
1

1

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture 2.4: Interprocess Communication

2

Communicating Processes

q Many applications require processes to
communicate and synchronize with each other

q Main problem: operations of different
processes are interleaved in an
unpredictable manner

q Same issues in multiple contexts
ß Multiple threads of same process accessing shared data
ß Kernel processes accessing shared data structures
ß User processes communicating via shared files
ß User processes communicating via shared objects in kernel space
ß High-level programming languages supporting parallelism
ß Database transactions

2

3

Example: Shared variable problem

q Two processes are each reading characters typed at
their respective terminals

qWant to keep a running count of total number of
characters typed on both terminals

q A shared variable V is introduced; each time a
character is typed, a process uses the code:

V := V + 1;
to update the count.

q During testing it is observed that the count recorded in
V is less than the actual number of characters typed.
What happened?

4

Analysis of the problem

The programmer failed to realize that the assignment
was not executed as a single indivisible action, but
rather as an arbitrary shuffle of following sequences
of instructions:

 P1. MOVE V, r0 Q1. MOVE V,
r1

 P2. INCR r0 Q2. INCR r1
 P3. MOVE r0, V Q3. MOVE r1,

VThe interleaving P1, Q1, P2, Q2, P3, Q3 increments V only by 1

3

5

Sample Question
interleave () {
 pthread_t th0, th1;
 int count=0;
 pthread_create(&th0,0,test,0);
 pthread_create(&th1,0,test,0);
 pthread_join(th0,0);
 pthread_join(th1,0);
 printf(count);
}
test () {
 for (int j=0; j<MAX; j++) count=count+1;
}

What’s minimum/ maximum value output?

6

Sample Question
int count = 0; /* global var */
interleave () {
 pthread_t th0, th1;
 pthread_create(&th0,0,test,0);
 pthread_create(&th1,0,test,0);
 pthread_join(th0,0);
 pthread_join(th1,0);
 printf(count);
}
test () {
 for (int j=0; j<MAX; j++)
 count=count+1;
}

Maximum: 2 MAX, Minimum 2
For Minimum, consider the sequence:

Both threads read count as 0
th0 increments count MAX-1 times
th1 writes 1
th0, in its last iteration, reads count=1
th1 finishes all its iterations
th0 writes 2 to count and ends

4

7

The Producer/Consumer Problem

• from time to time, the producer places an item in the buffer

• the consumer removes an item from the buffer

• careful synchronization required

• the consumer must wait if the buffer empty

• the producer must wait if the buffer full

• typical solution would involve a shared variable count

• also known as the Bounded Buffer problem
• Example: in UNIX shell

 eqn myfile.t | troff

producer

process

consumer

process

P

buffer

C

8

Push and Pop example

struct stacknode {
 int data;
 struct stacknode *nextptr;
};

typedef struct stacknode STACKNODE;
typedef STACKNODE *STACKNODEPTR;

void push (STACKNODEPTR *topptr, int info)
{
 STACKNODEPTR newptr;
 newptr = malloc (sizeof (STACKNODE));
 newptr->date = info; /* Push 1 */
 newptr->nextptr = *topptr; /* Push 2 */
 topptr = newptr; / Push 3 */
}

5

9

Pop

int pop (STACKNODEPTR *topptr)
{
 STACKNODEPTR tempptr;
 int popvalue;
 tempptr = *topptr; /* Pop 1 */
 popvalue = (*topptr)->data; /* Pop 2 */
 *topptr = (*topptr)->nextptr; /* Pop 3 */
 free(tempptr);
 return popvalue;
}

Question: Is it possible to find an interleaved execution
of Push 1, Push 2, …, Pop 3 such that the resulting
data structure becomes inconsistent?

