
1

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture Note 2: Processes and Threads
Lecture Note 2.1: Processes and System Calls

2

 Process
q Consider a simple disk operating system (like MS-DOS)
q User types command like “run foo” at Keyboard (I/O device driver for

keyboard, screen)
q Command is parsed by command shell
q Executable program file (load module) “foo” is located on disk (file system,

I/O device driver for disk)
q Contents are loaded into memory and control transferred ==> process

comes alive! (disk device driver, relocating loader, memory management)
q During execution, process may call OS to perform I/O: console, disk,

printer, etc. (system call interface, I/O device drivers)
q When process terminates, memory is reclaimed (memory management)

A process is a program in execution with associated data and execution context

3

Multiprogramming/Timesharing Systems

q Goal: to provide interleaved execution of several processes to give an
illusion of many simultaneously executing processes.

q Computer can be a single-processor or multi-processor machine.

q The OS must keep track of the state for each active process and make
sure that the correct information is properly installed when a process is
given control of the CPU.

q Many resource allocation issues to consider:
ß How to give each process a chance to run?

ß How is main memory allocated to processes?

ß How are I/O devices scheduled among processes?

4

Keeping track of processes

q For each process, OS maintains a data structure, called the
process control block (PCB). The PCB provides a way of
accessing all information relevant to a process:
ß This data is either contained directly in the PCB, or else the

PCB contains pointers to other system tables.

q Processes (PCBs) are manipulated by two main
components of the OS in order to achieve the effects of
multiprogramming:
ß Scheduler: determines the order in which processes will gain

access to the CPU. Efficiency and fair-play are issues here.
ß Dispatcher: actually allocates CPU to the process selected by

the scheduler.

5

Process Context
q The context (or image) of a process can be described by
ß contents of main memory
ß contents of CPU registers
ß other info (open files, I/O in progress, etc.)

q Main memory -- three logically distinct regions of memory:
ß text region: contains executable code (typically read-only)
ß data region: storage area for dynamically allocated data structure, e.g.,

lists, trees (typically heap data structure)
ß stack region: run-time stack of activation records

q Registers: general registers, PC, SP, PSW, segmentation registers

q Other information:
ß open files table, status of ongoing I/O
ß process status (running, ready, blocked), user id, ...

6

Process States

q Possible process states
ß Running: executing
ß Blocked: waiting for I/O
ß Ready: waiting to be scheduled

7

When are processes created?

1. System initialization (many daemons for
processing email, printing, web pages etc.)

2. Execution of a process creation system call by a
running process (fork or CreateProcess)

3. User request to create a new process (executing
new applications)

List of all active processes: ps (on Unix), Ctl-Alt-Del (on Windows)

8

When are processes terminated?

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary), due to bugs

4. Killed by another process (involuntary)

9

Process Snapshot

Static data

Code

Dynamic data

Free space

Stack

CPU

(Virtual) Memory

PSW

Program Counter

Stack Pointer

Recall:
How is information exchanged between
A program and its subroutines ?

10

When does OS get invoked?

q Operating system gets control in two ways
ß A user process calls OS by a system call (e.g. executes TRAP)
ß An interrupt aborts the current user process

q System stack can be used to exchange information between OS and
user processes

q Recall: Mode bit in PSW is set only when OS is running

11

Interrupts

q An interruption of the normal processing of processor.

q Interrupts cause the CPU to suspend its current computation and take up
some new task. Control may be returned to the original task at some time
later.

q Reasons for interrupts and/or traps:
ß control of asynchronous I/O devices
ß CPU scheduling
ß exceptional conditions (e.g., div. by zero, page fault, illegal instruction) arising

during execution

q Interrupts are essentially what drives an OS. We can view the OS as an
event-driven system, where an interrupt is an event.

q Bounding interrupt handling latency is important for real-time systems.

12

Interrupt Handling
q The servicing of an interrupt is known as interrupt handling.

q An integer is associated with each type of interrupt. When an interrupt occurs, the
corresponding integer is supplied to the OS usually by the hardware (in a register).

q The OS maintains a table, known as the interrupt vector, that associates each
interrupt's id with the starting address of its service routine.

q Example interrupt vector:
Interrupt No. Interrupt Handler
0 clock
1 disk
2 tty
3 dev
4 soft
5 other

13

Interrupts
On Intel Pentium, hardware interrupts are numbered 0 to 255
ß 0: divide error

ß 1: debug exception

ß 2: null interrupt

ß 6: invalid opcode

ß 12: stack fault

ß 14: page fault

ß 16: floating-point error

ß 19-31: Intel reserved (not available?)

