a feedback 
control loop composed of a Monitor, a Controller, a QoS Actuator, and a Basic Scheduler. Before we 
describe the components of the FCS architecture, we define our task model and a set of control related 
variables. 

2.1. Task Model 

Each task has several QoS levels. In this task model, each task Ti has N QoS levels (N ≥ 2). Each QoS 
level j (0 ≤ j ≤ N-1) of Ti is characterized by the following attributes: 
 

Di[j]:  the relative deadline 
EEi[j]:  the estimated execution time 
AEi[j]:  the (actual) execution time that can vary considerably from instance to instance and is 

unknown to the scheduler 
Vi[j]:  the value task Ti contributes if it is completed at QoS level j before its deadline Di[j]. The 

lowest QoS level 0 represents the rejection of the task and Vi[0] ≤ 0 (when Vi[0] < 0, it is 
called the rejection penalty [6]). Every QoS level contributes a value of Vi[0] if it misses its 
deadline. 

 
For periodic tasks:  

Pi[j]:  the invocation period 
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Bi[j]:  the estimated CPU utilization Bi[j] = EEi[j] / Pi[j]  
Ai[j]:  the (actual) CPU utilization Ai[j] = AEi[j] / Pi[j] 

 
For aperiodic tasks:  

EIi[j]:  the estimated inter-arrival-time between subsequent invocations 
AIi[j]:  the average inter-arrival-time that is unknown to the scheduler 
Bi[j]:  the estimated CPU utilization Bi[j] = EEi[j] / EIi[j]  
Ai[j]:  the (actual) CPU utilization Ai[j] = AEi[j] / AIi[j]  

 
In this model, a higher QoS level of a task has a higher (both estimated and actual) CPU utili zation and 
contributes a higher value if it meets its deadline, i.e., Bi[j+1] > Bi[j], Ai[j+1] > Ai[j], and Vi[j+1] > Vi[j]. In 
the simplest form, each task only has two QoS levels (corresponding to the admission and the rejection of 
the task, respectively). In many applications including web services [4], multimedia [8], embedded digital 
control [11], and systems that support imprecise computation [20] or flexible security [30], each task has 
more than two QoS levels and the scheduler can trade-off the CPU utili zation of a task with the value it 
contributes to the system at a finer granularity. The QoS levels can differ in term of execution time and/or 
period/inter-arrival-time. For example, a web server can dynamically change the execution time of a 
HTTP session by changing the complexity of the requested web page [4]. For another example, several 
papers have shown that the deadlines and periods of tasks in embedded digital control systems and 
multimedia players can be adjusted on-line [8][10]. A key feature of our task model is that it characterizes 
systems in unpredictable environments where task’s actual CPU utili zation is time varying and unknown 
to the scheduler. Such systems are amenable to the use of feedback control loops to dynamically correct 
the scheduling errors to adapt to load variations at run-time. 

2.2. Control Related Variables 
An important step in designing the FCS architecture is to decide the following variables of a real-time 
system in terms of control theory. 
 
• Controlled variables are the performance metrics controlled by the scheduler. Controlled variables of 

a real-time system may include the deadline miss ratio M(k) and the CPU utilization U(k) (also called 
miss ratio and utili zation, respectively), both defined over a time window ( (k-1)W, kW ), where W is 
the sampling period and k is called the sampling instant. 
o The miss ratio M(k) at the kth sampling instant is defined as the number of deadline misses 

divided by the total number of completed and aborted tasks in a sampling window ((k-1)W, kW). 
Miss ratio is usually the most important performance metric in a real-time system.  

o The utili zation U(k) at the kth sampling instant is the percentage of CPU busy time in a sampling 
window ((k-1)W, kW). CPU utili zation is regarded as a controlled variable for real-time systems 
due to cost and throughput considerations. CPU utili zation is important because of its direct 
linkage with the deadline miss ratio (see Section 5).  

o Another controlled variable might be the total value V(k) delivered by the system in the kth 
sampling period. In the remainder of this paper, we do not directly use the total value as a 
controlled variable, but rather address the value imparted by tasks via the QoS Actuator (see 
Figure 1 and Section 7.1)  

 
• Performance references represent the desired system performance in terms of the controlled 

variables, i.e., the desired miss ratio MS and/or the desired CPU utili zation US. For example, a 
particular system may require deadline miss ratio MS = 0 and CPU utili zation US = 90%. The 
difference between a performance reference and the current value of the corresponding controlled 
variable is called an error, i.e., the miss ratio error EM = MS – M(k) and the utili zation error EU = US – 
U(k). 
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• Manipulated variables are system attributes that can be dynamically changed by the scheduler to 

affect the values of the controlled variables. In our architecture, the manipulated variable is the total 
estimated utilization B(k) = ∑iUi[li(k)] of all tasks in the system, where Ti is a task with a QoS level of 
li(k) in the kth sampling window. The rationale for choosing the total estimated utili zation as a 
manipulated variable is that real-time scheduling policies such as EDF and Rate/Deadline Monotonic 
can guarantee no deadline misses when the CPU is not overloaded, and in normal situations, the miss 
ratio increases as the system load increases. The other controlled variable, the utili zation U(k), also 
usually increases as the total estimated utili zation increases. However, the utili zation is often different 
from the total estimated utili zation B(k), which is due to the estimation error of execution times when 
workload is unpredictable and time varying. Another difference between U(k) and B(k) is that U(k) 
can never exceed 100% while B(k) does not have this limit. 

2.3. Feedback Control Loop 
The FCS architecture features a feedback control loop that is invoked at every sampling instant k. It is 
composed of a Monitor, a Controller, and a QoS Actuator (Figure 1). 
 
1) The Monitor measures the controlled variables (M(k) and/or U(k)) and feeds the samples back to the 

Controller.  
 
2) The Controller compares the performance references with corresponding controlled variables to get 

the current errors, and computes a change DB(k) (called the control input) to the total estimated 
requested utili zation based on the errors. The Controller uses a control function to compute the 
correct manipulated variable value to compensate for the load variations and keep the controlled 
variables close to the references. The detailed design of the Controller is presented in Section 6. 

 
3) The QoS Actuator dynamically changes the total estimated requested utili zation at each sampling 

instant k according to the control input D(k+1) by adjusting the QoS levels of tasks. The goal of the 
QoS Actuator is to enforce the new total estimated requested utili zation B(k+1) = B(k) + DB(k). 
Under the utili zation constraint of B(k+1), the QoS Actuator calls a QoS optimization algorithm (see 
Section 7.1) to maximize the system value. In the simplest form, each task has only two QoS levels 
and the QoS Actuator is essentially an admission controller. In this paper, we assume the system has 
arriving-time QoS control, i.e., the QoS Actuator is also invoked upon the arrival of each task. The 
arriving-time admission control isolates disturbances caused by variations in task arrival rates (see 
Section 5). Feedback control scheduling in systems without arriving-time QoS control was previously 
studied in [21].  

2.4. Basic Scheduler 
The FCS architecture has a Basic Scheduler that schedules admitted tasks with a scheduling policy (e.g., 
EDF or Rate/Deadline Monotonic). The properties of the scheduling policy can have significant impact 
on the design of the feedback control loop. Our FCS architecture permits plugging in different policies for 
this Basic Scheduler and then designing the entire feedback control scheduling system around this choice. 

A key difference between our work and the previous work is that while previous work often assumes 
the CPU utili zation of each task is known a priori, we focus on systems in unpredictable environments 
where tasks’ actual CPU utili zations are unknown and time varying. This more challenging problem 
necessitates the feedback control loop to dynamically correct the scheduling errors at run-time.  

3. Performance Specifications and Metrics 
We now describe the second element of the FCS framework, the performance specifications and metrics 
for adaptive real-time systems. Traditional metrics such as the average miss-ratio cannot capture the 
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transient behavior of the system in response to load variations. Recently, a set of metrics [21][27] was 
proposed to characterize both transient and steady state behavior of an adaptive system. In this section, we 
extend and map the metrics to dynamic responses of control systems. The performance specifications 
consist of a set of performance profiles1 in terms of the controlled variables, utili zation U(k), and miss 
ratio M(k). We also present a set of representative load profiles adapted from control theory [12].  

3.1. Performance Profile 
The performance profile characterizes important transient and steady state performance of a real-time 
system. M(k) and U(k) characterize the system performance in the sampling window ((k-1)W, kW). In 
contrast, traditional metrics for real-time systems such as average miss-ratio and average utili zation are 
defined based on a much larger time window than the sampling period W. The average metrics are often 
inadequate metric in characterizing the dynamics of the system performance in response to overload 
conditions [22]. The performance profile of a real-time system includes the following: 
 

• Stability: A real-time system is stable if its miss ratio M(k) and utili zation U(k) are always 
bounded for bounded references. Since both miss ratio and utili zation are naturally bounded in 
the range [0, 100%], stabilit y is a necessary condition to prevent miss ratio and utili zation from 
staying at the undesirable 100% limit. 

 
• Transient-state response represents the real-time system’s responsiveness and eff iciency of QoS 

adaptation in reacting to changes in run-time conditions. 
o Overshoot Mo and Uo: For a real-time system, we define overshoot as the maximum 

amount that the system overshoots its miss ratio or utili zation reference divided by its 
miss ratio or utili zation reference, i.e., Mo = (Mmax – MS) / MS, Uo = (Umax – US) / US, 
respectively. The maximum miss ratio Mo and utili zation Uo in the transient state is called 
the absolute overshoot. Overshoot is important to a real-time system because a high 
transient miss-ratio or utili zation can cause system failure in many systems such as robots 
and media streaming [8]. 

o Settling time Ts: The time it takes the system to enter a steady state in response to a load 
profile. The settling time represents how fast the system can settle down to steady state 
with desired miss ratio and/or utili zation.  

