CSE 380 Computer Operating Systems

Instructor: Insup Lee and Dianna Xu

University of Pennsylvania Fall 2003 Lecture Note: Security

Preface

Early (unix systems) security

Security by obscurity

 Those that know enough to break the system also know enough not to

RTM

- The Great Internet Worm of 1988
- Devastating watershed event in hacker history
- First awareness of internet security

Legendary literatures:

- Hackers Steven Levy
- Cyberpunk Hafner and Markoff
- The Cuckoo's Egg Clifford Stoll
- The Jargon File

Hackers vs Crackers

The word hack doesn't have 69 different meanings

- an appropriate application of ingenuity
- a creative/brilliant practical joke

Legendary hacks are revered as urban folklores

- The element of cleverness
- A flare for classic hacker's humor and style, which includes references to Adams, Tolkien as well as jargons
- Mostly harmless
- Caltech/MIT football pranks
- Robin Hood/Friar Tuck against Xerox

There is no cure against bored students

Robin Hood/Friar Tuck

!X id1

id1: Friar Tuck... I am under attack! Pray save me! id1: Off (aborted)

- id2: Fear not, friend Robin! I shall rout the Sheriff of Nottingham's men!
- id1: Thank you, my good fellow!

Terminology

Ullnerability (weakness/defects that can be exploited)

- Ill-chosen passwords
- Software bugs .
- Communication without encryption
- Incorrect set-ups
- Attack (ways of exploiting vulnerability)
 - Password crackers
 - Viruses and worms
 - Denial of service
- Intruders (adversaries that try to attack)
 - Terrorists
 - . Espionage
 - Hackers

Security Goals

Data Confidentiality

- Keep data and communication secret
- Privacy of personal financial/health records etc
- . Military and commercial relevance

Data Integrity

- Protect reliability of data against tampering
- Can we be sure of the source and content of information?

System Availability

- Data/resources should be accessible when needed
- Protection against denial of service attacks

Sample Tools

- Cryptography
 - Can ensure confidentiality and integrity
 - Typically used for authentication
- Firewalls, passwords, access control
 - Authorization mechanisms
- Operating systems
 - Resource allocation
 - Monitoring and logging for audits
- Java bytecode verifier
 - Memory safety against malicious/defective code

We do not have adequate technology today!

Terminology Authentication: Verifying identity of sender and/or message integrity Integrity: Message tampering detection

Basics

- Plaintext: Original message
 - Encrypted message
- Ciphertext: • *Key*:
 - Input for en- and decryption algorithm
- Encryption:
- $Plaintext + Key \rightarrow Ciphertext$ • Decryption: Ciphertext + Key \rightarrow Plaintext

Encryption Algorithms

Symmetric

- Encryption and decryption use the same key
- Key must be secret (secret key)
- Best known: DES, AES, IDEA, Blowfish, RC5 Asymmetric
 - Also known as Public Key Encryption
 - Encryption and decryption keys *different*

DES - Data Encryption Standard, IDEA - International Data Encryption Algorithm, AES - Advanced Encryption System

Monoalphabetic Ciphers

- Classical way of encoding text strings (Caesar Cipher)
- Permutation of the alphabet (rot13)
- The key for decoding is the inverse permutation
- Encoding and decoding are efficient
- Theoretically sound: the number of permutations of ASCII alphabet is VERY large (128!), and an intruder cannot possibly try out all possible permutations to decipher
- Main problem: Any human language has distinct frequent letter (e.g. vowels) combos
 - E.g. e is the most common letter in English text, th is the most common sequence of adjacent symbols
 - Given enough cipher text, one doesn't need to be Shelock Holmes to break the code

Secret-Key Cryptography

- Sender and receiver share the secret key
- □ This is also called symmetric key cryptography
- □ A popular scheme for many years: DES (Data Encryption Standard) promoted by NSA
 - Key is 56 bits (extended to 64 bits using 8 parity bits)
 - Input data is processed in chunks of 64-bit blocks, by subjecting to a series of transformations using the key

Distribution of keys is a problem

Asymmetric Encryption

- Two complementary keys
 - Private key (kept secret)
 - Public key (published)
- Private key VERY difficult to compute from public key
- Encryption with one key can only be reversed with the other key
- Used in PGP (Pretty Good Privacy) & PKI (Public Key Infrastructure)
- Best known RSA & ECC, DSA for signatures