10

Issues in Concurrent Programming

qOperations on shared data structures typically correspond to
a sequence of instructions

qWhen two processes/threads are executing concurrently, the
result depends on the precise interleaving of the two
instruction streams (this is called race condition)

q Race conditions could cause bugs which are hard to
reproduce

q Besides race condition, the second issue is synchronization
(one process is waiting for the results computed by another)
ß Can we avoid busy waiting?

6

11

Overview of Solutions

Low-level (for mutual exclusion)
Interrupt disabling
Using read/write instructions
Using powerful instructions (Test-and-set, Compare-and Swap…)

OS-level support (mutual exclusion and synchronization)
Special variables: Semaphores, Mutexes
Message passing primitives (send and receive)

High-level Synchronization Primitives
Monitors (Hoare, Brinch-Hansen)
Synchronized method in Java

Idealized Problems
 Producer-Consumer
 Dining Philosophers
 Readers-Writers

12

Mutual Exclusion Problem

qMotivation: Race conditions can lead to undesirable effects

q Solution:
ß Identify a block of instructions involving shared memory access

that should be executed without interference from others
ß This block of code is called critical region/section (e.g., the

entire assignment “V:=V+1” in our first example)
ß Ensure that processes execute respective critical sections in a

mutually exclusive manner

qMutual exclusion is required in multiple contexts where
simultaneous access to shared data needs to enforce
integrity constraints (e.g., airline reservation system)

7

13

Requirements for solutions to Mutual
Exclusion Problem

1. Safety: No two processes should be simultaneously in their
critical regions

2. Generality: No assumptions should be made about speeds
or numbers of CPUs (i.e., it should work in the worst case
scenario)

3. Absence of deadlocks: Should not reach a state where
each process is waiting for the other, and nobody gets to
enter

4. Bounded liveness (or fairness): If a process wants to
enter a critical section then it should eventually get a chance

14

Low-level solution: Disable interrupts
process A process B

 disable interrupts disable interrupts
 CS CS
 enable interrupts enable interrupts

ß Prevents context-switch during execution of CS

ß Recall maskable interrupts in Pentium architecture

ß This is sometimes necessary (to prevent further interrupts
during interrupt handling)

ß Not a good solution for user programs (too powerful and not
flexible)

8

15

Shared Variable Solutions
General Skeleton

Two processes with shared variables
Assumption: Reads and Writes are atomic
Each process P0 and P1 executes

 /* Initialization */
 while (TRUE) {
 /* entry code */
 CS() /* critical section */
 /* exit code */
 Non_CS()/* non-critical section */
 }

No assumption about how often
the critical section is accessed

Wrapper code

16

Using mutual exclusion
int count=0, turn=0; /* global vars */
bool flag[1]=false; /* global array */
interleave () {
 pthread_t th0, th1;
 pthread_create(&th0,0,test,0);
 pthread_create(&th1,0,test,1);
 pthread_join(th0,0);
 pthread_join(th1,0);
 printf(count); /* count is guaranteed to be 2 MAX */
}
test (int i) {
 for (int j=0; j<MAX; j++) {

flag[i]=true; turn=i; /* Entry code of Peterson */
 repeat until (flag[1-i]==false | turn!=i);

count=count+1; /* critical section */
 flag[i]=false; /* exit code of Peterson soln */
 }
}

9

17

Proof of Mutual Exclusion

q To prove: P0 and P1 can never be simultaneously in CS
qObservation: Once P0 sets flag[0], it stays true until P0

leaves the critical section (same for P1)
q Proof by contradiction. Suppose at time t both P0 and P1 are

in CS
q Let t0/t1 be the times of the most recent executions of the

assignments turn = 0 / turn =1 by P0 / P1, resp.
q Suppose t0 < t1
q During the period t0 to t, flag[0] equals TRUE
q During the period from t1 to t, turn equals to 1
q Hence, during the period t1 to t, P1 is blocked from entering

its CS; a contradiction.
Also satisfies bounded liveness (why?)