 
• Steady-state error ESM and ESU: The difference between the average values of miss ratio M(k) 

and/or utili zation U(k) in steady state and its corresponding reference. The steady state error 
characterizes how precisely the system can enforce the desired miss ratio and/or utili zation in 
steady state.  

 
• Sensitivity Sp: Relative change of a controlled variable in steady state with respect to the relative 

change of a system parameter p. For example, sensiti vity of miss ratio with respect to the task 
execution time SAE represents how significantly the change in the task execution time affects the 
system miss-ratio. Sensiti vity describes the robustness of the system with regard to workload or 
system variations. 

3.2. Load Profile 
According to control theory, the performance profile of an adaptive system may be specified assuming 
representative load profiles including step load and ramp load. The step load represents the worst case of 

                                                      
1 The performance profile has been called the miss-ratio profile in [22]. The performance profile can be generalized 
to other metrics such as response time, throughput, and value-cognizant metrics.  
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load variation that overloads the system instantaneously, while the ramp load represents a nominal form 
of load variation. The load profiles are defined as follows. 
 

• Step-load SL(Ln, Lm): a load profile that instantaneously jumps from a nominal load Ln to a higher 
load Lm > Ln and stays constant after the jump. Instantaneous load change such as the step load is 
more diff icult to handle than gradual load change.  

 
• Ramp-load RL(Ln, Lm, TR): a load profile that increases linearly from the nominal load Ln to a 

higher load Lm > Ln during a time interval of TR sec. Compared with the step load, the ramp signal 
represents a less severe load variation scenario.  

 
One key advantage of using the above load profiles for performance specification is that they are 
amenable to well -established design and analysis methods in control theory and, therefore, fits well with 
our control theoretical framework. This means that a system designer can use control theory method to 
analytically design the system to satisfy a performance profile in response to a load profile as defined 
above. Specifically, a load profile can be modeled as disturbance signals in the form of a step or ramp 
signal. Based on control theory, a linear system’s dynamic properties can be determined by its dynamic 
response to a step signal or a ramp load regardless of its parameters including the magnitude of load 
variation (Lm-Ln) and the ramp duration TR. If a real-time system can be approximated with a linear model 
in its operation conditions, its performance profile can be determined by stressing the system with a step 
load, i.e., the system can achieve satisfactory performance under any combinations of step and ramp load 
if its performance profile in response to a step load or ramp load satisfies its specifications.  

However, if a real-time system is non-linear, the dynamic response of a system in response of any 
load variations cannot be determined by its response to a single step load or a single ramp load because 
the system performance depends on the specific parameters of the load profiles. In this case, the 
performance profiles in response to specific load profiles are only “ indications” of the system 
performance in general. In this case, the load profiles are application-specific based on a set of expected 
load characteristics and system requirements.  

The load profiles are abstractions of the workload, and there can be many possible instantiations of 
the same load profile. The instantiation of a load profile should incorporate the knowledge of the 
workload, and, therefore, the load profile should be viewed as an enhancement to existing benchmarks. 
For example, the system load can be interpreted as the total requested CPU utili zation in the system where 
CPU is the bottleneck resource. For another example, the load of an Internet server may be interpreted as 
the number of concurrent users.  

4. Control Theory Based Design Methodology  
The third element of our FCS framework is the control theory based design methodology. Based on the 
scheduling architecture and the performance specifications, a system designer can systematically design 
an adaptive resource scheduler to satisfy the system’s performance specifications with established 
analytical methods in control theory. This methodology is in contrast to existing ad hoc approaches that 
depend on laborious design/tuning/testing iterations. The control design methodology is as follows. 

 
1) The system designer specifies the desired dynamic behavior with transient and steady state 

performance metrics. This step maps the performance requirements of an adaptive real-time 
system to the dynamic response specification of a control system.  

 
2) The system designer establishes a dynamic model of the real-time system for the purposes of 

performance control. A dynamic model describes the mathematical relationship between the 
control input and the controlled variables of a system with differential/difference equations or 
state matrices. Modeling is important because it provides a basis for the analytical design of the 
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controller. However, modeling has been a major challenge for applying control theory to real-
time systems due to the lack of established differential/difference equations to describe real-time 
systems.  

 
3) Based on the performance specs and system model from step 1) and 2), the system designer 

applies established mathematical techniques (i.e., the Root Locus method, frequency design, or 
state based design) of feedback control theory [12] to design FCS algorithms that analytically 
guarantee the specified transient and steady-state behavior at run-time.  

 
Compared with existing ad hoc approaches, this analytical design approach significantly reduces design 
time of adaptive systems. The resultant system’s parameters can be easily tuned with existing control 
theory methods and the resultant system can be proved to satisfy its performance specifications. In 
contrast, the tuning adaptive systems designed with ad hoc methods often depends on repeated testing, 
guessing, or rule-of-thumb without performance guarantees at run-time.  

5. Modeling the Controlled Real-Time System 
 
A key step of using the control theory methodology is to establish an analytical model to approximate the 
controlled system in the FCS architecture.  

The controlled system includes the QoS Actuator, the scheduled tasks, the CPU, the Basic Scheduler, 
and the Monitor. The control input to the controlled system is the change in the total estimated utili zation 
DB(k). The output of the controlled system includes the controlled variables, miss ratio M(k) and 
utili zation U(k). Although it is diff icult to precisely model a nonlinear and time varying system such as a 
real-time system, we can approximate such a system with a linear model for the purpose of control design 
because of the robustness of feedback control with regard to system variations. We now derive the model 
from the control input to the output.  

Starting from the control input, the QoS actuator changes the total estimated utili zation B(k+1) in the 
next sampling period according the control input DB(k) at every sampling instant k: 
 

B(k+1) = B(k) + DB(k)                    (1)

Since the precise execution time of each task is unknown and time varying, the total (actual) requested 
utili zation A(k) may differ from the total estimated requested utili zation B(k):  
 

A(k) = Ga(k)B(k)                    (2)

where Ga(k), called the utilization ratio, is a time-variant variable that represents the extent of workload 
variation in terms of total requested utili zation. For example, Ga(k) = 2 means that the actual total 
requested utili zation is twice of the estimated total utili zation. Since Ga(k) is time variant, we use the 
maximum possible value GA = max{ Ga(k)} , called the worst-case utilization ratio, in control design to 
guarantee stabilit y in all cases. Hence Equation 2 can be simpli fied to the following formula for the 
purpose of control design: 

A(k) = GAB(k)                        (3)

The relationship between the total requested utili zation A(k) and the controlled variables are nonlinear 
due to saturation, i.e., the controlled variables remain constant when the control input DB(k) ≠ 0. When 
the CPU is underutili zed (A(k) ≤ 1), the utili zation U(k) is outside its saturation zone and equals A(k); 
when the CPU is overloaded, however, U(k) saturates at 1 because it can never exceed 100%. 

Based on Equations 1-3, the analytical model for the utili zation output is as following: 
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U(k) = U(k-1) + GADB(k-1) (A(k) ≤ 1)            (4)

U(k) = 1         (A(k) > 1)            (5)

Now we derive the model for the miss ratio output M(k). In contrast with U(k) that saturates in 
overload conditions, M(k) saturates at 0 when the CPU is underutilized, i.e., the total requested utili zation 
is below a utilization threshold Ath(k). In real-time scheduling theory, schedulable utilization bounds have 
been derived for various real-time scheduling policies under different workload assumptions [19]. A 
utili zation bound Ab is typically defined as a fixed lower bound for all possible workloads under certain 
assumptions, while we define the utili zation threshold Ath(k) as the time varying actual threshold for the 
system’s particular workload in the kth sampling period (and hence Ab ≤ Ath(k)). 

When A(k) > Ath(k), M(k) usually increases nonlinearly with the total requested utili zation A(k). The 
relationship between M(k) and A(k) needs to be linearized by taking the derivative at the vicinity of the 
performance reference MS as the miss ratio factor Gm:   

)(

)(

kdA

kdM
Gm =            

In practice, the miss ratio factor Gm can be estimated experimentally by plotting a miss ratio curve as a 
function of the total utili zation based on experimental data. We use the maximum slope GM at the vicinity 
of MS in control design to guarantee stabilit y. Given the miss ratio factor, we have the following 
linearized formula for the purpose of control design: 

M(k) = M(k-1) + GM(A(k) – A(k-1))              (6) 

Based on Equations 1-3 and 6, the analytical model for the miss ratio output is as following: 
 

M(k) = 0 (A(k) ≤ Ath(k))            (7) 

M(k) = M(k-1) + GMGADB(k-1) (A(k) > Ath(k))            (8) 

Note that different scheduling policies in the Basic Scheduler usually lead to a different utili zation 
threshold Ath(k). For example, if EDF is plugged into the FCS architecture and the workload is composed 
of independent and periodic tasks, the utili zation threshold Ath = 100%. In comparison, the utili zation 
threshold is usually lower than 100% if RM is plugged into the architecture. Therefore, the scheduling 
policy and the workload characteristics affect the choices on the controlled variable and its performance 
reference. 
 We now convert the models to z-domain transfer functions that are amenable to control theory 
methods. Let Y(z) be the z-transform of a output variable y(k) (e.g., U(k) or M(k)) and X(z) be the z-
transform of a input variable x(k). A linear system (or a linearized system) can be represented by a 
transfer function P(z) such that Y(z) = P(z)X(z). For our controlled real-time system, its linearized models 
in Equations 4 and 8 are equivalent to the following transfer functions outside their own unsaturated 
zones, respectively.  

