
1

1

CSE 380
Computer Operating Systems

Instructor: Insup Lee and Dianna Xu

University of Pennsylvania
Fall 2003

Lecture Note: Security

2

Preface
q Early (unix systems) security

ß Security by obscurity
ß Those that know enough to break the system also know enough

not to
q RTM

ß The Great Internet Worm of 1988
ß Devastating watershed event in hacker history
ß First awareness of internet security

q Legendary literatures:
ß Hackers – Steven Levy
ß Cyberpunk – Hafner and Markoff
ß The Cuckoo’s Egg – Clifford Stoll
ß The Jargon File

3

Hackers vs Crackers
q The word hack doesn’t have 69 different meanings

ß an appropriate application of ingenuity

ß a creative/brilliant practical joke

q Legendary hacks are revered as urban folklores
ß The element of cleverness

ß A flare for classic hacker’s humor and style, which includes
references to Adams, Tolkien as well as jargons

ß Mostly harmless

ß Caltech/MIT football pranks

ß Robin Hood/Friar Tuck against Xerox

q There is no cure against bored students

4

Robin Hood/Friar Tuck

!X id1

id1: Friar Tuck... I am under attack! Pray save me!
id1: Off (aborted)

id2: Fear not, friend Robin! I shall rout the Sheriff
 of Nottingham's men!

id1: Thank you, my good fellow!

2

5

Terminology
q Vulnerability (weakness/defects that can be exploited)

ß Ill-chosen passwords
ß Software bugs
ß Communication without encryption
ß Incorrect set-ups

q Attack (ways of exploiting vulnerability)
ß Password crackers
ß Viruses and worms
ß Denial of service

q Intruders (adversaries that try to attack)
ß Terrorists
ß Espionage
ß Hackers

6

Security Goals
q Data Confidentiality

ß Keep data and communication secret

ß Privacy of personal financial/health records etc

ß Military and commercial relevance

q Data Integrity
ß Protect reliability of data against tampering

ß Can we be sure of the source and content of information?

q System Availability
ß Data/resources should be accessible when needed

ß Protection against denial of service attacks

7

Sample Tools
q Cryptography

ß Can ensure confidentiality and integrity

ß Typically used for authentication

q Firewalls, passwords, access control
ß Authorization mechanisms

q Operating systems
ß Resource allocation

ß Monitoring and logging for audits

q Java bytecode verifier
ß Memory safety against malicious/defective code

We do not have adequate technology today!
8

Basics

Terminology
ß Authentication: Verifying identity of sender and/or

message integrity

ß Integrity: Message tampering detection

ß Plaintext: Original message

ß Ciphertext: Encrypted message

ß Key: Input for en- and decryption algorithm
ß Encryption: Plaintext + Key → Ciphertext

ß Decryption: Ciphertext + Key → Plaintext

3

9

Basic Set-up of Cryptography

Relationship between the plaintext and the ciphertext

10

Encryption Algorithms

Symmetric
ß Encryption and decryption use the same key

ß Key must be secret (secret key)

ß Best known: DES, AES, IDEA, Blowfish, RC5
Asymmetric

ß Also known as Public Key Encryption

ß Encryption and decryption keys different

DES – Data Encryption Standard, IDEA – International Data Encryption Algorithm, AES – Advanced Encryption System

11

Symmetric Encryption

Alice Bob

Encryption Decryption

Shared
key

Confidentiality

Shared
key

Out of band key exchange

12

q Classical way of encoding text strings (Caesar Cipher)
q Permutation of the alphabet (rot13)
q The key for decoding is the inverse permutation
q Encoding and decoding are efficient
q Theoretically sound: the number of permutations of ASCII alphabet is

VERY large (128!), and an intruder cannot possibly try out all
possible permutations to decipher

q Main problem: Any human language has distinct frequent letter (e.g.
vowels) combos
ß E.g. e is the most common letter in English text, th is the most common

sequence of adjacent symbols
ß Given enough cipher text, one doesn’t need to be Shelock Holmes to

break the code

Monoalphabetic Ciphers

4

13

q Sender and receiver share the secret key
q This is also called symmetric key cryptography
q A popular scheme for many years: DES (Data Encryption

Standard) promoted by NSA
ß Key is 56 bits (extended to 64 bits using 8 parity bits)

