
1

1

CSE 380
Computer Operating Systems

Instructor: Insup Lee and Dianna Xu

University of Pennsylvania
Fall 2003

Lecture Note: Protection Mechanisms

2

Policy vs. Mechanism

q Access control policy is a specification
ß Given in terms of a model of the system
ß Subjects: do things (i.e. a process writes to files)
ß Objects: are passive (i.e. the file itself)
ß Actions: what the subjects do (i.e. read a string from a file)
ß Rights: describe authority (i.e. read or write permission)

q Mechanisms are used to implement a policy
ß Example: access control bits in Unix file system & OS

checks
ß Mechanism should be general; ideally should not constrain

the possible policies.
ß Complete mediation: every access must be checked

3

Reference Monitors

Subject
Monitor

(Action, Object)

Request

Granted

Denied?

4

Example Reference Monitors

q Operating Systems
ß File system

ß Memory (virtual memory, separate address spaces)

q Firewalls
ß Regulate network access

q Java Virtual Machine
ß Regulates Java programs’ resource usage

2

5

Access Control Matrix

{r,w,x}…{r,w,x}{x}SubjM

……………

……{}{w,x}Subj2

{}…{r,w}{r,w,x}Subj1

ObjN…Obj2Obj1A[s][o]

Each entry
contains
a set of
rights.

6

Access Control Checks

q Suppose subject s wants to perform action that
requires right r on object o:

q If (r ∈ A[s][o]) then perform action
else access is denied

7

Model for resource Protection
q A Protection System is composed of

ß set of subjects: processes executing
in a specific protection domain

ß set of objects: all the passive
elements of the system plus all the
subjects

ß set of rules specifying the
protection policy

q Protection Domain: Set of rights a
process has at any given time

q Protection state is checked for each
access of an object, X, by a subject,
S

q Protection state can be
conceptualized as an access matrix.

q A[S,X] is a set that describes the
access rights held by subject S to
object X.

8

Rights and Actions

q Besides read, write, execute actions there are many others:
q Ownership
q Creation

ß New subjects (i.e. in Unix add a user)
ß New objects (i.e. create a new file)

ß New rights: Grant right r to subject s with respect to object o (sometimes
called delegation)

q Deletion of
ß Subjects

ß Objects
ß Rights (sometimes called revocation)

3

9

Protecting the Reference Monitor

q It must not be possible to circumvent the reference monitor
by corrupting it

q Mechanisms
ß Type checking

ß Software fault isolation: rewrite memory access instructions to
perform bounds checking

ß User/Kernel modes

ß Segmentation of memory (OS resources aren’t part of virtual
memory system)

10

Storing the Access Control Matrix

q Subjects >> # users
ß A row can correspond to a protection domain

ß Each subject runs within a protection domain

ß Example: User-ID and Group-ID in Unix determine domain

q Objects >> # files
ß Potentially could have permissions on any resource

q The matrix is typically sparse
ß Store only non-empty entries

11

Access Control Lists

{r,w,x}…{r,w,x}{x}SubjM

……………

{r}…{}{w,x}Subj2

{}…{r,w}{r,w,x}Subj1

ObjN…Obj2Obj1A[s][o]

For each object, store a list of (Subject , Rights) pairs.

12

Access Control Lists

q Resolving queries is linear in length of the list
q Revocation w.r.t. a single object is easy
q “Who can access this object?” is easy

ß Useful for auditing
q Lists could be long

ß Factor into groups (lists of subjects)
ß Give permissions based on group
ß Introduces consistency question w.r.t. groups

q Authentication critical
ß When does it take place? Every access would be expensive.

4

13

Capabilities Lists

{r,w,x}…{r,w,x}{x}SubjM

……………

{r}…{}{w,x}Subj2

{}…{r,w}{r,w,x}Subj1

ObjN…Obj2Obj1A[s][o]

For each subject, store a list of (Object, Rights) pairs.

14

Capabilities

q A capability is a (Object, Rights) pair
q Must be protected from tampering

ß Otherwise, subjects could get illegal access

q Authentication takes place when the capabilities are
granted (not needed at use)

q Harder to carry out revocation (must find all entries
where the object appears)

q Easy to audit a subject, hard to audit an object

15

Storing Capabilities Securely

q Special hardware: tagged words in memory
ß Can’t copy/modify tagged words

q Store the capabilities in protected address space
q Could use static scoping mechanism of safe

programming languages.
ß Java’s “private” fields

q Could use cryptographic techniques
ß OS kernel could sign (Object, Rights) pairs using a

private key
ß Any process can verify the capability

16

Unix Security
q Each user has a unique 16-bit UID

ß UID of root/superuser is 0
q Each user can belong to a group, each group has a unique

16-bit GID
q Protection domain of a process is determined by the

(UID,GID) of the user that owns the process
q Every file has

ß UID and GID of the owner
ß Protection bits that can be set/changed by the owner
ß Devices handled as files (e.g. /dev/tty, /dev/lp)

q 9 bits specifying allowed read(r)/write(w)/execute(x) access
for the owner, group, and everyone else
ß E.g. rw-r----- means owner can read/write and group can read

5

17

SETUID

q How to give temporary access to privileged resources?
q E.g. /dev/lp is owned by printer daemon (or by root), other

processes need to write to it to send jobs to printer, but you
do not want to set permission to rwxrwxrwx

q Solution: Each file/device has a SETUID bit
q When an executable program P with SETUID bit set to 1 is

executed by a process Q, the protection domain of Q is
changed to (UID,GID) of P (i.e. the owner of P)
ß If P’s SETUID bit is 0, then protection domain of Q does not

change

18

Sample Scenario

q /dev/lp is owned by root with protection rw-------
ß This is used to access the printer

q /bin/lp is owned by root with --x--x--x with SETUID=1
q User A issues a print command
q Shell (running with A’s UID and GID) interprets the

command and forks off a child process, say, P
q Process P has the same UID/GID as user A
q Child process P executes exec(“/bin/lp”,…)
q Now P’s domain changes to root’s UID
q Consequently, /dev/lp can be accessed to print
q When /bin/lp terminates so does P
q Parent shell never got the access to /dev/lp