Utilization: PU(z) = GA / (z-1)                     (9) 
Miss ratio: PM(z) = GAGM / (z-1)           (10) 

 
Since the model for miss-ratio and utili zation are the same except for the extra miss-ratio factor GM in 
Equation 10, for simplicity of discussion we use a same formula P(z) to represent the transfer functions of 
both controlled variables: 

P(z) = G / (z-1)                (11) 
 
where G is called the process gain. G = GA for the utili zation output and G = GAGM for the miss ratio 
output.  

The saturation of U(k) and M(k) renders special challenges in the controller design because the output 
becomes unresponsive to the control input in the saturation zones. However, since the utili zation 
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threshold is lower than 100% (i.e., Ath(k) ≤ 1) for any scheduling policy [19], the saturation zones of U(k) 
and that of M(k) are always mutually exclusive. This leads to the following important property of real-
time systems:  

 
Property 1: At any instant of time, at least one of the controlled variables (U(k) and M(k)) does not 
saturate in a real-time system.  

 
We design a scheduling algorithm, FC-UM, to solve the saturation problem by taking advantage of 

this property in Section 6.4.3. 

6. Design of Feedback Control Real-Time Scheduling Algorithms 
In this section, we apply control theory methods to the Controller, the key component of FCS algorithms. 
We first present the control algorithm and the model of the feedback control loop for each controlled 
variable. Based on the analytical models, we apply control theory to tune the Controller and develop 
mathematical analyses on the performance profiles of the resultant Controller. We then present several 
FCS algorithms to handle different types of real-time systems. 

6.1. Design of the Controller 
At each sampling instant k, the Controller computes a control input DB(k), the change in the total 
estimated requested utilization, based on the miss ratio error EM(k) = MS - M(k) and/or the CPU utilization 
error EU(k) = US - U(k). In this section, we focus on a Controller for a single controlled variable. The goal 
of the Controller includes (1) guaranteed stability, (2) zero steady state error, (3) zero sensitivity to 
workload variations, and (4) satisfactory settling time and overshoot. Since the same control function can 
be used for both controlled variables, we use the same symbol E(k) to denote the miss ratio error EM(k) 
and the utilization error EU(k). Similarly we use S to denote the miss ratio reference MS and utilization 
reference US, and the symbol y(k) to denote the miss ratio reference M(k) and utilization reference U(k). 

For the FCS architecture, we choose to use a simple P (Proportional) control function [12] to compute 
the control input. The P control function is in Equation 12 where KP is a tunable parameter.  

 
DB(k) = KPE(k)                    (12)

The rationale for using a P Controller instead of a more sophisticated Controller such as PID 
(Proportional-Integral-Derivative) Controller is that the controlled system includes an integrator in the 
QoS Actuator (Equation 1) such that zero steady state error can be achieved without an I (Integral) term in 
the Controller (see detailed analysis in Section 6.2). The D (Derivative) term is not used in this case 
because Derivative control may amplify the noise in miss ratio and utilization due to frequent workload 
variations in unpredictable environments.  

The performance of the real-time system depends on the Controller parameter KP. An ad hoc 
approach to design the Controller is to repeat numerous experiments on different parameter values. In our 
work, we apply established control theory methods to tune the parameters analytically to guarantee the 
performance specifications. In Section 6.2 we first tune the Controller for each of the controlled variables 
based on the linear models of the controlled system (Equation 11). Due to the saturation properties, the 
performance of the closed loop system may deviate from the linear case.  

6.2. Closed-Loop System Model  
The system output is miss ratio M(k) or utilization U(k). There are two input signals to a closed loop 
system with a single (miss ratio or utilization) Controller.  
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DB(z) M(z)A(z)
KP GA / (z-1)

L(z)

+
GM

+
MS z/(z-1)

- +

DB(z) U(z)A(z)
KP GA / (z-1)

L(z)

++
US z/(z-1)

- +

(a) Miss Ratio Control

(b) Utili zation Control
 

Figure 2: Models of Feedback Control Loops 

6.2.1. Reference Input and Arrival Overload 
The first input is the performance reference S (i.e., MS or US) modeled as a step signal, Sz/(z-1) in the z 
domain. Note that with the arrival-time QoS control mechanism in our FCS architecture, the particular 
form of load profiles does not affect the system’s response because the actual tasks admitted into the 
system are always determined by the QoS Actuator. Therefore, the system response to the reference input 
corresponds to the system performance in response to arrival overload. Given the model of the controlled 
system P(z) (Equation 11) and the Controller C(z) (Equation 12), we can establish a same closed-loop 
transfer function of both miss ratio and utili zation control in response to the reference input: 
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where G = GA for utili zation control, and G = GAGM for miss ratio control.  

6.2.2. Disturbance Input: Internal Overload 
The second input to the closed-loop system is the internal overload when admitted tasks’ CPU utili zations 
vary. The internal overload can be modeled as a disturbance that adds to the total requested utili zation 
A(k) (see Figure 2ab). In particular, a step load SL(Ln, Lm) is modeled as a step signal L(k) that jumps 
instantaneously from 0 to (Lm – Ln), or L(z) = (Lm – Ln)z/(z-1) in the z domain; a ramp load RL(Ln, Lm, TR) 
is modeled as a ramp signal L(k) that linearly increases from 0 to (Lm – Ln) in a duration of TR sec. Note 
that in the case of internal overload input, the specific load profile decides the input signal and therefore 
has a direct impact on the system performance. In this paper, we focus our analysis on the step load 
profile because it represents more severe load variations than the ramp load with a finite duration. 
Regarding the disturbance input, the transfer function for utili zation control and the system output in 
response to the internal overload as follows. 
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The above transfer function is also applicable to miss ratio control except the disturbance input would be 
GML(k) or GML(z) to account for the extra GM term in Figure 2a. 

6.3. Control Tuning and Analysis 
We now present the tuning and analysis of the utilization Controller and the miss ratio Controller based 
on the analytical models described in Equations 13a and 14a. According to control theory, the 
performance profile of a system depends on the poles of its closed loop transfer function. Based on 
Equations 13a and 14a, we can place the closed loop pole p = 1-KPG at the desired location by choosing 
the right value for the control parameter KP. We now use control theory to derive KP to achieve the 
desired performance profile.   
 �

Stability Condition: The sufficient and necessary condition for the utilization and the miss ratio 
control to guarantee stability is 

 
0 < KP < 2/G                (15)

 
Proof: According to control theory, a system is stability if and only if all the poles {pj | 0 ≤ j ≤ n} (n is the 
total number of poles) of its transfer function are in the unit circle of z-plane [12], i.e.,  |pj| < 1 (0 ≤ j ≤ n). 

From Equations 13a and 14a, the only pole of the utilization and the miss ratio control system in 
response to the arrival overload and the internal overload is  

 
p0 = 1 - KPG              

 
Hence, the utilization control and the miss ratio control guarantee stability if and only if |1 - KPG| < 1 ⇔ 0 
< KP < 2/G. Therefore, the sufficient and necessary condition of stability is Equation 15. 

  
We derive the steady state performance of the utilization and the miss ratio control system by 

applying the Final Value Theorem [12] to the system output in Equations 13b and 14b. The following 
steady state analysis assumes that the stability condition in Equation 15 is satisfied. 
 �

Steady state error (arrival overload): under the stability condition in Equation 15, in response to 
an arrival overload, the miss ratio and the utilization control guarantee zero steady state error. 

Proof: Let y(k) be the output of a stable system, the Final Value Theorem of digital control theory states 
that the system output converges to a final value 
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From Equation 13b, the output of the utilization and the miss ratio control in response to an arrival 
overload is 
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where S represents the constant performance reference. Hence it follows that 
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that is, the steady state error ESC = S - y(∞) = 0. 
 



 13 

� Steady state error (internal overload): under the stability condition in Equation 15, the miss ratio 
and the utilization control achieve zero steady state error despite the presence of an internal 
overload. 

 
Proof: From Equation 14b, the system output of the utili zation and miss ratio control in response to an 
internal overload SL(Lm, Ln) is 
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where ∆L = Lm – Ln for the utili zation control, and ∆L = GM(Lm – Ln) for the miss ratio control.  

Applying the Final Value Theorem to the above equation, the final value of the utili zation control and 
the miss ratio control is  
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It follows that the steady state error ESC = S - y(∞) = 0. 
 

� Sensitivity: under the stability condition in Equation 15, the steady-state performance of the 
utilization control and the miss ratio control has zero sensitivity with regard to task execution times, 
inter-arrival-times, and miss ratio factor. 

 
Proof: In Equation 11, G = Ga(k) for the utili zation control, and G = Ga(k)Gm(k) for the miss ratio control. 
The variation in Ga(k) represents the variation in the task execution times and/or inter-arrival-times, and 
the variation in Gm(k) represents the variation in the miss ratio factor.  

From Equations 16 and 17, the final output of the utili zation and miss ratio control system in response 
to the arrival overload and the internal overload always equals the performance reference S for any value 
of G if it satisfies the stabilit y condition (Equation 15), that is, the related sensiti vity is zero. 
 

