
1

1

CSE 380
Computer Operating Systems

Instructor: Insup Lee and Dianna Xu

University of Pennsylvania, Fall 2003
Lecture Note: Deadlocks

2

Resource Allocation

q Examples of computer resources
ß printers

ß tape drives

ß semaphores

q Processes need access to resources in specific order
q Undesirable scenario:
ß Suppose a process holds resource A and requests resource B

ß At the same time another process holds B and requests A

ß Both are blocked and remain so, waiting for each other

q Can occur in a multiprogramming environment and also in a
distributed system

2

3

Deadlock due to Semaphores

semaphore: mutex1 = 1 /* protects resource 1 */
 mutex2 = 1 /* protects resource 2 */

Process A code:
 {
 /* initial compute */
 down (mutex1)
 down (mutex2)
 /* use both resources */
 up (mutex2)
 up (mutex1)
}

Process B code:
 {
 /* initial compute */
 down (mutex2)
 down (mutex1)
 /* use both resources */
 up (mutex2)
 up (mutex1)
}

4

Deadlocks
q System has a set of processes, and a set of resources; each

resource can have multiple instances
q Interesting events are:
ß Request for resources

• A process can request multiple resources in one shot
• A process can request resources at different times during its execution

ß Granting of a request
• This is possible only if there are enough free resources

• A process stays blocked, and waits, until its request is granted

ß Release of resources
• A process can release some of the resources it is currently holding

q Deadlock situation: There is a set of blocked processes such that there is
no way to satisfy their requests (even if the currently unblocked processes
release all the resources they currently hold)

3

5

Four Conditions for Deadlock

1. Mutual exclusion condition
ß each resource assigned to exactly one process or is available

2. Hold and wait condition
ß process holding resources can request additional resources

3. No preemption condition
ß previously granted resources cannot be taken away

4. Circular wait condition
ß must be a circular chain of 2 or more processes
ß each is waiting for resource held by next member of the chain

6

Dealing with Deadlocks

1. just ignore the problem altogether
ß The Ostrich Approach

2. detection and recovery
ß Resource Allocation Graphs

3. dynamic avoidance
ß careful resource allocation

4. prevention
ß negating one of the four necessary conditions

4

7

Deadlock Detection

qGoal: How can OS detect when there is a deadlock?
qOS should keep track of
ß Current resource allocation (who has what)

ß Current pending requests (who is waiting for what)

q This info is enough to check if there is a current deadlock
(see next few slides)

qWhat can OS do once a deadlock is detected?
ß Kill a low priority process

ß Revoke currently allocated resources (if that’s possible)

ß Inform the users or the administrator

8

Detecting Deadlocks 1

q Suppose there is only one instance of each resource
q Example 1: Is this a deadlock?
ß P1 has R2 and R3, and is requesting R1

ß P2 has R4 and is requesting R3

ß P3 has R1 and is requesting R4

q Example 2: Is this a deadlock?
ß P1 has R2, and is requesting R1 and R3

ß P2 has R4 and is requesting R3
ß P3 has R1 and is requesting R4

q Solution: Build a graph , called Resource Allocation Graph (RAG)
ß There is a node for every process and a node for every resource

ß If process P currently has resource R, then put an edge from R to P

ß If process P is requesting resource R, then put an edge from P to R

q There is a deadlock if and only if RAG has a cycle

5

9

Detecting Deadlocks 2

q How to detect deadlocks when there are multiple instances
of resources

q Example: Is this a deadlock?
ß Suppose there are 2 instances of A and 3 of B

ß Process P currently has 1 instance of A, and is requesting 1
instance of A and 3 instances of B

ß Process Q currently has 1 instance of B, and is requesting 1
instance of A and 1 instance of B

10

Multiple Resource Case

q Suppose there are n process P1, …. Pn and m resources R1 …. Rm
q To detect deadlocks, we can maintain the following data structures
ß Current allocation matrix C: C[i,j] is the number of instances of resource Rj

currently held by process Pi

ß Current request matrix R: R[i,j] is the number of instances of resource Rj
currently being requested by process Pi