ß 32-255: maskable interrupts (device controllers, software traps)

Issue: can CPU be interrupted while an OS interrupt handler is executing?
Maskable interrupts can be disabled, plus there is a priority among interrupts

14

Typical interrupt handling sequence
q Interrupt initiated by I/O device signaling CPU, by exceptional condition

arising, through execution of special instruction, etc.

q CPU suspends execution of current instruction stream and saves the
state of the interrupted process (on system stack).

q State typically refers to contents of registers: PC, PSW, SP, general-
purpose registers.

q The cause of the interrupt is determined and the interrupt vector is
consulted in order to transfer control to the appropriate interrupt
handler.

q Interrupt handler performs whatever processing is necessary to deal
with the interrupt.

q Previous CPU state is restored (popped) from system stack, and CPU
returns control to interrupted task.

15

Example: Servicing a Timer Interrupt
q Timer device is used in CPU scheduling to make sure control is

returned to system every so often (e.g., 1/60 sec.)

q Typically, timer has a single register that can be loaded with an integer
indicating a particular time delay (# of ticks).

q Once loaded, timer counts down and when 0 is reached, an interrupt is
generated.

q Interrupt handler might do the following:
ß update time-of-day information
ß signal any processes that are "asleep" and awaiting this alarm
ß call the CPU scheduler

q Control returns to user mode, possibly to a different process than the
one executing when the interrupt occurred.

16

Example: Servicing a Disk Interrupt

q When disk controller completes previous transfer, it generates
an interrupt.

q Interrupt handler changes the state of a process that was
waiting for just-completed transfer from wait-state to ready-state.

q It also examines queue of I/O requests to obtain next request.

q I/O is initiated on next request.

q CPU scheduler called.

q Control returned to user mode.

17

System Calls
q Provide "direct access" to operating system services (e.g., file system,

I/O routines, memory allocate & free routines) by user programs.

q System calls are special, and in fact, are treated like interrupts.

q Programs that make system calls were traditionally called "system
programs" and were traditionally implemented in assembly language
ß Win32 API in Windows

q Each system call had a particular number. Instruction set has a special
instruction for making system calls:

SVC (IBM 360/370)
trap (PDP 11)

 tw (PowerPC) - trap word
 tcc (Sparc)
 break (MIPS)

18

System Calls

Application
Program

Library
Routine

OS
Routine

Device
Controller

Software Hardware

OS
Mode bit =1

User
Mode bit =0

System
API

Special
Instructions

TRAP

19

Steps in System Call

q User program pushes parameters to read on stack
q User program executes CALL instruction to invoke library

routine read in assembly language
q Read routine sets up the register for system call number
q Read routine executes TRAP instruction to invoke OS
q Hardware sets the mode-bit to 1, saves the state of the

executing read routine, and transfers control to a fixed
location in kernel

q Kernel code, using a table look-up based on system call
number, transfers control to correct system call handler

20

Steps in System Call (cont)

q OS routine copies parameters from user stack, sets up
device driver registers, and executes the system call using
privileged instructions

q OS routine can finish the job and return, or decide to
suspend the current user process to avoid waiting

q Upon return from OS, hardware resets the mode-bit
q Control transfers to the read library routine and all

registers are restored
q Library routine terminates, transferring control back to

original user program
q User program increments stack pointer to clear the

parameters

21

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture Note 2.2: Unix Processes, Threads

22

Creating processes in UNIX

q To see how processes can be used in application and
how they are implemented, we study how processes are
created and manipulated in UNIX.

q Important source of information on UNIX is “man.”

q UNIX supports multiprogramming, so there will be many
processes in existence at any given time.
ß Processes are created in UNIX with the fork() system call.
ß When a process P creates a process Q, Q is called the child

of P and P is called the parent of Q.

23

Process Hierarchies

q Parent creates a child process, child processes can create
its own process

q Forms a hierarchy
ß UNIX calls this a process group

q Signals can be sent all processes of a group

qWindows has no concept of process hierarchy
ß all processes are created equal

24

Initialization

At the root of the family tree of processes in a UNIX system
is the special process init:

ß created as part of the bootstrapping procedure

ß process-id = 1

ß among other things, init spawns a child to listen to each
terminal, so that a user may log on.