In summary of our steady state analysis, we have proven that, under the stabilit y condition in 
Equation 15, the utili zation control and the miss ratio control always achieve the performance reference in 
steady state in response to arrival and internal overload. Furthermore, we have also shown that this 
guarantee is robust with regard to task execution times, inter-arrival-times, and the miss ratio factor. 

According to control theory, for the system transfer function Equation 13a, the overshoot remains 
zero in response to arrival overload if the closed loop pole p0 ≥ 0. From Equation 16, the utili zation 
control and the miss ratio control achieves zero overshoot if and only if 

 
0 < KP ≤ 1/G 

The settling time increases as the Controller parameter increases in the above range.  
We place the pole p0 = 0.63 by settling KP = 0.37/G, or:  

 
Miss Ratio Control: KP = 0.37/(GAGM) (a) 
Utili zation Control: KP = 0.37/GA (b) (18)

 
The above values for the Controller parameter KP has the following properties based on control analysis.  
 

1) The parameters in Equations 18ab satisfy the stabilit y condition in Equation 15. 
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2) Since the control parameter value in Equations 18a and 18b satisfy the zero overshoot condition, 
the overshoot in response to the reference input is: 

Miss Ratio Control: MO = 0  Mmax = MS  (a) 
Utili zation Control: UO = 0  Umax = US (b)        (19) 

 
3) The Controller cannot affect the overshoot in response to the disturbance input, which directly 

changes the output before any control action could take place: 
Miss Ratio Control: MO = GM(Lm – Ln)/MS  Mmax = MS + GM(Lm – Ln)  (a) 
Utili zation Control:  MO = (Lm – Ln)/US Umax = US + Lm – Ln  (b) (20) 

 
4) Regarding the system to be in steady state if its output y(k) is within ε% = 2% of its final value, 

the above pole placement corresponds to a same settling time in response to the reference input 
and the disturbance input. 

Miss Ratio/Utili zation Control: Ts = 4.5 sec          (21)
 
The above settling time is not applicable to the miss ratio control in response to arrival overload 

because the miss ratio M(k) saturates at 0. Assume an arrival overload occurs to an idle system at time 0, 
the miss ratio control observes M(0) = 0, which results in a control signal of KP(MS – M(0)) = KPMS. Since 
MS is typically small , the control signal is also small . Due to the saturation problem, the miss ratio will 
stay at 0 and cause the control signal to remain small . This property can cause the utili zation and miss 
ratio to increase slower than in case of the linear model and result in a longer settling time than Equation 
21. One solution is to assign a high initial value to the estimated requested utili zation B(k) when the 
system is idle, which will help to push the system out of the saturation zone faster than a zero initial B(k).  

Based on the above analysis, we have the following conclusions on the transient performance of the 
closed-loop system. 

 
� Transient Performance in Response to Arrival Overload: From Equation 21, in response to an 

arrival overload the output settles to within 2% the performance reference in 4.5 sec. Furthermore, 
Equation 20a ensures that with miss ratio control, the miss ratio never exceeds the miss ratio 
reference in response to an arrival overshoot. Similarly, Equation 20b ensures that with utili zation 
control, the CPU utili zation never exceeds the utili zation reference in response to an arrival overload.  

 
� Internal Overload: From Equation 21, the system output can recover to within 2% the performance 

reference in 4.5 sec after the beginning of an internal step-overload. However, Equations 20a and 20b 
show that the system suffers from a non-zero overshoot during transient state in response to an 
internal step-overload. With miss ratio control, the system miss ratio M(k) can overshoot the reference 
MS by GM(Lm-Ln). With utili zation control, the CPU utili zation can overshoot the reference US by 
GM(Lm-Ln).  

6.3.1. Impact of System/Workload Variations on Performance Profiles 
Because a real-time system is usually a time-varying system (as discussed in Section 5), an important 
issue is how the variations in system/workload parameters (e.g., task execution times and miss ratio 
factor) affect the above analysis based on fixed values of the parameters. Specifically, since Ga(k) and 
Gm(k) may be different from the worst-case utili zation ratio GA and the worst-case miss-ratio factor GM. 
We need to analyze how the changes in miss ratio factor Gm(k) and utili zation ratio Ga(k) affect the 
performance profile of the closed-loop system in the following.  

• Stability 
Based the stabilit y condition in Equation 15 and the Controller parameter in Equations 18a and 18b, we 
can derive the range of Gm(k) and Ga(k) such that the system stabilit y is guaranteed. 
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Miss Ratio Control: 0 < Ga(k)Gm(k) < 5.4GAGM 
Utili zation Control: 0 < Ga(k) < 5.4GA           (22) 

 
Note that since we usually compute the Controller parameter KP based on the worst case estimation such 
that, GA > Ga(k) > 0 and GA > Ga(k) > 0, our closed-loop system guarantees stabilit y. Furthermore, even if 
the actual system parameter can exceed the design-time estimations (due to estimation error or dramatic 
system change), stabilit y is still guaranteed by the closed loop system as long as Ga(k) and Gm(k) stay 
within the above stabilit y range.   

• Steady State Performance 
We have proven that both miss ratio control and utili zation control can achieve their performance 
references in steady state as long as the systems remain stable. Therefore, both the miss ratio control and 
utili zation control provide robust and accurate performance guarantees in steady state regardless of the 
actual values of miss ratio factor and utili zation ratio if they stay in the stabilit y range (Equation 22).  
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Figure 3: Settling Time vs. Process Gain 

• Transient Performance 
Unlike stabilit y and steady state performance, the closed loop system’s settling time is sensiti ve to the 
variations in miss ratio factor Gm and utili zation ratio Ga. Assume we use an estimation of GA = 2.0 to 
compute the utili zation control parameter KP = 0.37/ GA = 0.185 (as in our experiments in Section 7), then 
we plot the theoretical settling time corresponding to different process gains G = Ga, shown in Figure 3. 
The process gain decreases from 12.5 sec to 4 sec as the process gain G increases from 0.8 to 2.2. This 
result shows that with a same Controller parameter KP, the system reacts faster to overload when its 
utili zation ratio and miss ratio factor are larger. Therefore, a P Controller with a fixed parameter KP 
cannot guarantee a fixed settling time. Instead, if the range of the process gain G is known, a range of 
settling times can be guaranteed. For example, if we know that the process gain stays in the range 0.8 ≤ G 
≤ 2.0, the settling time can be guaranteed to be in the range of 4.5 ≤ TS ≤ 12.5 (sec) as shown in Figure 3. 

Similarly, the overshoot is also sensiti ve to the variations in the process gain. For our closed-loop 
transfer function in response to arrival overload (Equation 13a), the overshoot remains zero if the closed 
loop pole p≥0. Therefore, the system can achieve zero overshoot in response to an arrival overload if miss 
ratio factor and  
 

Miss Ratio Control: 0 < Ga(k)Gm(k) < 2.7GAGM 
Utili zation Control: 0 < Ga(k) < 2.7GA           (23) 
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In summary, given the system parameters, the worst-case utili zation ratio GA, and the miss ratio factor 
GM, we can directly derive the control parameter KP based on Equations 18a and 18b to guarantee a set of 
performance profiles including stabilit y, zero steady state error, and a satisfactory range of transient 
performance. Note that the analytical tuning method of the control parameter is significantly easier and 
less time consuming than ad hoc approaches based on repeated simulation experiments. This is one 
important advantage of using our control-theory based FCS framework instead of ad hoc solutions. 

6.4. FCS Algorithms 
In this section, we present FCS algorithms based on utili zation and/or miss ratio control to achieve 
satisfactory performance profiles in different types of real-time systems. We also discuss the impact of the 
basic scheduling policy and workloads on the design of FCS algorithms.  

6.4.1. FC-U: Feedback Utilization Control 
FC-U embodies a utili zation control loop to control the utili zation U(k). The utili zation control loop 
periodically samples the utili zation, computes a change in the total estimated utili zation, and calls an 
value optimization algorithm to assign QoS levels to tasks under the constraint of the new total estimated 
utili zation. The pseudo code of FC-U is as following. 
 
// Invoked periodically at every sampling instant  
// US: utilization reference  
// KPU: utilization control parameter computed using Equation 18b  
FC-U( US, KPU) {  

//Monitor  
U = utilization in the last sampling period (( k- 1) W, kW);  
//Control ler  
EU = US – U;  
DB = KPU* EU;  
//Actuator  
B = B + DB;  
//decide task QoS levels to optimize total value under the constraint that  
//the total estimated utilization of all tasks ≤ B; 
AssignQoS( B);  

}  
 
FC-U guarantees that the miss ratio M(k) = 0 in steady state if its reference US ≤ Ath where Ath is the 
schedulable utili zation threshold of the system. 

 Because utili zation U(k) saturates at 100%, FC-U cannot detect how severely the system is 
overloaded when U(k) remains at 100%. The consequence of this problem is that in severely overload 
conditions FC-U can have a longer settling time than the analysis results based on the linear model. The 
closer the reference is to 100%, the longer the settling time will be. This is because the utili zation control 
measures an error with a smaller magnitude and thus generates a smaller control input than the ideal case 
described by the linear model (Equation 11). For example, suppose the total requested utili zation A(k) = 
200% and the utili zation reference is 99%, the error measured by the Controller would be EU = 0.99–1 = -
0.01; however, the error would have been EU = 0.99 – 2 = -1.01 according to the linear model. In the 
extreme case, US = 100% can cause the system to stay in overload (a settling time of infinity) because the 
error EU=0 even when the system is severely overloaded. Therefore, the reference US should have enough 
distance from 100% to alleviate the impact of saturation on the control performance.  