ß Availability vector A: A[j] is the number of instances of resources Rj
currently free.

q Goal of the detection algorithm is to check if there is any sequence in
which all current requests can be met
ß Note: If a process Pi’s request can be met, then Pi can potentially run to

completion, and release all the resources it currently holds. So for detection
purpose, Pi’s current allocation can be added to A

6

11

Example
 L = {} /* List of processes that can be unblocked */

 Allocation Matrix C Request Matrix R
 | R1 R2 R3 | R1 R2 R3
--------------- ---------------
P1 | 1 1 1 P1 | 3 2 1
P2 | 2 1 2 P2 | 2 2 1
P3 | 1 1 0 P3 | 0 0 1
P4 | 1 1 1 P4 | 1 1 1

A = (0, 0, 1) /* available resources */

 Request by process i can be satisfied if the row R[i] is
smaller than or equal to the vector A

Satisfiable request

12

After first iteration

 L = { P3 }

 Allocation Matrix Request Matrix
 | R1 R2 R3 | R1 R2 R3
--------------- ---------------
P1 | 1 1 1 P1 | 3 2 1
P2 | 2 1 2 P2 | 2 2 1
P3 | P3 |

 P4 | 1 1 1 P4 | 1 1 1

A = (1, 1, 1)
Note: P3’s allocation has been added to A

Satisfiable request

7

13

After Second iteration

 L = { P3, P4}

 Allocation Matrix Request Matrix
 | R1 R2 R3 | R1 R2 R3
--------------- ---------------
P1 | 1 1 1 P1 | 3 2 1
P2 | 2 1 2 P2 | 2 2 1
P3 | P3 |

 P4 | P4 |

 A = (2, 2, 2).

Satisfiable request

14

Deadlock Detection Algorithm

 L = EmptyList; /* processes not deadlocked */
repeat
 s = length(L);
 for (i=1; i<=n; i++){

 if (!member(i,L) && R[i] <= A) {
 /* request of process i can be met */

 A = A + C[i];
 /* reclaim resources held by process i */

 insert(i,L);
 }
 }
until (s == length(L));
/* if L does not change, then done */

 if (s<n) printf(“Deadlock exists”);

Note: Running time of this algorithm is O(n2 m), where m: length of a row

8

15

Dead Lock Recovery

q Preemption
ß Take away a resource temporarily from current owner

ß Frequently impossible

q Rollback
ß Checkpointing periodically to save states

ß Reset to earlier state before acquiring resource

q Killing
ß Crude but simple

ß Keep killing processes in a cycle until cycle is broken

16

Deadlock Prevention

q Can OS ensure that deadlocks never happen?
q There are four necessary conditions for deadlocks to

occur, can any of these conditions be negated ?
q Mutual Exclusion
ß spooling

q Hold and Wait
ß processes to request all resources at once, grant is all are

available, deny if any is not
q No Preemption
q Circular Wait
ß hierarchical allocation

9

17

Hierarchical Allocation
Avoiding the circular wait

q Resources are grouped into levels (i.e. prioritize resources
numerically)

q A process may only request resources at levels higher than
any resource currently held by that process.

q Resources may be released in any order.

q Example:
ß Resources: Directory blocks and file blocks
ß Constraint: Can’t request a file block if you are holding onto a

directory block

18

Properties

q When all requests are at the same level, this method is
equivalent to one-shot allocation.
ß A process has to request all the resources in one shot

q Global numbering prevents cycles

q Resources at lower levels are blocked for longer periods,
but those at higher levels are shared well.

q This method works well when the resources are
semaphores.
 semaphore S1,S2,S3

(with priorities in increasing order)
 P(S1);…; P(S2);…; P(S3) allowed
 P(S2);…; P(S3);…; P(S1) not allowed

10

19

Avoidance

qMotivation: “Is there an algorithm that can always
avoid deadlock by conservatively making the
right/safe choice all the time?”

q Deadlock is the result of granting a resource.