ß do "man init” to learn more about it

25

UNIX Process Control
UNIX provides a number of system calls for process control

including:

ß fork - used to create a new process

ß exec - to change the program a process is executing

ß exit - used by a process to terminate itself normally

ß abort - used by a process to terminate itself abnormally

ß kill - used by one process to kill or signal another

ß wait - to wait for termination of a child process

ß sleep - suspend execution for a specified time interval

ß getpid - get process id

ß getppid - get parent process id

26

The Fork System Call

q The fork() system call creates a "clone" of the calling
process.

q Identical in every respect except
ß the parent process is returned a non-zero value (namely, the process id

of the child)
ß the child process is returned zero.

q The process id returned to the parent can be used by
parent in a wait or kill system call.

27

Snapshots after fork()

Static data

Code

Dynamic data

Free space

Stac
k

CPU

(Virtual) Memory

PSW for parent

Program Counter

Stack Pointer

Child pid Parent

Static data

Code

Dynamic data

Free space

Stac
k

CPU

(Virtual) Memory

PSW for child

Program Counter

Stack Pointer

 0 Child

28

Example using fork

 1. #include <unistd.h>
 2. main(){
 3. pid_t pid;
 4. printf(“Just one process so far\n”);
 5. pid = fork();
 6. if (pid == 0) /* code for child */
 7. printf(“I’m the child\n”);
 8. else if (pid > 0) /* code for parent */
 9. printf(“The parent, child pid =%d\n”,
10. pid);
11. else /* error handling */
12. printf(“Fork returned error code\n”);
13. }

29

Sample Question

 main(){
 int x=0;
 fork();
 x++;
 printf(“The value of x is %d\n”, x);
 }

What will be the output?

30

Spawning Applications

 fork() is typically used in conjunction with exec (or variants)

pid_t pid;
if ((pid = fork()) == 0) {
 /* child code: replace executable image */
 execv("/usr/games/tetris", "-easy")
} else {
 /* parent code: wait for child to terminate */
 wait(&status)
}

31

exec System Call

 A family of routines, execl, execv, ..., all eventually make a call
to execve.

 execve(program_name, arg1, arg2, ..., environment)

• text and data segments of current process replaced with those of
program_name

• stack reinitialized with parameters
• open file table of current process remains intact
• the last argument can pass environment settings
• as in example, program_name is actually path name of executable

file containing program

 Note: unlike subroutine call, there is no return after this call.
That is, the program calling exec is gone forever!

32

Parent-Child Synchronization

q exit(status) - executed by a child process when it wants
to terminate. Makes status (an integer) available to
parent.

q wait(&status) - suspends execution of process until
some child process terminates
ß status indicates reason for termination
ß return value is process-id of terminated child

q waitpid (pid, &status, options)
ß pid can specify a specific child
ß Options can be to wait or to check and proceed

33

Process Termination
q Besides being able to terminate itself with exit, a process can be

killed by another process using kill:
ß kill(pid, sig) - sends signal sig to process with process-id pid. One

signal is SIGKILL (terminate the target process immediately).

qWhen a process terminates, all the resources it owns are
reclaimed by the system:
ß “process control block” reclaimed

ß its memory is deallocated

ß all open files closed and Open File Table reclaimed.

q Note: a process can kill another process only if:
ß it belongs to the same user

ß super user

34

How shell executes a command

q when you type a command, the shell forks a clone of itself
q the child process makes an exec call, which causes it to stop

executing the shell and start executing your command
q the parent process, still running the shell, waits for the child to

terminate

fork wait

exitexec Required job

Parent shell

Child

35

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania, Fall 2003

Lecture Note 2.3: Threads

36

Introduction to Threads

qMultitasking OS can do more than one thing
concurrently by running more than a single process

qA process can do several things concurrently by
running more than a single thread

qEach thread is a different stream of control that can
execute its instructions independently.

qEx: A program (e.g. Browser) may consist of the
following threads:

ß GUI thread
ß I/O thread
ß Computation thread

37

When are threads useful?