FC-U is especially appropriate for systems with a utili zation bound that is a priori known and not 
pessimistic. In such systems, FC-U can guarantee a zero miss ratio in steady state if US ≤ Ab ≤ Ath. For 
example, FC-U performs well i n a system with EDF scheduling and a periodic and independent task set 
because its utili zation bound is 100%. FC-U is not applicable for systems whose utili zation bounds are 
unknown or pessimistic. In such systems, a reference that is too optimistic (higher than the utili zation 
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threshold) can cause high miss ratio even in steady state. On the other hand, a reference that is too 
pessimistic can unnecessaril y underutili ze the system. 

6.4.2. FC-M: Feedback Miss Ratio Control 
Unlike FC-U that controls miss ratio indirectly through utili zation control, FC-M utili zes a miss ratio 
control loop to directly control miss ratio2. The pseudo code of FC-M is as following.  
 
// Invoked periodically at every sampling instant  
// MS: miss ratio reference  
// KPM: miss ratio control parameter computed using Equation 18a  
FC-M( MS, KPM) {  

//Monitor  
M = miss ratio in the last  sampling period (( k- 1) W, kW);  
//Controller  
EM = MS – M;  
DB = KPM* EM;  
//Actuator  
B = B + DB;  
AssignQoS( B);  

}  
 

Compared with FC-U, the advantage of FC-M is that it does not depend on any knowledge about the 
utili zation bound. In the process of directly controlli ng the miss ratio, the miss ratio control loop always 
changes the total requested utili zation A(k) to the vicinity of the (unknown) utili zation threshold Ath(k). An 
additional advantage of FC-M is that it can achieve higher CPU utili zation than FC-U because the 
utili zation threshold is often higher than the utili zation bound. 

Similar to FC-U, FC-M has restrictions on the miss ratio reference MS due to saturation. Because miss 
ratio M(k) saturates at 0, FC-M cannot detect how severely the system is underutili zed when M(k) = 0. 
Consequently, FC-M can have a longer settling time than the analysis results based on the linear model 
(Equation 11) in severely underutili zed conditions, and the settling time increases as the miss ratio 
reference decreases. This is because the miss ratio control measures an error of a smaller magnitude and 
generates a smaller control input than the case of the linear model. For example, suppose the total 
requested utili zation A(k) = 10% and the miss ratio reference is MS = 1%, the error measured by the 
Controller would be EM = 0.01 – 0 = 0.01; however, the error would have been much larger according to 
the linear model because it would have a “negative” miss-ratio. In the extreme case, MS = 0 can cause the 
CPU to remain underutili zed because the error EM = 0 even when the system is severely underutili zed. 
Therefore, the miss ratio reference should have some distance from the saturation boundary 0 to alleviate 
the impact of saturation on the control performance. Unfortunately, a positive miss ratio reference also 
means that the system cannot achieve zero miss ratio in steady state. 

In summary, the FC-M scheduling algorithm (with a small positi ve miss ratio reference) can achieve 
low deadline miss ratio (close to MS) and high CPU utili zation even if the system’s utili zation bound is 
unknown or time varying. Since FC-M cannot guarantee zero deadline miss ratio in steady state, it is only 
applicable to soft real-time systems that can tolerate sporadic deadline misses in steady state. 

6.4.3. FC-UM: Integrated Utilization/Miss Ratio Control 
FC-UM integrates miss-ratio control and utili zation control to combine the advantages of both FC-U and 
FC-M 3. In this integrated control scheme, both miss-ratio M(k) and utili zation U(k) are monitored. At 
each sampling instant, M(k) and U(k) are fed back to two separate Controllers, the miss ratio Controller 
and the utili zation Controller, respectively. Each Controller then computes its control signal 

                                                      
2 FC-M was also called FC-EDF in [23] when working with EDF as the Basic Scheduler. 
3 FC-UM was also called FC-EDF2 in [22] when working with EDF as the Basic Scheduler. 
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independently. The control input of the utili zation control DBU(k) is compared with the miss-ratio control 
input DBM(k), and the smaller one DB(k) = min(DBU(k), DBM(k)) is sent to the QoS Actuator.  
 
// Invoked periodically at every sampling instant  
// MS: miss ratio reference  
// US: utilization reference  
// KPM: m iss ratio control parameter computed using Equation 18a  
// KPU: utilization control parameter computed using Equation 18b  
FC-UM( MS, US, KPM, KPU) {  

//Monitors  
M = miss ratio in the last sampling period (( k- 1) W, kW);  
U = utilization in the last sampling per iod (( k- 1) W, kW);  
//Controllers  
EM = MS – M;  
DBM = KPM* EM;  
EU = US – U;  
DBU = KPU* EU;  
DB = min( DBM, DBU)  
//Actuator  
B = B + DB;  
AssignQoS( B);  

}  
 

Note that the advantage of FC-U is that it can achieve excellent performance (M(k) = 0) in steady 
state if the utili zation reference is correct, while the advantage of FC-M is that it can always achieve low 
(but, non-zero) miss ratio and, therefore, is more robust in face of utili zation threshold variations. The 
integrated control structure can achieve the advantages of both controls because of the following reasons. 
If used alone, the utili zation control would change the total requested utili zation A(k) to its reference US in 
steady state, and the miss ratio control loop would change A(k) to the vicinity of the util ization threshold 
Ath(k) in steady state. Due to the min operation on the two control inputs, the integrated control loop 
would change the total requested utili zation to the lower value caused by the two control loops, 
min(Ath(k), US). The implication of this feature is that the integrated control loop always achieves the 
performance of the relatively more conservative control loop in steady state. Specifically, in a system 
scheduled by FC-UM, if US ≤ Ath(k), the utili zation control dominates in steady state and guarantees that 
the total requested utili zation A(k) stays close to its utili zation reference US and thus miss ratio M(k) = 0 in 
steady state. On the other hand, if US > Ath(k), the utili zation control dominates in steady state and 
guarantees that the total requested utili zation stays close to its utili zation threshold Ath(k) and miss ratio 
M(k) = MS in steady state.  

In a system with the FC-UM scheduler, the system administrator can simply set the utili zation 
reference US to a value that causes no deadline misses in the nominal case (e.g., based on system profili ng 
or experiences), and set the miss ratio reference MS according to the application’s requirement on miss 
ratio. FC-UM can guarantee zero deadline misses in the nominal case while guaranteeing that the miss 
ratio stay close to MS even if the utili zation threshold of the system becomes lower than the utili zation 
threshold. Our experimental results (Section 7) demonstrate that FC-UM achieves satisfactory 
performance.  

6.4.4. Impacts of Scheduling Policies and Applications on FCS algorithm Design 
An important factor that affects the design of FCS algorithms is whether an a priori known and non-
pessimistic utili zation bound exists for the scheduling policy and workload of a system. Existing real-time 
scheduling theory has derived the schedulable utili zation bound for various scheduling policies based on 
different workload assumptions. For example, assuming a periodic and independent task set, it has been 
established that the schedulable utili zation bound of EDF and RM is 100% and 69%, respectively [19]. 
Recently, the schedulable utili zation bound for Deadline Monotonic scheduling is also derived for general 
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aperiodic and periodic tasks in the ideal case [1]. Other papers established schedulable utili zation bounds 
for other types of workloads (e.g., [15][31]). Since FC-U can guarantee a miss ratio M(k) = 0 in steady 
state if its utili zation reference US ≤ Ab, the utili zation reference should be determined based on the 
scheduling policy and workload of a system. For example, for an independent and periodic task set 
scheduled by EDF, a US = 90% is suff icient to guarantee that miss ratio stays at 0 in steady state. Because 
FC-U can achieve zero steady state miss–ratio, it is the most appropriate FCS algorithm for systems with 
a known and non-pessimistic utili zation bound. FC-UM can also achieve zero steady state miss-ratio in 
this type of system, but it is more complicated than FC-U. 

Unfortunately, the utili zation bounds of many unpredictable real-time systems are still unknown. For 
example, in a typical on-line trading server, database transactions and Web request processing can be 
blocked frequently due to concurrency control, disk I/O, and TCP congestion control. The task arrival 
patterns may also vary considerably because its workload is composed of periodic price updating tasks 
and unpredictable and aperiodic stock trading request processing. Deciding a utili zation bound on top of 
commercial OS’s can be even more diff icult due to unpredictable kernel activities such as interrupt 
handling. Another issue is a theoretical utili zation bound can be severely pessimistic for the specific 
workload currently in a system. For example, although the utili zation bound of Rate Monotonic is 69% 
for periodic independent tasks, uniformly distributed task sets often do not suffer deadline misses even 
when the CPU utili zation reaches 88% [17]. Enforcing the utili zation at the utili zation bound may not be 
cost-effective in soft real-time systems. FC-M and FC-UM are more appropriate than FC-U for systems 
without a known and non-pessimistic utili zation bounds.  

We should note that different scheduling policies and workloads usually introduce different miss ratio 
factors GM. Because the gain KP of the miss ratio Controller should be inversely proportional to the miss 
ratio factor (Equation 18a), the scheduling policy and workload can directly affect the correct parameter 
settling of the miss ratio Controller. For example, while our previous experiments showed that while the 
EDF algorithm with a periodic task set led to a miss ratio factor GM = 1.254, the Extended Deadline 
Monotonic (DM) algorithm with a mixed periodic and aperiodic task set has a much smaller miss ratio 
factor GM = 0.447 (see Section 7.5). This result means that for DM with the mixed task set, the KP of the 
miss ratio Controller should be 2.81 times the KP of EDF with the aperiodic task set in order to achieve 
similar performance. 