ß Input data is processed in chunks of 64-bit blocks, by subjecting
to a series of transformations using the key

q Distribution of keys is a problem

Secret-Key Cryptography

14

Asymmetric Encryption

q Two complementary keys
ß Private key (kept secret)
ß Public key (published)

q Private key VERY difficult to compute from public key
q Encryption with one key can only be reversed with

the other key
q Used in PGP (Pretty Good Privacy) &

PKI (Public Key Infrastructure)
q Best known RSA & ECC, DSA for signatures

RSA Rivest Shami Adleman, ECC – Eliptic Curve Cryptography, DSA – Digital Signature Algorithm

15

One-Way Functions

q Function such that given formula for f(x)
ß easy to evaluate y = f(x) given x

q But given y
ß computationally infeasible to find x

q There is a rich theory of one-way functions
ß Many candidates proposed

ß None of them “proved” to be one way

ß Existence of one-way functions linked to encryption, random
number generators, (and other crypto concepts) in a precise
sense

16

Asymmetric Encryption cont’d

Alice Bob

Encryption Decryption

Bob
Public

Bob
Private

Encryption Decryption

Alice
Private

Alice
Public

Confidentiality

Authentication & Integrity

5

17

Public-Key Cryptography

q All users pick a public key/private key pair
ß publish the public key

ß private key not published

q Public key is the encryption key
ß To send a message to user Alice, encrypt the message with

Alice’s public key

q Private key is the decryption key
ß Alice decrypts the ciphertext with its private key

q Popular schemes (1970s): Diffie-Hellman, RSA

18

More on RSA
q Introduced by Rivest, Shamir, and Adleman in 1979
q Foundations in number theory and computational difficulty of factoring
q Not mathematically proven to be unbreakable, but has withstood attacks

and analysis
ß Ideally, we would like to prove a theorem saying “if intruder does not know

the key, then it cannot construct plaintext from the ciphertext by executing a
polynomial-time algorithm”

q Public and private keys are derived from secretly chosen large prime
numbers (512 bits)

q Plaintext is viewed as a large binary number and encryption is
exponentiation in modulo arithmetic

q Intruder will have to factor large numbers (and there are no known
polynomial-time algorithms for this)
ß 2002’s major result: polynomial-time test to check if a number is prime

19

Hash Functions

q Produce hash values for data access or security
q Hash value: Number generated from a string of text
q Hash is substantially smaller than the text itself
q Unlikely that other text produces the same hash

value (collision resistance)
q Unidirectional (cannot calculate text from hash)
q Provides: Integrity & Authentication
q Best known: SHA-1 & MD5

SHA – Secure Hash Algorithm, MD5 – Message Digest

20

Digital Signatures

q How can Alice sign a digital document ?
q Let S(A,M) be the message M tagged with Alice’s signature
q No forgery possible: If Alice signs M then nobody else can

generate S(A,M)
q Authenticity check: If you get the message S(A,M) you

should be able to verify that this is really created by Alice
q No alteration: Once Alice sends S(A,M), nobody (including

Alice) can tamper this message
q No reuse: Alice cannot duplicate S(A,M) at a later time

6

21

Digital Signatures with Public Keys

q Suppose K is public key and k is private key for Alice, and
encryption/decryption is commutative:
D(E(M,K), k) = E(D(M,k),K)=M

q To sign a message M, Alice simply sends D(M,k)
q Receiver uses Alice’s public key to compute E(D(M,k),K), to

retrieve M
ß Authenticity of signature because only Alice knows the private key k

q RSA encryption does satisfy the required commutativity
q To ensure “no reuse” and “no alteration” the message must include

a timestamp
q The scheme is made more efficient by computing D(H(M),k), where

H(M) is the secure hash of M
ß Hashing gives a constant size output
ß Hard to invert

22

Hash Functions cont’d

Provides signatures with
shared secret

Messag
e

Alice Bob

Secret

Hash Messag
e

+

Messag
e

Secret

HashHash =?

23

Hash Functions cont’d

Provides signatures with
public key

Messag
e

Alice Bob

Hash Messag
e

Hash

Encryption Decryption

Alice
Private

Alice
Public

Hash
=?

24

PKI in a Nutshell

PKI (Public Key Infrastructure) based on
ß Certificates (X.509)

ß Chain of trust (usually hierarchy)
Certificates

ß Public keys signed by a trusted 3rd party
CA = Certificate Authority

ß Certificate is public as well

ß Different types for people, web server, …

7

25

Certificate creation

Certificate

Certificate Signing Request (CSR)

CA Certificate

Alice CA

Identity Verification

26

User Authentication

Authentication is the process of determining which user is
making a request

Basic Principles. Authentication must identify:
1. Something the user knows (e.g. password)
2. Something the user has (e.g. ID card)
3. Something user is (e.g. retina scan)

Humans are the weakest link

27

Passwords

q The most commonly used way of authentication
q Vulnerabilities

ß Stealing passwords
ß Poorly chosen passwords that are easy to guess
ß Attacks that search through password directories

q If you were to guess passwords, how would you go about
doing that?

q Survey of passwords by Morris&Thomson: could guess 86%
of all passwords
ß 15 single ASCII letters
ß 72 two ASCII letters
ß 464 three ASCII letters
ß Words from dictionary, names of people/streets ….