18

1st Attempt for Mutual exclusion

Shared variable: turn :{0,1}
turn==i means process Pi is allowed to enter
Initial value of turn doesn’t matter
Solution for process P0: (P1 is symmetric)
while (TRUE) {
 while (turn != 0); /* busy waiting */
 CS();
 turn = 1; /* be fair to other */
 Non_CS();
 }

Ensures mutual exclusion, but requires strict alternation
A process cannot enter its CS twice in succession
even if the other process does not need to enter CS

10

19

2nd Attempt
Shared variable: flag[i] : boolean, initially FALSE
Solution for process P0: (P1 is symmetric)
while (TRUE) {
 while (flag[1]); /* wait if P1 is trying */
 flag[0] = TRUE; /* declare your entry */
 CS();
 flag[0] = FALSE; /* unblock P1 */
 Non_CS();
}

Mutual Exclusion is violated:
P0 tests flag[1] and finds it False
P1 tests flag[0] and finds it False
Both proceed, set their flags to True and enter CS

20

3rd Attempt
Shared variable: flag[i] : boolean, initially FALSE
Solution for process P0: (P1 is symmetric)
while (TRUE) {
 flag[0] = TRUE; /* declare entry first */
 while (flag[1]); /* wait if P1 is also trying */
 CS();
 flag[0] = FALSE; /* unblock P1 */
 Non_CS();
}

Leads to deadlock:
P0 sets flag[0] to TRUE
P1 sets flag[1] to TRUE
Both enter their while loops and keep waiting

11

21

Peterson’s Solution
Shared variables: flag[i] :boolean; turn :{0,1}
Solution for process P0: (P1 is symmetric)
flag[0] = FALSE;
while (TRUE) {
 flag[0] = TRUE; /* declare interest */
 turn = 0; /* takes care of race condition */
 repeat until (/* busy wait */
 flag[1] == FALSE
 | turn != 0);
 CS();
 flag[0] = FALSE; /* unblock P1 */
 Non_CS();
}

P1 is not contending

P1 is contending, but
turn = 1 executed before turn = 0

22

Hardware Supported Solution

q Challenge so far was designing a solution assuming
instruction-set supported only load and store

q If reading and writing can be done in one instruction,
designing solutions is much easier

q A popular instruction: test-and-set
TSL X, L X: register, L : memory loc (bit)

 L’s content are loaded into X, and L is set to 1
q Test-and-set seems simple, but can be used to implement

complex synchronization schemes
q Similarly powerful instructions:
ß SWAP (L1, L2) : atomically swaps the two locations
ß Compare and swap (Pentium)
ß Load-linked/Store conditional (MIPS)

12

23

 Hardware Instructions

qMIPS -- Load-Linked/Store Conditional (LL/SC)
q Pentium -- Compare and Exchange, Exchange, Fetch

and Add
q SPARC -- Load Store Unsigned Bit (LDSTUB) in v9
q PowerPC -- Load Word and Reserve (lwarx) and

Store Word Conitional (stwcx)

24

Locks

q lock (x) performs
q lock: [if x = false then x := true
 else go to lock]

q unlock (x) performs
q [x := false]

q E.g.,
q var x : boolean
parbegin
 P1: ... lock(x); CS_1; unlock(x) …
 …
 Pn: ... lock(x); CS_n; unlock(x) …
parend

13

25

 Properties

q Starvation is possible.
q Busy waiting.
q Different locks may be used for different shared

resources.
q Proper use not enforced. E.g., forget to lock.

26

How to implement locks

q Requires an atomic (uninterruptable at the memory level)
operations like test-and-set or swap.

q atomic function TestAndSet
 (var x: boolean): boolean;
 begin
 TestAndSet := x;
 x := true;
 end

q procedure Lock (var x : boolean);
 while TestAndSet(x) do skip od;

q procedure Unlock (var x: boolean);
 x := false;

q (1) If not supported by hardware, TestAndSet can be
implemented by disabling and unabling interrupts.
(2) Lock can also be implemented using atomic swap(x,y).

