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Communicating Processes

q Many applications require processes to
communicate and synchronize with each other

q Main problem: operations of different
processes are interleaved in an
unpredictable manner

q Same issues in multiple contexts
ß Multiple threads of same process accessing shared data
ß Kernel processes accessing shared data structures
ß User processes communicating via shared files
ß User processes communicating via shared objects in kernel space
ß High-level programming languages supporting parallelism
ß Database transactions
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Example: Shared variable problem

q Two processes are each reading characters typed at
their respective terminals

qWant to keep a running count of total number of
characters typed on both terminals

q A shared variable V is introduced; each time a
character is typed, a process uses the code:

V := V + 1;
to update the count.

q During testing it is observed that the count recorded in
V is less than the actual number of characters typed.
What happened?
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Analysis of the problem

The programmer failed to realize that the assignment
was not executed as a single indivisible action, but
rather as an arbitrary shuffle of following sequences
of instructions:

 P1. MOVE V, r0 Q1. MOVE V,
r1

 P2. INCR r0 Q2. INCR r1
 P3. MOVE r0, V Q3. MOVE r1,

VThe interleaving P1, Q1, P2, Q2, P3, Q3 increments V only by 1
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Sample Question
interleave () {
  pthread_t th0, th1;
  int count=0;
  pthread_create(&th0,0,test,0);
  pthread_create(&th1,0,test,0);
  pthread_join(th0,0);
  pthread_join(th1,0);
  printf(count);
}
test () {
  for (int j=0; j<MAX; j++) count=count+1;
}

What’s minimum/ maximum value output?
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Sample Question
int count = 0; /* global var */
interleave () {
  pthread_t th0, th1;
  pthread_create(&th0,0,test,0);
  pthread_create(&th1,0,test,0);
  pthread_join(th0,0);
  pthread_join(th1,0);
  printf(count);
}
test () {
 for (int j=0; j<MAX; j++)
   count=count+1;
}

Maximum: 2 MAX, Minimum 2
For Minimum, consider the sequence:

Both threads read count as 0
th0 increments count MAX-1 times
th1 writes 1
th0, in its last iteration, reads count=1
th1 finishes all its iterations
th0 writes 2 to count and ends
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The Producer/Consumer Problem

• from time to time, the producer places an item in the buffer

• the consumer removes an item from the buffer

• careful synchronization required

• the consumer must wait if the buffer empty

• the producer must wait if the buffer full

• typical solution would involve a shared variable count

• also known as the Bounded Buffer problem
• Example: in UNIX shell

 eqn myfile.t   |    troff

producer

process

consumer

process

P

buffer

C
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Push and Pop example

struct stacknode {
   int data;
   struct stacknode *nextptr;
};

typedef struct stacknode STACKNODE;
typedef STACKNODE *STACKNODEPTR;

void push (STACKNODEPTR *topptr, int info)
{
   STACKNODEPTR newptr;
   newptr = malloc (sizeof (STACKNODE));
   newptr->date = info;          /* Push 1 */
   newptr->nextptr = *topptr;    /* Push 2 */
   *topptr = newptr;             /* Push 3 */
}
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Pop

int pop (STACKNODEPTR *topptr)
{
   STACKNODEPTR tempptr;
   int popvalue;
   tempptr = *topptr;             /* Pop 1 */
   popvalue = (*topptr)->data;    /* Pop 2 */
   *topptr = (*topptr)->nextptr;  /* Pop 3 */
   free(tempptr);
   return popvalue;
}

Question: Is it possible to find an interleaved execution
of Push 1, Push 2, …, Pop 3 such that the resulting
data structure becomes inconsistent?
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Issues in Concurrent Programming

qOperations on shared data structures typically correspond to
a sequence of instructions

qWhen two processes/threads are executing concurrently, the
result depends on the precise interleaving of the two
instruction streams (this is called race condition)

q Race conditions could cause bugs which are hard to
reproduce

q Besides race condition, the second issue is synchronization
(one process is waiting for the results computed by another)
ß Can we avoid busy waiting?
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Overview of Solutions

Low-level (for mutual exclusion)
Interrupt disabling
Using read/write instructions
Using powerful instructions (Test-and-set, Compare-and Swap…)

OS-level support (mutual exclusion and synchronization)
Special variables: Semaphores, Mutexes
Message passing primitives (send and receive)

High-level Synchronization Primitives
Monitors (Hoare, Brinch-Hansen)
Synchronized method in Java

