
1

1

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture Note: Distributed Systems

2

Introduction to Distributed Systems

 Why do we develop distributed systems?
 availability of powerful yet cheap microprocessors (PCs,

workstations), continuing advances in communication technology,

 What is a distributed system?
 A distributed system is a collection of independent computers that

appear to the users of the system as a single system.

 Examples:
 Network of workstations

 Distributed manufacturing system (e.g., automated assembly line)

 Network of branch office computers

3

Distributed Systems

Comparison of three kinds of multiple CPU systems

4

Advantages of Distributed Systems
over Centralized Systems

• Economics: a collection of microprocessors offer a better
price/performance than mainframes. Low price/performance ratio: cost
effective way to increase computing power.

• Speed: a distributed system may have more total computing power
than a mainframe. Ex. 10,000 CPU chips, each running at 50 MIPS.
Not possible to build 500,000 MIPS single processor since it would
require 0.002 nsec instruction cycle. Enhanced performance through
load distributing.

• Inherent distribution: Some applications are inherently distributed. Ex.
a supermarket chain.

• Reliability: If one machine crashes, the system as a whole can still
survive. Higher availability and improved reliability.

• Incremental growth: Computing power can be added in small
increments. Modular expandability

• Another deriving force: the existence of large number of personal
computers, the need for people to collaborate and share information.

2

5

Advantages of Distributed Systems
over Independent PCs

 Data sharing: allow many users to access to a
common data base

 Resource Sharing: expensive peripherals like
color printers

 Communication: enhance human-to-human
communication, e.g., email, chat

 Flexibility: spread the workload over the
available machines

6

Disadvantages of Distributed Systems

 Software: difficult to develop software for
distributed systems

 Network: saturation, lossy transmissions

 Security: easy access also applies to secrete
data

7

Software Concepts

• Software more important for users
• Two types:

1. Network Operating Systems

2. (True) Distributed Systems

8

Network Operating Systems

• loosely-coupled software on loosely-coupled hardware

• A network of workstations connected by LAN

• each machine has a high degree of autonomy
o rlogin machine

o rcp machine1:file1 machine2:file2

• Files servers: client and server model

• Clients mount directories on file servers

• Best known network OS:
o Sun’s NFS (network file servers) for shared file systems (Fig.

9-11)

• a few system-wide requirements: format and meaning
of all the messages exchanged

3

9

NFS (Network File System)

 NFS Architecture
 Server exports directories

 Clients mount exported directories

 NSF Protocols
 For handling mounting

 For read/write: no open/close, stateless

 NSF Implementation

10

(True) Distributed Systems

 tightly-coupled software on loosely-coupled hardware

 provide a single-system image or a virtual uniprocessor

 a single, global interprocess communication mechanism,
process management, file system; the same system call
interface everywhere

 Ideal definition:
“ A distributed system runs on a collection of computers that do

not have shared memory, yet looks like a single computer to its
users.”

11

Design Issues of Distributed Systems

• Transparency
• Flexibility
• Reliability
• Performance
• Scalability

12

1. Transparency

• How to achieve the single-system image, i.e., how to
make a collection of computers appear as a single
computer.

• Hiding all the distribution from the users as well as
the application programs can be achieved at two
levels:
1) hide the distribution from users

2) at a lower level, make the system look transparent to
programs.

1) and 2) requires uniform interfaces such as access to
files, communication.

4

13

2. Flexibility

• Make it easier to change
• Monolithic Kernel: systems calls are trapped and

executed by the kernel. All system calls are served
by the kernel, e.g., UNIX.

• Microkernel: provides minimal services.
• IPC

• some memory management

• some low-level process management and scheduling

• low-level i/o (E.g., Mach can support multiple file
systems, multiple system interfaces.)

14

3. Reliability

• Distributed system should be more reliable than
single system. Example: 3 machines with .95
probability of being up. 1-.05**3 probability of being
up.
– Availability: fraction of time the system is usable.

Redundancy improves it.

– Need to maintain consistency

– Need to be secure

– Fault tolerance: need to mask failures, recover from
errors.

15

4. Performance

• Without gain on this, why bother with distributed
systems.

• Performance loss due to communication delays:
– fine-grain parallelism: high degree of interaction

– coarse-grain parallelism

• Performance loss due to making the system fault
tolerant.

16

5. Scalability

• Systems grow with time or become obsolete.
• Techniques that require resources linearly in terms of

the size of the system are not scalable. (e.g.,
broadcast based query won't work for large
distributed systems.)

• Examples of bottlenecks
o Centralized components: a single mail server

o Centralized tables: a single URL address book

o Centralized algorithms: routing based on complete information

5

17

Distributed Coordination

 Communication between processes in a distributed system can have
unpredictable delays, processes can fail, messages may be lost

 Synchronization in distributed systems is harder than in centralized
systems because the need for distributed algorithms.

 Properties of distributed algorithms:
1 The relevant information is scattered among multiple machines.