28

Systems are easy to crack!

q How a cracker broke into LBL
ß a U.S. Dept. of Energy research lab

8

29

Password Attacks

q Deadly combo:
ß War dialers / password guessing

q Once entrance to a system is gained:
ß password file

ß packet sniffer

ß rsh/rlogin into other machines with known usr/passwd
combo

q Social Engineering

30

Unix: /etc/passwd

q Passwords stored in a file system are vulnerable to
automated attacks
ß At first Unix was implemented with a password file holding

the actual passwords of users, but with only root permissions.

q This had many vulnerabilities
ß Copies were made by privileged users

ß Copies were made by bugs: classic example posted password
file on daily message file

31

Improvements to First Approach
q Enforce password rules

ß Makes the passwords harder to guess or crack with dictionaries

ß Problems?

q Hashing and encryption: use password to create a key, then
hash based on the DES algorithm for encryption
ß Speed OK for legitimate users

ß Takes longer to do automatic search

q Password files contains these encrypted entries
q Intruder cannot figure out the passwords just by gaining

access to password file, but can keep guessing passwords,
apply hash/encryption and compare the results to entries in
password file

32

Add Salt

q “Salt” the passwords by adding random bits.
ß Makes dictionary attacks more expensive.
ß Decreases the likelihood that two identical passwords

will appear as identical entries in the password file.
q 12 bit salt results in 4,096 versions of each password.
q /etc/passwd entry:

q How does this help?
user_id Salt Hash(salt + passwd) …

9

33

Hash-based 1-time Passwords

q Goal: Can the password be different in every session?
ß code books

q Scheme used for remote logins based on one-way hash
functions

q One-time setup.
ß User chooses a password w

ß Fixes a constant t for the number of times the authentication
can be done using password w

ß User declares the password Ht(w) to the system the first time

 H(H(H…(H(w))…))

34

One time passwords

q Initially, the computer stores, with user’s login-id, password
p=Ht(w) and session number s=0

q After i sessions the computer has p=Ht-i(w) and s=i
q At the time of login, computer sends i to the user
q User computes new password q=Ht-i-1(w) and sends it to the

computer
q The computer checks that H(q)=p, and if so, allows the login

(and updates local entries to q and i+1)
q Important property: given q, it is easy to compute H(q), but if

intruder had stolen p in the last session, it cannot produce q
ß H is a one-way hash function, hard to invert

35

Operating System Security
q Trojan horses

ß Free programs available to be downloaded and executed

ß Common trick: place altered versions of utility programs in
user directories

q Login Spoofing
ß Simulate the login session to acquire passwords

q Logic Bomb
q Trap Doors

ß System programmer writes code to bypass normal checks

ß Insider knowledge to exploit these intentional vulnerabilities

36

Buffer Overflow Attacks

q > 50% of security incidents reported at CERT (see
cert.org) are due to buffer overflow attacks

q C and C++ programming languages don’t do array
bounds checks
ß In particular, widely used library functions such as strcpy,

gets

q Exploited in many famous attacks (read your Windows
Service Pack notes)

10

37

C’s Control Stack

f() {
 g(parameter);
}

g(char *args) {
 int x;
 // more local
 // variables
 ...
}

f’s stack
frame

Input
parameter

La
rg

er
 A

dd
re

ss
es

SP

Before calling g
38

C’s Control Stack

f() {
 g(parameter);
}

g(char *args) {
 int x;
 // more local
 // variables
 ...
}

f’s stack
frameLa

rg
er

 A
dd

re
ss

es base pointer

int x;
// local
// variables

Input
parameter

return address

After calling g

SP

39

Buffer Overflow Example

g(char *text) {
 char buffer[128];
 strcpy(buffer, text);
}

f’s stack
frame

base pointer

buffer[]

return address

text
…

Attack code
128 bytes

ADDR

40

Buffer Overflow Example

g(char *text) {
 char buffer[128];
 strcpy(buffer, text);
}

f’s stack
frame

base pointer

buffer[]

return address

text
…

Attack code
128 bytes

ADDR

…

Attack code
128 bytes

ADDR

ADDR

Upon return from g, attack code gets executed !