Idealized Problems
     Producer-Consumer
     Dining Philosophers
     Readers-Writers
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Mutual Exclusion Problem

qMotivation: Race conditions can lead to undesirable effects

q Solution:
ß Identify a block of instructions involving shared memory access

that should be executed without interference from others
ß This block of code is called critical region/section (e.g., the

entire assignment “V:=V+1” in our first example)
ß Ensure that processes execute respective critical sections in a

mutually exclusive manner

qMutual exclusion is required in multiple contexts where
simultaneous access to shared data needs to enforce
integrity constraints (e.g., airline reservation system)
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Requirements for solutions to Mutual
Exclusion Problem

1. Safety: No two processes should be simultaneously in their
critical regions

2. Generality: No assumptions should be made about speeds
or numbers of CPUs (i.e., it should work in the worst case
scenario)

3. Absence of deadlocks: Should not reach a state where
each process is waiting for the other, and nobody gets to
enter

4. Bounded liveness (or fairness): If a process wants to
enter a critical section then it should eventually get a chance
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Low-level solution: Disable interrupts
process A              process B
   ...                    ...
   disable interrupts     disable interrupts
     CS                     CS
   enable interrupts      enable interrupts

ß Prevents context-switch during execution of CS

ß Recall maskable interrupts in Pentium architecture

ß This is sometimes necessary (to prevent further interrupts
during interrupt handling)

ß Not a good solution for user programs (too powerful and not
flexible)
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Shared Variable Solutions
General Skeleton

Two processes with shared variables
Assumption: Reads and Writes are atomic
Each process P0 and P1 executes

  /* Initialization */
  while (TRUE) {
     /* entry code */
      CS() /* critical section */
     /* exit code */
     Non_CS()/* non-critical section */
  }

No assumption about how often
the critical section is accessed

Wrapper code
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Using mutual exclusion
int count=0, turn=0; /* global vars */
bool flag[1]=false;  /* global array */
interleave () {
  pthread_t th0, th1;
  pthread_create(&th0,0,test,0);
  pthread_create(&th1,0,test,1);
  pthread_join(th0,0);
  pthread_join(th1,0);
  printf(count); /* count is guaranteed to be 2 MAX */
}
test (int i) {
  for (int j=0; j<MAX; j++) {

flag[i]=true; turn=i; /* Entry code of Peterson */
 repeat until (flag[1-i]==false | turn!=i);

count=count+1; /* critical section */
   flag[i]=false; /* exit code of Peterson soln */
      }
}
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Proof of Mutual Exclusion

q To prove: P0 and P1 can never be simultaneously in CS
qObservation: Once P0 sets flag[0], it stays true until P0

leaves the critical section (same for P1)
q Proof by contradiction. Suppose at time t both P0 and P1 are

in CS
q Let t0/t1 be the times of the most recent executions of the

assignments turn = 0 / turn =1 by P0 / P1, resp.
q Suppose t0 < t1
q During the period t0 to t, flag[0] equals TRUE
q During the period from t1 to t, turn equals to 1
q Hence, during the period t1 to t, P1 is blocked from entering

its CS; a contradiction.
Also satisfies bounded liveness (why?)
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1st Attempt for Mutual exclusion

Shared variable: turn :{0,1}
turn==i means process Pi is allowed to enter
Initial value of turn doesn’t matter
Solution for process P0: (P1 is symmetric)
while (TRUE) {
  while (turn != 0);  /* busy waiting */
  CS();
  turn = 1; /* be fair to other */
  Non_CS();
 }

Ensures mutual exclusion, but requires strict alternation
A process cannot enter its CS twice in succession
even if the other process does not need to enter CS
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2nd Attempt
Shared variable: flag[i] : boolean, initially FALSE
Solution for process P0: (P1 is symmetric)
while (TRUE) {
  while (flag[1]); /* wait if P1 is trying */
  flag[0] = TRUE;  /* declare your entry */
  CS();
  flag[0] = FALSE; /* unblock P1 */
  Non_CS();
}

Mutual Exclusion is violated:
P0 tests flag[1] and finds it False
P1 tests flag[0] and finds it False
Both proceed, set their flags to True and enter CS
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3rd Attempt
Shared variable: flag[i] : boolean, initially FALSE
Solution for process P0: (P1 is symmetric)
while (TRUE) {
  flag[0] = TRUE;  /* declare entry first */
  while (flag[1]);  /* wait if P1 is also trying */
  CS();
  flag[0] = FALSE; /* unblock P1 */
  Non_CS();
}