14

27

Solution using TSL

Shared variable: lock :{0,1}
lock==1 means some process is in CS
Initially lock is 0
Code for process P0 as well as P1:
while (TRUE) {
 try: TSL X, lock /* test-and-set lock */
 if (X!=0) goto try; /*retry if lock set*/
 CS();
 lock = 0; /* reset the lock */
 Non_CS();
 }

28

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture 2.5: Process Synchronization Primitives

15

29

Avoiding Waiting

q Solutions seen so far teach us:
ß How to ensure exclusive access
ß How to avoid deadlocks

q But, in all cases, if P0 is in CS, and P1 needs CS, then P1 is
busy waiting, checking repeatedly for some condition to hold.
Waste of system resources!

q Suppose we have following system calls for synchronization
ß Sleep: puts the calling thread/process in a blocked/waiting state
ß Wakeup(arg): puts the argument thread/process in ready state

30

Sleep/wakeup Solution to
Producer-Consumer Problem

• bounded buffer (of size N)
• producer writes to it, consumer reads from it
• Solution using sleep/wakeup synchronization

int count = 0 /* number of items in buffer */

Producer code:
 while (TRUE) {
 /* produce */
 if (count == N) sleep;
 /* add to buffer */
 count = count + 1;
 if (count == 1)
 wakeup(Consumer);
}

Consumer code:
 while (TRUE) {
 if (count==0) sleep;
 /* remove from buffer */
 count = count -1;
 if (count == N-1)
 wakeup(Producer);
 /* consume */
}

16

31

Problematic Scenario

q Count is initially 0
q Consumer reads the count
q Producer produces the item, inserts it, and increments count

to 1
q Producer executes wakeup, but there is no waiting consumer

(at this point)
q Consumer continues its execution and goes to sleep
q Consumer stays blocked forever unnecessarily
qMain problem: wakeup was lost

Solution: Semaphores keeping counts

32

Dijkstra’s Semaphores

q A semaphore s has a non-negative integer value
q It supports two operations
q up(s) or V(s) : simply increments the value of s
q down(s) or P(s) : decrements the value of s if s is positive,

else makes the calling process wait
qWhen s is 0, down(s) does not cause busy waiting, rather

puts the process in sleep state
q Internally, there is a queue of sleeping processes
qWhen s is 0, up(s) also wakes up one sleeping process (if

there are any)
q up and down calls are executed as atomic actions

17

33

Mutual Exclusion using Semaphores
Shared variable: a single semaphore s == 1
Solution for any process

while (TRUE) {
 down(s); /* wait for s to be 1 */
 CS();
 up(s); /* unblock a waiting process */
 Non_CS();
}

q No busy waiting
q Works for an arbitrary number of processes, i
ranges over 0..n

34

Potential Implementation

down(semaphore S){
 if (S.value >0) S.value--;
 else { add this process to S.wait_list;

 sleep;
 }

typedef struct {
 int value;
 pid_t wait_list; / list of processes

 } semaphore;

To ensure atomicity of up and down, they are included in a
critical section, maybe by disabling interrupts

up(semaphore S){
 if (S.wait_list==null) S.value++;
 else { remove a process P from S.wait_list;

 wakeup(P);
 }

18

35

The Producer-Consumer Problem

• bounded buffer (of size n)
• one set of processes (producers) write to it
• one set of processes (consumers) read from it

semaphore: full = 0 /* number of full slots */
 empty = n /* number of empty slots */

 mutex = 1 /* binary semaphore for CS */

Producer code:
 while (TRUE) {
 /* produce */
 down (empty)
 down (mutex)
 /* add to buffer */
 up (mutex)
 up (full)
}

Consumer code:
 while (TRUE) {
 down (full)
 down (mutex)
 /* remove from buffer */
 up (mutex)
 up (empty)
 /* consume */
}Mutual exclusion