RSA Rivest Shami Adleman, ECC - Eliptic Curve Cryptography, DSA - Digital Signature Algorithm

One-Way Functions

- \Box Function such that given formula for f(x)
 - easy to evaluate y = f(x) given x

But given y

- computationally infeasible to find x
- □ There is a rich theory of one-way functions
 - Many candidates proposed
 - None of them "proved" to be one way
 - Existence of one-way functions linked to encryption, random number generators, (and other crypto concepts) in a precise sense

Public-Key Cryptography

- □ All users pick a public key/private key pair
 - publish the public key
 - private key not published
- Public key is the encryption key
- To send a message to user Alice, encrypt the message with Alice's public key
- Private key is the decryption key
- Alice decrypts the ciphertext with its private key
 Popular schemes (1970s): Diffie-Hellman, RSA

More on RSA

- □ Introduced by Rivest, Shamir, and Adleman in 1979
- □ Foundations in number theory and computational difficulty of factoring
- Not mathematically proven to be unbreakable, but has withstood attacks and analysis
 - Ideally, we would like to prove a theorem saying "if intruder does not know the key, then it cannot construct plaintext from the ciphertext by executing a polynomial-time algorithm"
- Public and private keys are derived from secretly chosen large prime numbers (512 bits)
- □ Plaintext is viewed as a large binary number and encryption is exponentiation in modulo arithmetic
- □ Intruder will have to factor large numbers (and there are no known polynomial-time algorithms for this)
 - 2002's major result: polynomial-time test to check if a number is prime

Hash Functions

- Produce hash values for data access or security
 Hash value: Number generated from a string of text
 Hash is substantially smaller than the text itself
- Unlikely that other text produces the same hash value (collision resistance)
- Unidirectional (cannot calculate text from hash)
- Provides: Integrity & Authentication
- Best known: SHA-1 & MD5
- SHA Secure Hash Algorithm, MD5 Message Digest

Digital Signatures

- □ How can Alice *sign* a digital document ?
- Let S(A,M) be the message M tagged with Alice's signature
- □ No forgery possible: If Alice signs M then nobody else can generate S(A,M)
- □ Authenticity check: If you get the message S(A,M) you should be able to verify that this is really created by Alice
- □ No alteration: Once Alice sends S(A,M), nobody (including Alice) can tamper this message
- □ No reuse: Alice cannot duplicate S(A,M) at a later time

■ The scheme is made more efficient by computing D(H(M),k), where H(M) is the secure hash of M

21

- Hashing gives a constant size output
- Hard to invert

Passwords

- □ The most commonly used way of authentication
- Vulnerabilities
 - Stealing passwords
 - Poorly chosen passwords that are easy to guess
 - Attacks that search through password directories
- □ If you were to guess passwords, how would you go about doing that?
- Survey of passwords by Morris&Thomson: could guess 86% of all passwords
 - 15 single ASCII letters
 - 72 two ASCII letters
 - 464 three ASCII letters
 - Words from dictionary, names of people/streets

Systems are easy to crack!

LBL> telnet elxsi ELXSI AT LBL LOGIN: root PASSWORD: root INCORRECT PASSWORD, TRY AGAIN LOGIN: guest PASSWORD: guest INCORRECT PASSWORD, TRY AGAIN LOGIN: uucp PASSWORD: uucp WELCOME TO THE ELXSI COMPUTER AT LBL

How a cracker broke into LBL • a U.S. Dept. of Energy research lab

Password Attacks

Deadly combo:

- War dialers / password guessing
- □ Once entrance to a system is gained:
 - password file
 - packet sniffer
 - rsh/rlogin into other machines with known usr/passwd combo

Social Engineering

Unix: /etc/passwd

Passwords stored in a file system are vulnerable to automated attacks

• At first Unix was implemented with a password file holding the actual passwords of users, but with only root permissions.