2 Processes make decisions based only on locally available information.

3 A single point of failure in the system should be avoided.

4 No common clock or other precise global time source exists.

 Challenge: How to design schemes so that multiple systems can
coordinate/synchronize to solve problems efficiently?

18

Why need to synchronize clocks?

2144

21452142 2143 2144

2145 2146 2147

foo.o created

foo.c modified

Computer for
compiling

Computer for
editing

Local clock time

Local clock time

19

Logical and physical clocks

 How a computer timer works?
 A counter register and a holding register.

 The counter is decremented by a quartz crystals oscillator.
When it reaches zero, an interrupted is generated and the counter is
reloaded from the holding register.

 E.g, interrupt 60 times per second.

 clock skew problem
 logical clocks -- to provide consistent event ordering
 physical clocks -- clocks whose values must not deviate from

the real time by more than a certain amount.

20

Event Ordering
 Since there is no common memory or clock, it is sometimes impossible

to say which of two events occurred first.
 The happened-before relation is a partial ordering of events in

distributed systems such that
1 If A and B are events in the same process, and A was executed before B,

then A ⇒ B.

2 If A is the event of sending a message by one process and B is the event of
receiving that by another process, then A ⇒ B.

3 If A ⇒ B and B ⇒ C, then A ⇒ C.

 If two events A and B are not related by the ⇒ relation, then they are
executed concurrently (no causal relationship)

 To obtain a global ordering of all the events, each event can be time
stamped satisfying the requirement: for every pair of events A and B, if
A ⇒ B then the time stamp of A is less than the time stamp of B. (Note
that the converse need not be true.)

6

21

Example of Event Ordering

22

Global ordering

 How do we enforce the global ordering requirement
in a distributed environment (without a common
clock)?
1 For each process Pi , a logical clock LCi assign a unique

value to every event in that process.

2 If process Pi receives a message (event B) with time
stamp t and LCi(B) < t, then advance its clock so that
LCi(B) = t+1.

3 Use processor ids to break ties to create a total
ordering.

23

Example of Global Timestamps

(1,0) (1,1)

(2,1)

(3,1)

(4,1)

(2,0)

(5,0)

(6,0)

(7,0)

(5,1)

(6,1)

(7,1)

(1,2)

(2,2)

(4,2)

24

Example: Lamport’s Algorithm

 Three processes, each with its own clock. The
clocks run at different rates.

 Lamport’s Algorithm corrects the clock.

 Note: ts(A) < ts(B) does not imply A happened before B.

7

25

Physical clock synchronization algorithms

 Maximum drift rate
 One can determine how often they should be

synchronized

Not all clock’s tick precisely at the current rate.

26

Physical clock synchronization algorithms

 Cristian's algorithm
 need to change time gradually

 need to consider msg delays, subtract (T1 - T0 - I)/2

 Getting the current time from a time server

27

Physical clock synchronization algorithms

 The Berkeley algorithm
 Averaging algorithm

 The time daemon asks all the other machines for their clock values.

 The machines answer.

 The Time daemon tells everyone how to adjust their clock.

28

Physical clock synchronization algorithms

 Multiple external time sources
 UTC (Universal Coordinated Time)
 NIST broadcasts WWV signal at every UTC sec from CO.

 Computing UTC from multiple time sources, each of which gives
a time interval in which UTC falls.

8

29

Unreliable communication

30

Reaching Agreement

 How can processes reach consensus in a distributed system
 Messages can be delayed
 Messages can be lost
 Processes can fail (or even malignant)
 Messages can be corrupted

 Each process starts with a bit (0 or 1) and Non-faulty
processes should eventually agree on common value
 No solution is possible
 Note: solutions such as computing majority do not work. Why?

 Two generals problem (unreliable communications)
 Byzantine generals problem (faulty processes)

31

Two generals’ problem

 Two generals on opposite sides of a valley have to agree on whether to
attack or not (at a pre-agreed time)

 Goal: Each must be sure that the other one has made the same
decision

 Communicate by sending messenger who may get captured
 Can never be sure whether the last messenger reached the other side

(every message needs an ack), so no perfect solution
 Impossibility of consensus is as fundamental as undecidability of the

halting problem !
 In practice: probability of losing a repeatedly sent message decreases

(so agreement with high probability possible)

32

Impossibility Proof
 Theorem. If any message can be lost, it is not possible for two

processes to agree on non-trivial outcome using only messages
for communication.

 Proof. Suppose it is possible. Let m[1],…,m[k] be a finite
sequence of messages that allowed them to decide. Furthermore,
let’s assume that it is a minimal sequence, that is, it has the least
number of messages among all such sequences. However, since
any message can be lost, the last message m[k] could have been
lost. So, the sender of m[k] must be able to decide without
having to send it (since the sender knows that it may not be
delivered) and the receiver of m[k] must be able to decide without
receiving it. That is, m[k] is not necessary for reaching
agreement. That is, m[1],…,m[k-1] should have been enough for
the agreement. This is a contradiction to that the sequence
m[1],…,m[k] was minimum.