In summary, we have designed three FCS algorithms (FC-U, FC-M, and FC-UM) using control 
theory based on an analytical model for a real-time system. Our control theory analysis proves that the 
resultant FCS algorithms can achieve the following performance guarantees under the stabilit y condition 
of Equation 22: 
  

1) Guaranteeing stabilit y, 
2) Guaranteeing that the system miss ratio and utili zation remains close to the corresponding 

performance reference in steady state, and  
3) Achieving satisfactory settling time (Figure 3) and zero overshoot under condition of Equation 23 

in transient state. 

7. Experiments 
In this section, we describe the simulation experiments that evaluate the performance of our FCS 
algorithms and the correctness of our control design. We first describe a real-time CPU scheduling 
simulator used for our experiments. We then describe the configurations of the experiments and 
workloads. A set of profili ng experiments on the controlled system is presented next. We then present two 
sets of evaluation experiments for our FCS algorithms. 

7.1. FECSIM Simulator  
The FCS architecture is implemented on a generic uniprocessor real-time system simulator called 
FECSIM [23]. FECSIM (Figure 4) has five components: a set of Sources that each generates a periodic or 
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aperiodic task; an Executor that emulate the Basic Scheduler and the execution of the tasks; a Monitor 
that periodically measures controlled variables; a Controller that periodically computes the control input 
based on the performance errors; and a QoS Actuator that adjusts the QoS levels of the tasks to optimize 
the system value (based on estimated utilizations) under the utilization constraints. Different basic real-
time scheduling policies can be plugged into the Executor. The Controller can be turned on/off to emulate 
the closed loop or open loop scheduling.  

Source 1

Source 2

Source n

… … Executor 

QoS
Actuator

Controller

Monitor

ready_q

finish
abort

controlled variables
M(k) and/or U(k)

control input
DB(k)

adjust QoS

performance
references

Scheduling Policy

QoS Optimization
Algorithm

 

Figure 4: The FECSIM Simulator 

7.2. Scheduling Policy of the Basic Scheduler 
To demonstrate the generality of our FCS architecture and the robustness of our FCS algorithms, we 
present experimental results with two combinations of task sets and scheduling policies for the basic 
scheduler. We denote these two combinations as DM/PA and EDF/P  (see Table 1. We describe the 
scheduling policies in this section, and the workloads in Section 7.3.  
 

Configuration Basic Scheduling Policy Task Set 

EDF/P EDF Periodic (P) 
DM/PA Extended Deadline Monotonic Periodic/Aperiodic (PA) 

Table 1 : Testing Configurations 

 
Two different scheduling policies, Extended Deadline Monotonic (DM) and EDF are used in the Basic 
Scheduler.  
 

• DM: Each task is assigned a fixed priority that equals its relative deadline. A shorter relative 
deadline leads to a higher priority. DM has been proved to be the optimal static scheduling policy 
in term of maximizing schedulable utilization bound under certain conditions [1] 

• EDF: Each task is dynamically assigned a priority that equals its absolute deadline. An earlier 
absolute deadline leads to a higher priority. EDF is a dynamic real-time scheduling policy [19].  

7.3. Workload 
Two different task sets are used in our evaluation experiments. 
  

• Periodic/Aperiodic (PA): the workload is composed of 50% aperiodic tasks and 50% periodic 
tasks. This type of task set can be found in a typical on-line trading server whose workload is 
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composed of periodic stock updating tasks and aperiodic user requests such as trading and 
information queries. 

 
• Periodic (P): all the tasks are periodic tasks. This type of task set emulates real-time applications 

such as multi -media streaming and process control where most of the system operations are 
periodic. 

 
Each task follows the task model described in Section 2.1. Each task is assumed to have three QoS levels 
(0, 1, 2) including the lowest level 0 that represents service rejection. For the rejection level, both the task 
execution time and value are set to 0. The distributions of the task parameters are as follows. For the 
purpose of presentation, we assume each time unit is 0.1 ms.  
 

EEi[j]:  The estimated execution time ETi[2] of task Ti at the QoS level 2 follows a uniform 
distribution in the range [0.2, 0.8] ms, and ETi[1] = 0.2ETi[2]. 

AEi[j]:  The actual execution time AEi[j] of task Ti at QoS level j follows a normal distribution 
N(AAEi, AAEi

1/2), where the average execution time AAEi[j] = Ga′ETi[j]. Ga′, called the 
execution time factor, is a tunable workload parameter that approximates the utili zation ratio 
Ga. The larger Ga′ is, the more pessimistic is the estimation of execution time. The maximum 
value of Ga′ is 2.0 in all of our experiments, which means that the estimated execution time is 
twice the average execution time, i.e., worst-case utili zation ratio: GA = 2.0. This value is 
used to compute the Controller parameters based on Equations 18a and 18b. 

Di[j]:  All QoS levels of a task Ti have a same and fixed relative deadline Di = (10Fi + 10)ETi[2], 
where Fi, follows a uniform distribution in the range of [10, 15]. A task instance is 
immediately aborted once it misses its deadline.  

Vi[j]:  The value Vi[j] of task Ti at QoS level j is computed as a weight wi times its estimated 
execution time, i.e., Vi[j] = wiETi[j]. The weight wi follows a uniform distribution in the range 
[1, 5]. 

Periodic tasks:  
Pi[j]:  All QoS levels of a task Ti have a same period that equals its deadline Pi = Di. The average 

utili zation of each periodic task i at QoS level j is AAi[j] = AAEi[j]/Pi. 
Aperiodic tasks:  

AIi[j]:  The inter-arrival-time of an aperiodic task Ti follows an exponential distribution with an 
average inter-arrival-time of AIi = Di. The average utili zation of each periodic task i at QoS 
level j is AAi[j] = AAEi[j]/AIi. 

EIi[j]: The estimated inter-arrival-time of an aperiodic task Ti equals the average inter-arrival-time, 
i.e., EIi = AIi = Di.  

7.4. QoS Actuator 
A Highest-Value-Density-First (HVDF) QoS assignment algorithm [29] is used in the QoS Actuator. The 
value density of QoS level j of a task Ti is defined as VDi[j] = Vi[j]/Bi[j]. The HVDF algorithm assigns 
QoS levels to all the current tasks in the order of the decreasing value density until the total estimated 
requested utili zation reaches a utilization constraint UC. A fixed threshold of 80% is used by open loop 
scheduling algorithms. In comparison, our FCS algorithms dynamically change the threshold at each 
sampling instant.  

When each task’s utili zation is small and there are no deadline misses, HVDF approximates the 
optimal value under the utili zation constraint. However, if the task execution times and/or task inter-
arrival rates are unknown, an open-loop QoS optimization algorithm may not achieve maximize values 
due to deadline misses.  
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Note that our FCS architecture can incorporate different real-time scheduling policies and QoS 
optimization algorithms. Our work focuses on the steady and transient state performance of the feedback 
control loop rather than evaluating the basic scheduling policies or QoS optimization algorithms. 

7.5. Profiling the Controlled Real-Time Systems 
In the first set of experiments, we profile the controlled system to verify the saturation properties of the 
controlled variables, miss ratio M(k) and CPU utilization U(k), and measure the miss ratio factor GM, 
which is a key system parameter used for computing the Controller parameter KP in miss ratio control 
(Equation 18a). 

 Since we are interested in the properties of the controlled system, we turn off the Controller and the 
QoS Actuator of FECSIM in the profiling experiments. A set of step loads SL(0, Lm) with different 
overload level Lm are used to stress FECSIM with for 60 sec. Each step load is composed of a set of tasks 
with an average total requested utilization of Lm. The experiments are repeated for both EDF/P and 
DM/PA configurations. We plot the measured average CPU utilization and average miss ratio 
corresponding to each step load level Lm in Figure 5a (DM/PA) and Figure 5b (EDF/P). Each point in the 
figures represents the average value of 5 runs. The 90% confidence intervals of the average miss ratio are 
also shown, while the confidence intervals of the average utilization are skipped because it is always 
within ±1% from corresponding average values.  
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Figure 5: Controlled Variables vs. Total Requested Utili zation 

7.5.1. Profiling Results on DM/PA 
First, we study the profili ng results on DM/PA (Figure 5a). CPU utili zation U(k) saturates at 100% after 
the step load level Lm exceeds 100%. Miss ratio M(k) saturates at 0 when the average total requested 
utili zation A′ is below 90%, and deadline misses start to occur when A′ reaches 90%.  

When A′ > 90%, the system’s average miss ratio increases as the total requested utili zation increases. 
We measure the maximum slop of the miss ratio curve near the boundary of the saturation zone to 
approximate the miss ratio factor GM. In Figure 5(a), the maximum slope is 0.447 when the average total 
requested utili zation increases from 100% to 110%. Therefore, the worst-case miss ratio factor GM = 
0.447 for the DM/PA settling. 

7.5.2. Profiling Results on EDF/P 
Second, we study the profili ng results on EDF/P (Figure 5b). CPU utili zation U(k) saturates at 100% after 
the step load level Lm exceeds 100%. Miss ratio M(k) saturates at 0 when the average total utili zation A′ is 
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below 100%, and deadline misses start to occur when A′ reaches 100% (the deadline misses when A′ = 
100% is due to random execution times of the workload).  