Leads to deadlock:
P0 sets flag[0] to TRUE
P1 sets flag[1] to TRUE
Both enter their while loops and keep waiting
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Peterson’s Solution
Shared variables: flag[i] :boolean; turn :{0,1}
Solution for process P0: (P1 is symmetric)
flag[0] = FALSE;
while (TRUE) {
  flag[0] = TRUE;  /* declare interest */
  turn = 0; /* takes care of race condition */
  repeat until (  /* busy wait */
     flag[1] == FALSE
    | turn != 0);
  CS();
  flag[0] = FALSE; /* unblock P1 */
  Non_CS();
}

P1 is not contending

P1 is contending, but
turn = 1 executed before turn = 0

22

Hardware Supported Solution

q Challenge so far was designing a solution assuming
instruction-set supported only load and store

q If reading and writing can be done in one instruction,
designing solutions is much easier

q A popular instruction: test-and-set
TSL X, L X: register, L : memory loc (bit)

    L’s content are loaded into X, and L is set to 1
q Test-and-set seems simple, but can be used to implement

complex synchronization schemes
q Similarly powerful instructions:
ß SWAP (L1, L2)   : atomically swaps the two locations
ß Compare and swap (Pentium)
ß Load-linked/Store conditional (MIPS)
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 Hardware Instructions

qMIPS -- Load-Linked/Store Conditional (LL/SC)
q Pentium -- Compare and Exchange, Exchange, Fetch

and Add
q SPARC -- Load Store Unsigned Bit (LDSTUB) in v9
q PowerPC --  Load Word and Reserve (lwarx) and

Store Word Conitional (stwcx)

24

Locks

q lock (x) performs
q lock: [ if x = false then x := true
                     else go to lock ]

q unlock (x) performs
q       [x := false ]

q E.g.,
q var x : boolean
parbegin
   P1:  ... lock(x); CS_1; unlock(x) …
   …
   Pn:  ... lock(x); CS_n; unlock(x) …
parend
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 Properties

q  Starvation is possible.
q  Busy waiting.
q  Different locks may be used for different shared

resources.
q  Proper use not enforced.  E.g., forget to lock.
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How to implement locks

q Requires an atomic (uninterruptable at the memory level)
operations like test-and-set or swap.

q atomic function TestAndSet
         (var x: boolean): boolean;
  begin
    TestAndSet := x;
    x := true;
  end

q procedure Lock (var x : boolean);
   while TestAndSet(x) do skip od;

q procedure Unlock (var x: boolean);
   x := false;

q (1) If not supported by hardware, TestAndSet can be
implemented by disabling and unabling interrupts.
(2) Lock can also be implemented using atomic swap(x,y).
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Solution using TSL

Shared variable: lock :{0,1}
lock==1 means some process is in CS
Initially lock is 0
Code for process P0 as well as P1:
while (TRUE) {
  try: TSL X, lock  /* test-and-set lock */
  if (X!=0) goto try; /*retry if lock set*/
  CS();
  lock = 0; /* reset the lock */
  Non_CS();
 }

28
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Avoiding Waiting

q Solutions seen so far teach us:
ß How to ensure exclusive access
ß How to avoid deadlocks

q But, in all cases, if P0 is in CS, and P1 needs CS, then P1 is
busy waiting, checking repeatedly for some condition to hold.
Waste of system resources!

q Suppose we have following system calls for synchronization
ß Sleep: puts the calling thread/process in a blocked/waiting state
ß Wakeup(arg): puts the argument thread/process in ready state
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Sleep/wakeup Solution to
Producer-Consumer Problem

• bounded buffer (of size N)
• producer writes to it, consumer reads from it
• Solution using sleep/wakeup synchronization

int count = 0         /* number of items in buffer */

Producer code:
 while (TRUE) {
    /* produce */
   if (count == N) sleep;
  /* add to buffer */
   count = count + 1;
   if (count == 1)
    wakeup(Consumer);
}

Consumer code:
 while (TRUE) {
   if (count==0) sleep;
  /* remove from buffer */
   count = count -1;
   if (count == N-1)
        wakeup(Producer);
   /* consume */
}
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Problematic Scenario

q Count is initially 0
q Consumer reads the count
q Producer produces the item, inserts it, and increments count

to 1
q Producer executes wakeup, but there is no waiting consumer

(at this point)
q Consumer continues its execution and goes to sleep
q Consumer stays blocked forever unnecessarily
qMain problem: wakeup was lost