□ This had many vulnerabilities

- Copies were made by privileged users
- Copies were made by bugs: classic example posted password file on daily message file

Improvements to First Approach

Enforce password rules

- Makes the passwords harder to guess or crack with dictionariesProblems?
- □ Hashing and encryption: use password to create a key, then hash based on the DES algorithm for encryption
 - Speed OK for legitimate users
 - Takes longer to do automatic search
- Password files contains these encrypted entries
- □ Intruder cannot figure out the passwords just by gaining access to password file, but can keep guessing passwords, apply hash/encryption and compare the results to entries in password file

Add Salt	
 "Salt" the passwords by adding random bits. Makes dictionary attacks more expensive. Decreases the likelihood that two identical passwords will appear as identical entries in the password file. 12 bit salt results in 4,096 versions of each password. /etc/passwd entry: 	
User id Salt Hash(salt + passwd)	
	3

Hash-based 1-time Passwords

- Goal: Can the password be different in every session?
 code books
- Scheme used for remote logins based on one-way hash functions
- One-time setup.
 - User chooses a password w
 - Fixes a constant t for the number of times the authentication can be done using password w
 - User declares the password $H^t(w)$ to the system the first time H(H(H...(H(w))...))

One time passwords

- □ Initially, the computer stores, with user's login-id, password p=H^I(w) and session number s=0
- □ After i sessions the computer has p=H^{t-i}(w) and s=i
- At the time of login, computer sends i to the user
- □ User computes new password q=H^{t-t-1}(w) and sends it to the computer
- □ The computer checks that H(q)=p, and if so, allows the login (and updates local entries to q and i+1)
- Important property: given q, it is easy to compute H(q), but if intruder had stolen p in the last session, it cannot produce q
 - · H is a one-way hash function, hard to invert

Operating System Security

Trojan horses

- Free programs available to be downloaded and executed
- Common trick: place altered versions of utility programs in user directories

Login Spoofing

- · Simulate the login session to acquire passwords
- Logic Bomb

□ Trap Doors

- System programmer writes code to bypass normal checks
- Insider knowledge to exploit these intentional vulnerabilities

Buffer Overflow Attacks

- $\square > 50\%$ of security incidents reported at CERT (see cert.org) are due to buffer overflow attacks
- C and C++ programming languages don't do array bounds checks
 - In particular, widely used library functions such as strcpy, gets
- Exploited in many famous attacks (read your Windows Service Pack notes)

Avoiding Titanics

- lpr
- link core to /etc/passwd
- Microsoft
 - code red (buffer overflow in IIS Indexing Service)
- Weathering actual attacks is the best way to make an OS safe
 - tiger teams
- System design should be public
- Keep the design simple

Why the Boot Sector?

Automatically executed *before* OS is running Also before detection tools are running

- OS hides boot sector information from users
 - Hard to discover that the virus is there
 - Harder to fix
- Any good virus scanning software scans the boot sectors

Macro Viruses

Macros are just programs

- Word processors & Spreadsheets
 - Startup macro
 - Macros turned on by default
- □ Visual Basic Script (VBScript)

Melissa Virus

- □ Transmission Rate
 - The first confirmed reports of Melissa were received on Friday, March 26, 1999.
 - By Monday, March 29, it had reached more than 100,000 computers.
 - One site got 32,000 infected messages in 45 minutes.

Damage

- · Denial of service: mail systems off-line.
- Could have been much worse

Melissa Macro Virus

- Implementation
 - VBA (Visual Basic for Applications) code associated with the "document.open" method of Word

□ Strategy

- Email message containing an infected Word document as an attachment
- Opening Word document triggers virus if macros are enabled

Propagation

 Sends email message to first 50 entries in every Outlook address book readable by the user executing the macro

52

"I Love You" Virus/Worm

Infection Rate

- At 5:00 pm EDT May 8, 2000, CERT had received reports from more than 650 sites
- > 500,000 individual systems
- VBScript
- Propagation
 - Email, Windows file sharing, IRC, USENET news
- Signature
 - An attachment named "LOVE-LETTER-FOR-YOU.TXT.VBS"
 - A subject of "ILOVEYOU"
 - Message body: "kindly check the attached LOVELETTER coming from me."

Love Bug Behavior

□ Replaced certain files with copies of itself

Based on file extension (e.g. .vbs, .js, .hta, etc)

Changed Internet Explorer start page

- · Pointed the browser to infected web pages
- Mailed copies of itself
- Changed registry keys

53

Antivirus and Anti-Antivirus Techniques

- □ Scanning the disk for certain executables
- hard to deal with polymorphic viruses
- $\hfill\square$ Integrity checkers using checksums
- Behavioral checkers
- Virus avoidance
 - good OS
 - install only shrink-wrapped software
 - do not click on attachments to email
 - use antivirus software
 - frequent backups
- $\hfill\square$ Recovery from virus attack
 - halt computer, reboot from safe disk, run antivirus