When A′ is above 100%, the system’s average miss ratio increases as the total requested utili zation 
increases. In Figure 5b, the maximum slope is 0.447 when the average total requested utili zation increases 
from 100% to 110%. Therefore, the worst-case miss ratio factor GM = 1.254 for the EDF/P setting. 

 
FC-UM  

FC-U FC-M 
KP (DM/PA) 0.414 
KP (EDF/P) 

 
0.185 0.148 

W  (Sampling 
Window) 

0.5 sec 

Table 2: Controller Parameters of FCS Algorithms 

7.6. Controller Parameters 
Based on the worst-case utili zation ratio GA and the worst-case miss ratio factor GM, we compute the 
Controller parameter using Equations 18a and 18b. The resultant Controller parameter KP for each FCS 
algorithm is li sted in Table 2.  

7.7. Performance References 
The miss ratio reference depends on the application’s requirement and tolerance to deadline misses in 
steady state. For example, Amazon.com may accept a higher miss ratio reference than E-Trade.com 
because usually a merchandize purchase has less strict timing constraints than stocking trading 
transactions. We assume that a miss ratio reference MS = 2% (in both FC-M and FC-UM) is appropriate in 
our simulated applications. The utili zation reference US should be lower than the nominal utili zation 
threshold of the basic scheduling policy and the task set. US should also be lower than 100%, the 
saturation boundary of the utili zation control. Since the theoretical utili zation bound of EDF and a 
periodic task set is 100% in the ideal case [19], we set US = 90% in both FC-M and FC-UM in the EDF/P 
case. Although it has been shown that DM and general (aperiodic and/or periodic) task sets have a 
theoretical utili zation bound of 58%, this bound is too pessimistic for our mixed aperiodic/periodic task 
set. For example, in our profili ng experiments (Figure 5a), the utili zation threshold Ath appears to be in the 
range (90%, 100%). We choose US = 80% in FC-U and US = 90% in FC-UM. FC-UM has a more 
optimistic utili zation reference than FC-U because the miss ratio control in FC-UM provides a worst-case 
bound for the closed-loop performance even if the utili zation reference becomes higher than the actual 
utili zation threshold. The chosen performance references are summarized in Table 3. 
 

 FC-U FC-M FC-UM 

80% (DM/PA)  
US 90% (EDF/P) 

 
N/A 

 
90% 

MS N/A 2% 2% 

Table 3: Performance References of FCS Algorithms 

7.8. Evaluation Experiment A: Arrival Overload 
In this section, we present the performance evaluation results of three FCS algorithms, FC-U, FC-M, and 
FC-UM in response to an arrival overload SL(0, 150%). The execution time factor is Ga′ = 2. Therefore, 
the average execution time of each task was twice the estimation. An open loop scheduling algorithm 
using a fixed utili zation constraint B = 80% for QoS Optimization is also evaluated as a baseline. The 
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same scheduling policies (DM and EDF) and QoS optimization algorithm (the HVDF algorithm) are used 
for all FCS algorithms and the baseline. A zero initial value for B(0) = 0 for the total estimated utilization 
B(k) is used in this section. A larger initial value for B(k) is used in Experiment B (Section 7.9) to reduce 
the settling time of FC-M and FC-UM. We now describe the results for each of the scheduling algorithms. 

7.8.1. FC-U 
First, we look at FC-U with DM/PA (Figure 6a). In response to the arrival overload, FC-U increases the 
CPU utilization U(k) by increasing the total estimated utilization B(k) of the tasks in the system. The 
increasing B(k) is enforced by the QoS Actuator that increases task QoS levels with the QoS optimization 
algorithm HVDF. By 4.5 sec, the settling time predicted by our control analysis, U(k) reaches 77.1%, 
which is within 3.6% of the reference US = 80%. This result is close to our prediction that the U(k) should 
reach within 2% of the reference by 4.5 sec. The small difference between the experimental results and 
the theoretical prediction is due to the randomness of our workload. U(k) never reaches beyond 80% in 
the transient state (before 4.5 sec). This result is also consistent with our theoretical prediction of zero 
overshoot, UO = 0. 
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Figure 6: FC-U in response to an arrival overload 

 
The CPU utilization U(k) remains stable all through the run. After 4.5 sec, the utilization stays close 

to 80% and the system error stays close to zero. Because U(k) stays below the utilization threshold, the 
miss ratio M(k) = 0 in throughout the run.  

The performance of FC-U with EDF/P (see Figure 6b) is similar to that of FC-U with DM/PA. At 4.5 
sec, FC-U increases the CPU utilization U(k) to 87.14%, within 3.2% of the reference US = 90%. U(k) 
never reaches beyond 90% in the transient state (before 4.5 sec). The CPU utilization U(k) remains stable 
all through the run and close to 90% after 4.5 sec. Because U(k) stays below the utilization threshold, the 
miss ratio M(k) = 0 throughout the run.  
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Figure 7: FC-M in response to an arrival overload 

7.8.2. FC-M 
The performance evaluations of FC-M with DM/PA and EDF/P are illustrated in Figure 7. We first study 
FC-M with DM/PA. In response to the arrival overload, FC-U increases the total estimated utilization 
B(k) by increasing the QoS levels of arriving or admitted tasks. Due to the saturation of the miss-ratio 
control, the settling time of FC-M in response to the arrival overload is longer than the prediction based 
on the linear model (Equation 11). M(k) stays at 0 for the first 26.5 sec since the beginning of the arrival 
overload. The system settles at approximately 30 sec when M(k) reaches 1.23% (within 0.77% to the 
reference MS = 2%) and U(k) reaches 94.44%. We can shorten the settling time of FC-M in response to 
arrival overload by assigning a larger initial value to the total estimated utilization B[0] (as shown in 
Section 7.9). M(k) never reaches beyond 2% and therefore achieves zero miss ratio overshoot in the 
transient state.  

M(k) remains stable throughout the run. In steady state (after 30 sec), M(k) stays close to 2% and 
below 5% throughout the run except for M(k) = 5.97% at 31.5 sec. This result shows that the steady state 
error is close to 0 as predicted by our analysis.  

We also observe that with FC-M, the CPU utilization U(k) in steady state is clearly higher than the 
CPU utilization (close to 80%) in the run of FC-U. This is because by directly controlling the miss ratio, 
FC-M can change the CPU utilization to the vicinity of the (a priori unknown) utilization threshold, 
which is higher than the utilization reference of FC-U that is set to 80% a priori.  

The performance of FC-M with EDF/P (Figure 7b) is similar to the case of DM/PA. The settling time 
is approximately 87 sec when the miss ratio reaches 2.88%. FC-M with EDF/P achieves zero overshoot in 
transient state. The miss ratio stays close to 2% in steady state and remains stable throughout the run. 
Similar to the case of DM/PA, FC-M with EDF/P also has a higher CPU utilization (close to 100%) than 
FC-U with EDF/P (close to 90%) in steady state.  

In summary, compared with FC-U, FC-M achieves higher CPU utilization and robustness with regard 
to utilization threshold variations at the cost of a low, but non-zero miss ratio in steady state. 
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Figure 8: FC-UM in response to an arrival overload 

7.8.3. FC-UM 
The performance evaluations of FC-UM with DM/PA and EDF/P are ill ustrated in Figure 8. First, we 
study the performance of FC-UM with DM/PA. After the overload arrives, FC-UM increases the 
utili zation U(k). Similar to FC-M, the miss ratio M(k) stays at 0 and the CPU utili zation U(k) increases 
slower than FC-U. In the beginning of the run, the (saturated) miss ratio control computes a smaller 
control signal DBM(0) = KP(MS – M(0)) = 0.414*(0.02–0) = 0.008 than of the utili zation control’s signal 
DBM(0) = KP(US – U(0)) = 0.185*(0.9–0) = 0.167. Due to the min operation on control inputs from the two 
Controllers, the miss ratio control dominates the control loop in the starting phase. The miss control 
signal remains 0.008 and stays smaller than the utili zation control signal, which decreases as the 
utili zation U(k) increases. At time 27 sec, the utili zation U(54) reaches 94.9% and the miss ratio M(54) = 
0.93%. Now the utili zation control signal DBU(54) = -0.009 becomes smaller than the miss ratio control 
signal DBM(54) = 0.004 and takes over the control loop. Because the utili zation threshold is higher than 
the utili zation reference US = 90%, the utili zation control dominates the control loop, and U(k) stays close 
to 90% while the miss ratio stays at 0 after 27 sec. Therefore, the settling time is approximately 27 sec. 
Since neither U(k) nor M(k) surpasses its corresponding reference in transient state (before 27 sec), FC-
UM achieves 0 overshoot in both U(k) and M(k).  

In the steady state, the utili zation U(k) stays close to 90% and, hence, FC-UM achieves zero steady 
state error in term of the utili zation. The miss ratio M(k) remains close to 0%, lower than the miss ratio 
reference MS = 2% throughout the steady state except M(63) = 2.04%. This is because the utili zation 
reference is lower than the utili zation threshold and therefore dominates the control loop in the steady 
state. Note that if the utili zation reference were higher than the utili zation threshold, the miss ratio control 
would dominate the control loop and FC-UM would achieve zero steady error in term of miss ratio and a 
steady state utili zation close to the utili zation threshold. The system remains stable throughout the run. 