Solution: Semaphores keeping counts

32

Dijkstra’s Semaphores

q A semaphore s has a non-negative integer value
q It supports two operations
q up(s)  or V(s) : simply increments the value of s
q down(s) or P(s) : decrements the value of s if s is positive,

else makes the calling process wait
qWhen s is 0, down(s) does not cause busy waiting, rather

puts the process in sleep state
q Internally, there is a queue of sleeping processes
qWhen s is 0, up(s) also wakes up one sleeping process (if

there are any)
q up and down calls are executed as atomic actions
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Mutual Exclusion using Semaphores
Shared variable: a single semaphore s == 1
Solution for any process

while (TRUE) {
  down(s);  /* wait for s to be 1 */
  CS();
  up(s); /* unblock a waiting process */
  Non_CS();
}

q No busy waiting
q Works for an arbitrary number of processes, i
ranges over 0..n
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Potential Implementation

down( semaphore S){
    if (S.value >0) S.value--;
    else { add this process to S.wait_list;

         sleep;
       }

typedef struct {
  int value;
  *pid_t wait_list; /* list of processes

     } semaphore;

To ensure atomicity of up and down, they are included in a
critical section, maybe by disabling interrupts

up( semaphore S){
    if (S.wait_list==null) S.value++;
    else {  remove a process P from S.wait_list;

         wakeup(P);
       }
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The Producer-Consumer Problem

• bounded buffer (of size n)
• one set of processes (producers) write to it
• one set of processes (consumers) read from it

semaphore: full = 0    /* number of full slots */
          empty = n   /* number of empty slots */

             mutex = 1   /* binary semaphore for CS */

Producer code:
 while (TRUE) {
    /* produce */
   down (empty)
   down (mutex)
  /* add to buffer */
   up (mutex)
   up (full)
}

Consumer code:
 while (TRUE) {
   down (full)
   down (mutex)
  /* remove from buffer */
   up (mutex)
   up (empty)
   /* consume */
}Mutual exclusion

For accessing buffer

36

The Producer-Consumer Problem

semaphore: full = 0    /* number of full slots */
         empty = n   /* number of empty slots */

            mutex = 1   /* binary semaphore for CS */

Producer code:
 while (TRUE) {
    /* produce */
   down (empty)
   down (mutex)
  /* add to buffer */
   up (mutex)
   up (full)
}

Consumer code:
 while (TRUE) {
   down (full)
   down (mutex)
  /* remove from buffer */
   up (mutex)
   up (empty)
   /* consume */
}

What happens if we switch the order of down(empty) and down(mutex) ?
What happens if we switch the order of up(mutex) and up(full) ?
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POSIX Semaphore System Calls
q int sem_init(sem_t *sp, unsigned int count, int type): Initialize

semaphore pointed to by sp to count. type can assign several
different types of behaviors to a semaphore

q int sem_destroy(sem_t *sp);  destroys any state related to the
semaphore pointed to by sp.

q int sem_wait(sem_t  *sp); blocks the calling thread until the
semaphore count pointed to by sp is greater than zero, and
then it atomically decrements the count.

q int sem_trywait(sem_t *sp); atomically decrements the
semaphore count pointed to by sp, if the count is greater than
zero; otherwise, it returns an error.

q int sem_post(sem_t *sp); atomically increments the
semaphore count pointed to by sp. If there are any threads
blocked on the semaphore, one will be unblocked.
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Roadmap

Low-level (for mutual exclusion)
Interrupt disabling
Using read/write instructions
Using powerful instructions (Test-and-set, Compare-and Swap…)

OS-level support (mutual exclusion and synchronization)
Special variables: Semaphores, Mutexes
Message passing primitives (send and receive)

High-level Synchronization Primitives
Monitors (Hoare, Brinch-Hansen)
Synchronized method in Java

Idealized Problems
     Producer-Consumer
     Dining Philosophers
     Readers-Writers
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Dining Philosophers

q Philosophers eat/think
q Eating needs 2 forks
q Pick one fork at a time
q How to prevent deadlock

40

The Dining Philosopher Problem
• Five philosopher spend their lives thinking + eating.
• One simple solution is to represent each chopstick by a semaphore.
• Down (i.e., P) before picking it up & up (i.e., V) after using it.
q var chopstick: array[0..4] of semaphores=1

philosopher i
q   repeat

    down( chopstock[i] );
    down( chopstock[i+1 mod 5] );
       ...
       eat
       ...
    up( chopstock[i] );
    up( chopstock[i+1 mod 5] );
       ...
       think
       ...
  forever

• Is deadlock possible?
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Number of possible states

o 5 philosophers
o Local state (LC) for each philosoper
ß thinking, waiting, eating

o Glabal state = (LC 1, LC 2, …, LC5)
ß E.g., (thinking, waiting, waiting, eating, thinking)

ß E.g., (waiting, eating, waiting, eating, waiting)

o So, the number of global states are 3 ** 5 =  243
o Actually,  it is a lot more than this since waiting can

be
ß Waiting for the first fork

ß Waiting for the second fork
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Number of possible behaviors

• Sequence of states
• Initial state:

(thinking,thinking,thinking,thinking,thinking)
• The number of possible behaviors = 5 x 5 x 5 x …
• Deadlock state: (waiting,waiting,waiting,waiting,

waiting)
• Given the state transition model of your

implementation, show that it is not possible to reach
the deadlock state from the initial state.
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The Readers and Writers Problem
Shared data to be accessed in two modes: reading and writing.