For accessing buffer

36

The Producer-Consumer Problem

semaphore: full = 0 /* number of full slots */
 empty = n /* number of empty slots */

 mutex = 1 /* binary semaphore for CS */

Producer code:
 while (TRUE) {
 /* produce */
 down (empty)
 down (mutex)
 /* add to buffer */
 up (mutex)
 up (full)
}

Consumer code:
 while (TRUE) {
 down (full)
 down (mutex)
 /* remove from buffer */
 up (mutex)
 up (empty)
 /* consume */
}

What happens if we switch the order of down(empty) and down(mutex) ?
What happens if we switch the order of up(mutex) and up(full) ?

19

37

POSIX Semaphore System Calls
q int sem_init(sem_t *sp, unsigned int count, int type): Initialize

semaphore pointed to by sp to count. type can assign several
different types of behaviors to a semaphore

q int sem_destroy(sem_t *sp); destroys any state related to the
semaphore pointed to by sp.

q int sem_wait(sem_t *sp); blocks the calling thread until the
semaphore count pointed to by sp is greater than zero, and
then it atomically decrements the count.

q int sem_trywait(sem_t *sp); atomically decrements the
semaphore count pointed to by sp, if the count is greater than
zero; otherwise, it returns an error.

q int sem_post(sem_t *sp); atomically increments the
semaphore count pointed to by sp. If there are any threads
blocked on the semaphore, one will be unblocked.

38

Roadmap

Low-level (for mutual exclusion)
Interrupt disabling
Using read/write instructions
Using powerful instructions (Test-and-set, Compare-and Swap…)

OS-level support (mutual exclusion and synchronization)
Special variables: Semaphores, Mutexes
Message passing primitives (send and receive)

High-level Synchronization Primitives
Monitors (Hoare, Brinch-Hansen)
Synchronized method in Java

Idealized Problems
 Producer-Consumer
 Dining Philosophers
 Readers-Writers

20

39

Dining Philosophers

q Philosophers eat/think
q Eating needs 2 forks
q Pick one fork at a time
q How to prevent deadlock

40

The Dining Philosopher Problem
• Five philosopher spend their lives thinking + eating.
• One simple solution is to represent each chopstick by a semaphore.
• Down (i.e., P) before picking it up & up (i.e., V) after using it.
q var chopstick: array[0..4] of semaphores=1

philosopher i
q repeat

 down(chopstock[i]);
 down(chopstock[i+1 mod 5]);
 ...
 eat
 ...
 up(chopstock[i]);
 up(chopstock[i+1 mod 5]);
 ...
 think
 ...
 forever

• Is deadlock possible?

21

41

Number of possible states

o 5 philosophers
o Local state (LC) for each philosoper
ß thinking, waiting, eating

o Glabal state = (LC 1, LC 2, …, LC5)
ß E.g., (thinking, waiting, waiting, eating, thinking)

ß E.g., (waiting, eating, waiting, eating, waiting)

o So, the number of global states are 3 ** 5 = 243
o Actually, it is a lot more than this since waiting can

be
ß Waiting for the first fork

ß Waiting for the second fork

42

Number of possible behaviors

• Sequence of states
• Initial state:

(thinking,thinking,thinking,thinking,thinking)
• The number of possible behaviors = 5 x 5 x 5 x …
• Deadlock state: (waiting,waiting,waiting,waiting,

waiting)
• Given the state transition model of your

implementation, show that it is not possible to reach
the deadlock state from the initial state.

22

43

The Readers and Writers Problem
Shared data to be accessed in two modes: reading and writing.

– Any number of processes permitted to read at one time
– writes must exclude all other operations.

Intuitively:
Reader: | Writer:
 when(no_writers==0) { | when(no_readers==0
 no_readers=no_readers+1 | and no_writers==0) {

 | no_writers = 1
 |
 <read> | <write>
 |
 no_readers=no_readers-1 | no_writers = 0
 . | .
 . | .

