
1

1

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture Note 2.6: Message-Based Communication

2

Interprocess communication

q Shared Memory
qMessage Passing
ß Signals



2

3

Shard Memory

Process 1 Process 2 Process 3

Shared memory

4

Shared Memory in Solaris
q Processes can share the same segment of memory directly

when it is mapped into the address space of each sharing
process

q Faster communication
q System calls:
ß int shmget(key_t key, size_t size, int shmflg) :

creates a new region of shared memory or returns an
existing one

ß void *shmat(int shmid, const void *shmaddr, int
shmflg) : attaches a shared memory region to the
virtual address space of the process

ß int shmdt(char *shmaddr):detaches a shared region
q Mutual exclusion must be provided by processes using the

shared memory



3

5

Message Passing

message

6

Design Attributes

q Naming
ß Process id, mailbox

q Buffering
ß Size: zero, bounded, unbounded

ß Place: kernel space, user space

q Send operation
ß Synchronous vs. asynchronous

q Receive operation
ß Blocking vs. non-blocking



4

7

Interprocess Communication

Message Passing
Many possible naming schemes. One is direct naming:
  send(process_id, message)

receive(process_id, buffer)

Example

process P1:          process P2:
  declare x integer    declare y integer
          .                      .
  send(P2, x)          receive(P1, y)
          .                      .
end process          end process

Effect of this communication is

              y := x
              |     \
        local var    local var
        of P2        of P1

8

Buffering

• A buffer, with bounded-buffer synchronization, can be
associated with each pair of communicating processes.

• A “zero-capacity” buffer means processes must “handshake” in
order to communicate.

q A buffer can reside in memory of receiving process or in OS
addres space.

Examples:
q no buffer needed

      P1: send(P2, x)      P2: receive(P1, x)
       receive(P2, y)       send(P1, y)

q buffer needed

      P1: send(P2, x)      P2: send(P1, x)
       receive(P2, y)       receive(P1, y)



5

9

Mailboxes
q Also known as message queues, ports
q The explicit and symmetric naming of processes in direct

naming
q fi Limited modularity since changing the name of a process

requires changes elsewhere, i.e., in definitions of other
processes

mbox
P

R

P or Q call
send(mbox-id, message)

R calls
receive(mbox-id, message)

Q

10

Mailbox Issues

• communication is no longer “point-to-point”; e.g., a
message received by R may be from P or Q

• “fair merge” property --- do not starve Q from queuing
messages by allowing continual queuing of messages
only from P

• natural extension to multiple receivers.  Possible
semantics:
• Multicast to all in the group gets the same message

• The first receiver removes it

• Bulletin board:  each receiver decides