– Any number of processes permitted to read at one time
– writes must exclude all other operations.

Intuitively:
Reader:                    | Writer:
 when(no_writers==0) {     |  when(no_readers==0
   no_readers=no_readers+1 |   and no_writers==0) {

     |    no_writers = 1
                           |
   <read>                  |    <write>
                           |
   no_readers=no_readers-1 |    no_writers = 0
   .                       |    .
   .                       |    .

44

A Solution to the R/W problem
Semaphores:

mutex = 1 /*mutual excl. for updating readcount */
wrt = 1   /* mutual excl. for writer */

  int  readcount = 0
Reader:   down(mutex)

        readcount = readcount + 1
        if readcount == 1 then down(wrt)
        up(mutex)
         <read>
        down(mutex)
        readcount = readcount – 1
        if readcount == 0 then up(wrt)
        up(mutex)

Writer: down(wrt);  <write>  up(wrt)

Notes: wrt also used by first/last reader that enters/exits critical section.  Solution
gives priority to readers in that writers can be starved by  a stream of
readers.
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Readers and Writers Problem
qGoal: Design critical section access so that it has
ß Either a single writer

ß Or one or more readers (a reader should not block another reader)

q First step: Let’s use a semaphore, wrt, that protects the critical
section
ß Initially wrt is 1

ß wrt should be zero whenever a reader or writer is inside it

q Code for writer:
down(wrt); write(); up(wrt);

q How to design a reader?
ß Only the first reader should test the semaphore (i.e., execute

down(wrt)
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Readers and Writers Problem
qMore on Reader’s code
ß To find out if you the first one, maintain a counter, readcount, that

keeps the number of readers

q First attempt for reader code:
readcount++;

if (readcount==1)  down(wrt);

read();

readcount--;

qWhat are the problems with above code?
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Readers and Writers Problem
q Corrected reader code:

down(mutex); /* mutex: semaphore protecting updates to readcount

readcount++;

if (readcount==1) down(wrt);

up(mutex);

read();

down(mutex);

readcount--;

if (readcount==0) up(wrt);

up(mutex);

qWhat happens if a new reader shows up if a writer is waiting
while one or more readers are reading?
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Monitors
q Semaphores are powerful, but low-level, and can lead to many

programming errors
q Elegant, high-level, programming-language-based solution is monitors

(proposed by Hoare and by Brinch Hansen)
q A monitor is a shared data object together with a set of operations to

manipulate it.
q To enforce mutual exclusion, at most one process may execute a

method  for the monitor object at any given time.
q All uses of shared variables should be encapsulated by monitors.
q Data type “condition” for synchronization (can be waited or signaled

within a monitor procedure)
q Two operations on “condition” variables:
ß wait: Forces the caller to be delayed, releases the exclusive access.
ß signal: One of the waiting processes is resumed.

q “synchronized” methods in Java are similar
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Traffic Synchronization
q Suppose there is a two-way traffic with a one-way tunnel at

some point
qGoal: a northbound car should wait if the tunnel has cars in the

other direction
qMonitor-based solution:
ß Tunnel is a monitor with two variables, nb and sb, keeping track of

cars in the two direction

ß Southbound car checks nb, and if nb is 0, increments sb and
proceeds (northbound car is symmetric)

ß Methods of a monitor are executed exclusively

ß To avoid busy waiting, use a condition variable, busy

ß A southbound car, if nb is positive, executes wait on busy, and the
last northbound car will wake all of the waiting cars
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Monitor-based Solution

  monitor tunnel {
  int nb=0, sb=0;

    condition busy;
   public:
     northboundArrive() {

if (sb>0) busy.wait;
nb = nb +1;
};

   northboundDepart() {
nb = nb -1;
if (nb==0)

while (busy.queue) busy.signal;
};
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Summary of IPC

q Two key issues:
ß Mutual exclusion while accessing shared data
ß Synchronization (sleep/wake-up) to avoid busy waiting

qWe saw solutions at many levels
ß Low-level (Peterson’s, using test-and-set)
ß System calls (semaphores, message passing)
ß Programming language level (monitors)

q Solutions to classical problems
ß Correct operation in worst-case also
ß As much concurrency as possible
ß Avoid busy-waiting
ß Avoid deadlocks