44

A Solution to the R/W problem
Semaphores:

mutex = 1 /*mutual excl. for updating readcount */
wrt = 1 /* mutual excl. for writer */

 int readcount = 0
Reader: down(mutex)

 readcount = readcount + 1
 if readcount == 1 then down(wrt)
 up(mutex)
 <read>
 down(mutex)
 readcount = readcount – 1
 if readcount == 0 then up(wrt)
 up(mutex)

Writer: down(wrt); <write> up(wrt)

Notes: wrt also used by first/last reader that enters/exits critical section. Solution
gives priority to readers in that writers can be starved by a stream of
readers.

23

45

Readers and Writers Problem
qGoal: Design critical section access so that it has
ß Either a single writer

ß Or one or more readers (a reader should not block another reader)

q First step: Let’s use a semaphore, wrt, that protects the critical
section
ß Initially wrt is 1

ß wrt should be zero whenever a reader or writer is inside it

q Code for writer:
down(wrt); write(); up(wrt);

q How to design a reader?
ß Only the first reader should test the semaphore (i.e., execute

down(wrt)

46

Readers and Writers Problem
qMore on Reader’s code
ß To find out if you the first one, maintain a counter, readcount, that

keeps the number of readers

q First attempt for reader code:
readcount++;

if (readcount==1) down(wrt);

read();

readcount--;

qWhat are the problems with above code?

24

47

Readers and Writers Problem
q Corrected reader code:

down(mutex); /* mutex: semaphore protecting updates to readcount

readcount++;

if (readcount==1) down(wrt);

up(mutex);

read();

down(mutex);

readcount--;

if (readcount==0) up(wrt);

up(mutex);

qWhat happens if a new reader shows up if a writer is waiting
while one or more readers are reading?

48

Monitors
q Semaphores are powerful, but low-level, and can lead to many

programming errors
q Elegant, high-level, programming-language-based solution is monitors

(proposed by Hoare and by Brinch Hansen)
q A monitor is a shared data object together with a set of operations to

manipulate it.
q To enforce mutual exclusion, at most one process may execute a

method for the monitor object at any given time.
q All uses of shared variables should be encapsulated by monitors.
q Data type “condition” for synchronization (can be waited or signaled

within a monitor procedure)
q Two operations on “condition” variables:
ß wait: Forces the caller to be delayed, releases the exclusive access.
ß signal: One of the waiting processes is resumed.

q “synchronized” methods in Java are similar

25

49

Traffic Synchronization
q Suppose there is a two-way traffic with a one-way tunnel at

some point
qGoal: a northbound car should wait if the tunnel has cars in the

other direction
qMonitor-based solution:
ß Tunnel is a monitor with two variables, nb and sb, keeping track of

cars in the two direction

ß Southbound car checks nb, and if nb is 0, increments sb and
proceeds (northbound car is symmetric)

ß Methods of a monitor are executed exclusively

ß To avoid busy waiting, use a condition variable, busy

ß A southbound car, if nb is positive, executes wait on busy, and the
last northbound car will wake all of the waiting cars

50

Monitor-based Solution

 monitor tunnel {
 int nb=0, sb=0;

 condition busy;
 public:
 northboundArrive() {

if (sb>0) busy.wait;
nb = nb +1;
};

 northboundDepart() {
nb = nb -1;
if (nb==0)

while (busy.queue) busy.signal;
};

26

51

Summary of IPC

q Two key issues:
ß Mutual exclusion while accessing shared data
ß Synchronization (sleep/wake-up) to avoid busy waiting

qWe saw solutions at many levels
ß Low-level (Peterson’s, using test-and-set)
ß System calls (semaphores, message passing)
ß Programming language level (monitors)

q Solutions to classical problems
ß Correct operation in worst-case also
ß As much concurrency as possible
ß Avoid busy-waiting
ß Avoid deadlocks