Remote
User

rlogin
Local

Applications

ri

ro li

lo

38

Challenges in single-threaded soln

qThere are basically 4 activities to be scheduled
ß read(li), read(ri), write(lo), write(ro)

q read and write are blocking calls
qSo before issuing any of these calls, the program

needs to check readyness of devices, and interleave
these four operations
ß System calls such as FD_SET and select

qBottomline: single-threaded code can be quite tricky
and complex

39

Solution with Threads

incoming(int ri, lo){
 int d=0;
 char b[MAX];
 int s;
 while (!d) {
 s=read(ri,b,MAX);
 if (s<=0) d=1;
 if (write(lo,b,s)<=0)
 d=1;
 }
}

outgoing(int li, ro){
 int d=0;
 char b[MAX];
 int s;
 while (!d) {
 s=read(li,b,MAX);
 if (s<=0) d=1;
 if (write(ro,b,s)<=0)
 d=1;
 }
}

40

Parallel Algorithms: Eg. mergesort

n/4n/4 n/4n/4

n/4n/4 n/4n/4

n/2n/2

n/2n/2

Sort on
4 parallel threads

Merge on
2 parallel threads

Sort on
2 parallel threads

Merge

Is there a speed-up ?

41

Benefits of Threads: Summary

1. Superior programming model of parallel sequential
activities with a shared store

2. Easier to create and destroy threads than processes.
3. Better CPU utilization (e.g. dispatcher thread continues

to process requests while worker threads wait for I/O to
finish)

4. Guidelines for allocation in multi-processor systems

42

Threads Model

Each thread has its own stack, why?

PCB

Two threads residing in the same user process

43

Processes and Threads
q A UNIX Process is
ß a running program with

ß a bundle of resources (file descriptor table, address
space)

q A thread has its own
ß stack

ß program counter (PC)

ß All the other resources are shared by all threads of that
process. These include:

u open files

u virtual address space

u child processes

44

Thread Creation

q POSIX standard API for multi-threaded programming
q A thread can be created by pthread_create call
q pthread_create (&thread, 0, start, args)

ID of new thread is returned in this variable

used to define thread attributes (eg. Stack size)
0 means use default attributes

Name/address of the routine
where new thread should begin executing

Arguments passed to start

45

Sample Code

typedef struct { int i, o } pair;
rlogind (int ri, ro, li, lo) {
 pthread_t in_th, out_th;
 pair in={ri,lo}, out={li,ro};
 pthread_create(&in_th,0, incoming, &in);
 pthread_create(&out_th,0, outgoing, &out);
}
Note: 2 arguments are packed in a structure

Problem: If main thread terminates, memory for in and out structures
may disappear, and spawned threads may access incorrect memory
locations
If the process containing the main thread terminates, then all
threads are automatically terminated, leaving their jobs unfinished.

46

Ensuring main thread waits…

typedef struct { int i, o } pair;
rlogind (int ri, ro, li, lo) {
 pthread_t in_th, out_th;
 pair in={ri,lo}, out={li,ro};
 pthread_create(&in_th,0, incoming, &in);
 pthread_create(&out_th,0, outgoing, &out);
 pthread_join(in_th,0);
 pthread_join(out_th,0);
}

47

Thread Termination

q A thread can terminate
1. by executing pthread_exit, or

2. By returning from the initial routine (the one specified at
the time of creation)

q Termination of a thread unblocks any other thread that’s
waiting using pthread_join

q Termination of a process terminates all its threads

48

Implementing Threads in User Space

A user-level threads package

49

User-Level Threads

q The run-time support system for threads is entirely in user
space.

q The threads run on top of a run-time system, which is a
collection of procedures that manage threads.

q As far as the OS is concerned, it is a single (threaded)
process.

q Threads can be implemented on an OS that does not
support threads.

q Each process can have its own customized scheduling
algorithm.

50

Implementing Threads in the Kernel

A threads package managed by the kernel

51

Kernel-supported Threads

q No run-time system is needed.
q For each process, the kernel has a table with one entry

per thread, for thread’s registers, state, priority, and other
information.

q All calls that might block a thread are implemented as
system calls, at considerably greater cost than a call to a
run-time system procedure.

qWhen a thread blocks, the kernel can run either another
thread from the same process, or a thread from a different
process.

52

User-level vs. Kernel-supported Threads
q If OS does not support threads, a library package in user space can do

threads management
q What are the trade-offs for user-level vs kernel-level threads?
q Assume:
ß Process A has one thread and Process B has 100 threads.

ß Scheduler allocates the time slices equally

q User-level Thread:
ß A thread in process A runs 100 times as fast as a thread in process B.

ß One blocking system call blocks all threads in process B.

q Kernel-supported Threads:
ß Process B receives 100 times the CPU time than process A.

ß Switching among the thread is more time-consuming because the kernel must do
the switch.

ß Process B could have 100 system calls in operation concurrently.