The performance of FC-UM with EDF/P (Figure 8b) is similar to the case of FC-UM with DM/PA. 
The miss-ratio control dominates the control loop in the beginning of the experiment until 75 sec (the 
settling time) when the utili zation control starts to take over the control loop. FC-UM with EDF/P 
achieves zero overshoot in both utili zation U(k) and M(k). Because the utili zation reference US is lower 
than the utili zation threshold, FC-UM with EDF/P achieves zero steady state error in term of utili zation 
and the miss ratio stays at 0 throughout the steady state.  

In summary, FC-UM combines the advantages of both FC-U and FC-M and achieves zero steady 
state miss ratio in the nominal case when the utili zation reference is lower than the utili zation threshold. 
Furthermore, FC-UM can also achieve a low steady state miss ratio even if the system’s utili zation 
threshold changes to lower than the utili zation reference. 
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Figure 9: Open loop QoS optimization in response to an arrival overload 

7.8.4. Open Loop QoS Optimization 
In comparison with the FCS algorithms, the system scheduled by the open loop QoS optimization 
algorithm suffers from high miss ratios with both DM/PA and EDF/P (see Figure 9). This is because the 
task execution time is on average twice that of the estimation and the QoS optimization algorithm 
overloaded the CPU due to the incorrect estimations on task execution time. On the other hand, the 
system would suffer from low CPU utilization if the task execution time were lower than the estimation 
(see Section 7.9). This result demonstrates that the open loop QoS optimization algorithm is incapable of 
maintaining satisfactory performance in face of unpredictable workload. 

In summary, we have demonstrated that all of our three FCS algorithms, FC-U, FC-M, FC-UM can 
provide desired performance guarantees in terms of miss ratio and CPU utilization in steady state and 
achieve satisfactory performance profiles in response to an arrival overload SL(0, 150%) when the 
average task execution times is different from the estimation. In contrast, the open-loop QoS optimization 
fails to provide such performance guarantees in face of the same overload.  

 
Interval (sec) 0-100 100-200 200-300 300-400 

Ga’  0.8 1.26 2 1.5 

Table 4: Execution time factor Ga’  in Experiment B 

7.9. Evaluation Experiment B: Arrival/Internal Overload 
In the second set of evaluation experiments, we stress our FCS algorithms and the baseline with a more 
unpredictable load profile than the one used in Experiment A. The new load profile causes an arrival 
overload of SL(0, 150%) in the beginning of each run. Furthermore, the average task execution times of 
all tasks vary every 100 sec to create internal overload in the system. The execution time factor Ga′ 
throughout the run is shown in Table 4. The execution time factor Ga′ instantaneously jumps from 0.8 to 
1.26 at time 100 sec. This change causes a 57.5% increase in the average execution time of every task. 
Suppose the total requested utilization of the system is A(200) before the jump, the execution time change 
corresponds to an internal overload of SL(A(200), 1.575A(200)). A similar step load SL(A(400), 
1.575A(400)) occurs again at time 200 sec when Ga′ jumps from 1.26 to 2. The jump at time 300 sec, on 
the other hand, creates an internal underload SL(A(600), 0.75A(600)) (modeled as a negative step signal) 
when Ga′ instantaneously decreases from 2 to 1.5. 
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In this set of experiments, a larger initial value B(0) = 80% is assigned to the estimated requested 
utilization B(k) to shorten the settling time of FC-M and FC-UM in response to arrival overloads. The 
open-loop baseline uses a fixed B(k) = 80% and B(k) = 90% for QoS optimization with DM/PA and 
EDF/P, respectively. Due to space limitations, only the results of FC-UM and the open-loop baseline are 
presented in detail. The detailed results of FC-U and FC-M are available in [24]. 
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Figure 10: FC-UM in response to an arrival/internal overload 

7.9.1. FC-UM 
The run of FC-UM with DM/PA and EDF/P is illustrated in Figure 10. We first study the run of FC-UM 
with DM/PA. In response to the arrival overload at time 0, the miss ratio control dominates the control 
loop in the transient state until the utilization approaches the utilization reference US = 90% when the 
utilization takes over the control loop. Because the utilization reference is lower than the utilization 
threshold, the utilization control dominates the control loop and the system settles to steady state at 17.5 
sec. The miss ratio M(k) stays at 0% most of the time while in steady state, and the utilization U(k) stays 
close to 90%.  

The system stays in the steady state until 200 sec when the average execution time of every task 
increases from 0.8 to 1.26. The utilization U(k) overshoots to 100% and the miss ratio overshoots to 
24.53%. Although both the miss ratio control and the utilization control compute negative control signals 
in response to the internal overload, the miss ratio takes over the control loop because the utilization 
saturates at 100% resulting in a control signal with a smaller magnitude. The miss ratio control dominates 
the control loop until the utilization approaches 90% and the miss ratio becomes zero. The FC-UM then 
takes over and the system settles to a new steady state at 105 sec with an average miss ratio of 0.07% and 
an average utilization of 89.85% (steady state error ESU = 0.15%). 

FC-UM responds similarly to the internal overload at 200 sec when the execution factor increases 
from 1.26 to 2. The system settles down to a satisfactory steady state within 2.5 sec. In the steady state 
(from 203 sec to 300 sec), the average miss ratio is 0.12% and the average utilization is 89.71% (steady 
state error ESU = 0.29%). 

At time 300 sec, the execution time factor decreases from 2 to 1.5 and the utilization U(k) drops to 
69.24%. Similar to the beginning of the run, FC-UM increases total estimated utilization B(k) by 
improving task QoS levels. At time 308.5 sec, U(k) increases to 92.02% while the system resettles in a 
steady state with an average miss ratio of 0.07% and an average utilization close to 89.90% (the steady 
state error ESU = 0.10%).  

The performance of FC-UM with EDF/P is similar to the above case with DM/PA. FC-UM with 
EDF/P successfully reacts to both the arrival overload and the internal overload and (re)settles to 
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satisfactory steady states while the miss ratio stays close to 0% and the utilization stays close to 90% 
despite of the difference in execution times. This observation verifies that FC-UM has zero sensitivity 
with regard to execution time variations and provides robust performance guarantees in face of 
unpredictable workloads.  
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Figure 11: Open loop QoS optimization in response to an arrival/internal overload 

7.9.2. Open-Loop QoS Optimization 
The performance of the open-loop baseline with DM/PA and EDF/P is illustrated in Figure 11. In contrast 
with our FCS algorithms, the open-loop baseline fails to provide performance guarantees in miss ratio or 
utilization in both EDF/P and DM/PA tests. When task execution times are lower than the estimations 
(from 0 to 100 sec), the baseline algorithm underutilizes the CPU (with utilization U(k) close to 72%). On 
the other hand, when the execution exceeds the estimations (from 100.5 sec to 400 sec), the system 
suffers from persistent deadline misses. For example, the baseline with DM/PA has an average miss ratio 
of 9.23% from 200.5 sec to 300 sec and the miss ratio reaches 94.1%. The baseline with EDF/P has an 
average miss ratio of 51.39% in the same period.   

In summary, our evaluation results verify that our FCS algorithms can provide the following 
performance guarantees under the stability condition in Equation 22: 

1) Stability in face of arrival overload and internal overload 
2) System miss ratio and utilization stay close to the corresponding performance reference in steady 

state regardless of variations in task execution times  
3) Satisfactory settling time and low overshoot in transient state  

 
In addition to the performance profiles, the average performance of the FCS algorithms and the 

baseline are shown in Figure 12a (DM/PA) and Figure 12b (EDF/P). The considered performance metrics 
include the average miss ratio Ma, average CPU utilization Ua, and the Average Value Completion Ratio 
Va defined as the total completed value divided by the total values of all the arriving tasks at the highest 
QoS level. Va characterizes the utility and throughput of the system throughout the run. All of the above 
metrics is computed based on the performance throughout the run. Every data point in Figure 12ab is the 
mean of 5 repeated runs. The 90% confidence interval of each Ma, Ua, and Va is within ±0.91%, ±0.23%, 
and ±1.25%, respectively, to its mean. We can see that all the FCS algorithms consistently outperform the 
open-loop baseline in terms of average miss ratio and the value completion ratio.  
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Figure 12: Average performance of FCS algorithms and the open-loop baseline 
(Ma: Average Miss Ratio; Ua: Average Utilization; Va: Average Value Completion Ratio) 

 
In summary, our evaluation results demonstrate that our three FCS algorithms provide robust and 

precise performance guarantees in term of utilization and miss ratio even when the workload significantly 
varies from the estimation. Furthermore, they also achieve satisfactory transient state performance 
profiles in response to arrival and internal overload. In contrast, an open loop QoS optimization algorithm 
fails to provide such guarantees when the workload deviates from the a priori estimation. 

8. Conclusions 
In summary, this paper presents a feedback control real-time scheduling (FCS) framework for adaptive 
real-time systems. An advantage of the FCS framework is its use of feedback control theory (rather than 
ad hoc solutions) as a scientific underpinning. We apply a control theory based design methodology to 
systematically design FCS algorithms to satisfy desired transient and steady state performance 
specifications of real-time systems. In particular, we establish an analytical model and analyses of FCS 
algorithms, which are major challenges and key steps for the design of adaptive real-time systems. Based 
on our model, we identify different types of real-time applications where each FCS algorithm can be 
applied. Performance evaluation results demonstrate that our analytically tuned FCS algorithms provide 
robust steady and transient state performance guarantees for periodic and aperiodic tasks even when the 
task execution time varied by as much as 100% from the estimation. 
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