q Banker’s algorithm
ß Deny potentially unsafe requests

20

Banker’s Algorithm

q Suppose there are n process P1, …. Pn and m resources R1 …. Rm
q Suppose every process has declared in advance, its claim---the maximum

number of resources it will ever need
ß Sum of claims of all processes may even exceed total number of resources

q To avoid deadlocks, OS maintains the allocation state
ß Current allocation matrix C: C[i,j] is the number of instances of resource Rj

currently held by process Pi
ß Claims matrix M: M[i,j] is the maximum number of instances of resource Rj

that process Pi will ever request
ß Availability vector A: A[j] is the number of instances of resources Rj currently

free.
q Suppose process Pi requests certain number resources. Let Req be the

request vector (Req[j] is number of requested instances of Rj)
ß Valid request if Req <= M[i]-C[i] (i.e. it should be in accordance with claim)
ß If Req <= A, then it is possible for OS to grant the request
ß Avoidance strategy: Deny the request if the resulting state will be unsafe

11

21

Safe state
qAn allocation state is safe if there is an ordering of

processes, a safe sequence, such that:
ß the first process can finish for sure: there are enough

unallocated resources to satisfy all of its claim.

ß If the first process releases its currently held resources, the
second process can finish for sure (even if it asks all its
claim), and so on.

qThe state is safe because OS can definitely avoid
deadlock by blocking any new processes, or any new
requests, until all the current processes have finished in
the safe order.

22

Example

(One resource class only)
 process holding max claims

 A 4 6
 B 4 11
 C 2 7
 unallocated: 2
 safe sequence: A,C,B

If C should have a claim of 9 instead of 7,
there is no safe sequence.

12

23

Example

 process holding max claims
 A 4 6

 B 4 11
 C 2 9

 unallocated: 2
deadlock-free sequence: A,C,B

 if C makes only 6 requests

qHowever, this sequence is not safe: if C should
have 7 instead of 6 requests, deadlock exists.

24

Banker’s algorithm

q Maintain claims M, current allocation C and current
availability A

q Suppose process Pi requests Req such that Req <= A and
Req+C[i] <= M[i]

q Consider the state resulting from granting this request (i.e.
by adding Req to C[i] and subtracting Req from A). Check if
the new state is a safe state. If so, grant the request, else
deny it.

q It ensures that allocation state is aways safe

deadlock
unsafe

safe

The Banker's Algorithm is conservative:
it cautiously avoids entering an unsafe state even if
this unsafe state has no deadlock.

13

25

Checking Safety

q How do we check if an allocation state is safe?
ß Current allocation matrix C

ß Maximum claims matrix M

ß Availability vector A

q Same as running the deadlock detection algorithm
assuming that every process has requested maximum
possible resources
ß Choose Requests Matrix R to be M – C, and see if

the state is deadlocked (is there an order in which all
of these requests can be satisfied).

26

Example

 Allocation Claims Available
 A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

 this is a safe state:
safe sequence <P1, P3, P4, P2, P0>

Suppose that P1 requests (1,0,2). To decide
whether or not to grant this request, add this
request to P1’s allocation and subtract it from A.

14

27

Example

 Allocation Claims Available
 A B C A B C A B C
P0 0 1 0 7 5 3 2 3 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

This is still safe:
safe seq <P1, P3, P4, P0, P2>

In this new state,
P4 requests (3,3,0) not enough
 available resources

P0 requests (0,2,0) let’s check resulting state

28

Example

 Allocation Claims Available
 A B C A B C A B C
P0 0 3 0 7 5 3 2 1 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

This is unsafe state (why?)
So P0’s request will be denied

15

29

Starvation

qWhen multiple processes requests the same
resource, allocation policy needs to be established

q Any policy that attempts to optimize may potentially
lead to starvation

q FCFS is fair and commonly used

30

Dead Locks Happen

q Dead lock avoidance and prevention is often
impossible in real systems

q Thorough detection of all possible scenarios too
expensive

q All operating systems have potential dead locks
q Engineering philosophy:

The price of infrequent crashes in exchange for
performance and user convenience is worth it