11

41

Solutions

q Don’t write code in C
ß Use a safe language instead (Java, C#, …)
ß Not always possible (low level programming)
ß Doesn’t solve legacy code problem

q Link C code against safe version of libc
ß May degrade performance unacceptably

q Software fault isolation
ß Instrument executable code to insert checks

q Program analysis techniques
ß Examine program to see whether “tainted” data is used

as argument to strcpy

42

Avoiding Titanics

q Unix
ß lpr

ß link core to /etc/passwd

q Microsoft
ß code red (buffer overflow in IIS Indexing Service)

q Weathering actual attacks is the best way to make
an OS safe
ß tiger teams

q System design should be public
q Keep the design simple

43

Network Security

q External threat
ß code transmitted to target machine
ß code executed there, doing damage

q Goals of virus writer
ß quickly spreading virus
ß difficult to detect
ß hard to get rid of

q Virus = program can reproduce itself
ß by attaching its code to another program
ß additionally, do harm

q Worm
ß self-replicating

44

The Morris Internet Worm

12

45

Virus Attachment: Append

q Simplest case: insert copy at the end of an
executable file

q Runs before other code of the program (by changing
start address in header)

q Most common program virus

Original
Program

 Virus

46

Kinds of Viruses

q Overwriting Viruses
ß Companion Viruses

ß Executable Viruses

q Parasitic Viruses
ß Cavity Viruses

q Memory-resident Viruses
ß System-call-trap Viruses

ß Software Viruses (Windows manager, explorer, etc)

q Boot Sector Viruses
q Device Driver Viruses
q Macro Viruses

47

Bootstrap Viruses

q Bootstrap Process:
ß Firmware (ROM) copies MBR (master boot record) to

memory, jumps to that program
q MBR (or Boot Sector)

ß Fixed position on disk
ß “Chained” boot sectors permit longer Bootstrap

Loaders

MBR boot boot

48

Bootstrap Viruses

q Virus breaks the chain
q Inserts virus code
q Reconnects chain afterwards

MBR boot bootvirus

13

49

Why the Boot Sector?

q Automatically executed before OS is running
ß Also before detection tools are running

q OS hides boot sector information from users
ß Hard to discover that the virus is there

ß Harder to fix

q Any good virus scanning software scans the boot
sectors

50

Macro Viruses

q Macros are just programs
q Word processors & Spreadsheets

ß Startup macro

ß Macros turned on by default

q Visual Basic Script (VBScript)

51

Melissa Virus

q Transmission Rate
ß The first confirmed reports of Melissa were received on

Friday, March 26, 1999.

ß By Monday, March 29, it had reached more than
100,000 computers.

ß One site got 32,000 infected messages in 45 minutes.

q Damage
ß Denial of service: mail systems off-line.

ß Could have been much worse

52

Melissa Macro Virus

q Implementation
ß VBA (Visual Basic for Applications) code associated with

the "document.open" method of Word

q Strategy
ß Email message containing an infected Word document as an

attachment
ß Opening Word document triggers virus if macros are

enabled
q Propagation

ß Sends email message to first 50 entries in every Outlook
address book readable by the user executing the macro

14

53

“I Love You” Virus/Worm

q Infection Rate
ß At 5:00 pm EDT May 8, 2000, CERT had received reports from more than

650 sites

ß > 500,000 individual systems

q VBScript
q Propagation

ß Email, Windows file sharing, IRC, USENET news

q Signature
ß An attachment named

 "LOVE-LETTER-FOR-YOU.TXT.VBS"

ß A subject of "ILOVEYOU"

ß Message body: "kindly check the attached LOVELETTER coming from
me."

54

Love Bug Behavior

q Replaced certain files with copies of itself
ß Based on file extension (e.g. .vbs, .js, .hta, etc)

q Changed Internet Explorer start page
ß Pointed the browser to infected web pages

q Mailed copies of itself

q Changed registry keys

55

Antivirus and Anti-Antivirus Techniques

q Scanning the disk for certain executables
ß hard to deal with polymorphic viruses

q Integrity checkers using checksums
q Behavioral checkers
q Virus avoidance

ß good OS
ß install only shrink-wrapped software
ß do not click on attachments to email
ß use antivirus software
ß frequent backups

q Recovery from virus attack
ß halt computer, reboot from safe disk, run antivirus