9

33

Mutual Exclusion and Synchronization

 To solve synchronization problems in a distributed
system, we need to provide distributed semaphores.

 Schemes for implementation :
1 A Centralized Algorithm

2 A Distributed Algorithm

3 A Token Ring Algorithm

34

A Centralized Algorithm
 Use a coordinator which enforces mutual exclusion.
 Two operations: request and release.

 Process 1 asks the coordinator for permission to enter a critical region. Permission
is granted.

 Process 2 then asks permission to enter the same critical region. The coordinator
des not reply.

 When process 1 exists the critical region, it tells the coordinator, which then replies
to 2.

35

A Centralized Algorithm (continued)
 Coordinator

 loop
 receive(msg);
 case msg of
 REQUEST: if nobody in CS
 then reply GRANTED
 else queue the REQ;
 reply DENIED
 RELEASE: if queue not empty then
 remove 1st on the queue
 reply GRANTED
 end case
 end loop

 Client
 send(REQUEST);
 receive(msg);
 if msg != GRANTED then receive(msg);
 enter CS;

 send(RELEASE)

36

A Centralized Algorithm

 Algorithm properties
 guarantees mutual exclusion

 fair (First Come First Served)

 a single point of failure (Coordinator)

 if no explicit DENIED message, then cannot distinguish
permission denied from a dead coordinator

10

37

A Decentralized Algorithm
Decision making is distributed across the entire system
a) Two processes want to enter the same critical region at the

same moment.
b) Both send request messages to all processes
c) All events are time-stamped by the global ordering

algorithm
d) The process whose request event has smaller time-stamp

wins
e) Every process must respond to request messages

38

A Decentralized Algorithm
 Decision making is distributed across the entire

system
a) Two processes want to enter the same critical region

at the same moment.
b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2

can now enter the critical region.

39

Decentralized Algorithm (continued)

1 When a process wants to enter its critical section, it
generates a new time stamp, TS, and sends the msg
request(p,TS) to all other processes in the system (recall
algorithm for global ordering of events)

2 A process, which receives reply msgs from all other
processes, can enter its critical section.

3 When a process receives a request message,
 (A) if it is in CS, defers its answer;

 (B) if it does not want to enter its CS, reply immediately;

 (C) if it also wants to enter its CS, it maintains a queue of
requests (including its own request) and sends a reply to the
request with the minimum time-stamp

40

Correctness

Theorem. The Algorithm achieves mutual exclusion.
Proof:
 By contradiction.

Suppose two processes Pi and Pj are in CS concurrently.
WLOG, assume that Pi’s request has earlier timestamp than
Pj. That is, Pi received Pj's request after Pi made its own
request.
Thus, Pj can concurrently execute the CS with Pi only if Pi
returns a REPLY to Pj before Pi exits the CS.

 But, this is impossible since Pj has a later timestamp than Pi.

11

41

Properties

1 mutual exclusion is guaranteed
2 deadlock free
3 no starvation, assuming total ordering on msgs
4 2(N-1) msgs: (N-1) request and (N-1) reply msgs
5 n points of failure (i.e., each process becomes a point of failure) can

use explicit ack and timeout to detect failed processes
6 each process needs to maintain group membership; (i.e. IDs of all

active processes) non-trivial for large and/or dynamically changing
memberships

7 n bottlenecks since all processes involved in all decisions
8 may use majority votes to improve the performance

42

A Token Passing Algorithm

 A token is circulated in a logical ring.
 A process enters its CS if it has the token.
 Issues:

– If the token is lost, it needs to be regenerated.

– Detection of the lost token is difficult since there is no
bound on how long a process should wait for the token.

– If a process can fail, it needs to be detected and then by-
passed.

– When nobody wants to enter, processes keep on
exchanging messages to circulate the token

43

Comparison

 A comparison of three mutual exclusion algorithms

44

Leader Election

 In many distributed applications, particularly the
centralized solutions, some process needs to be
declared the central coordinator

 Electing the leader also may be necessary when the
central coordinator crashes

 Election algorithms allow processes to elect a unique
leader in a decentralized manner

12

45

Bully Algorithm

Goal: Figure out the active process with max ID
1. Suppose a process P detects a failure of current leader

 P sends an “election” message to all processes with higher ID

 If nobody responds within interval T, sends “coordinator”
message to all processes with lower IDs

 If someone responds with “OK” message, P waits for a
“coordinator” message (if not received, restart the algorithm)

2. If P receives a message “election” from a process with lower
ID, responds with “OK” message, and starts its own leader
election algorithm (as in step 1)

3. If P receives “coordinator” message, record the ID of leader

46

Bully Algorithm
(a) Process 4 holds an election. (b) Processes 5 and 6

respond, telling 4 to stop. (c) Now 5 and 6 each hold an
election. (d) Process 6 tells 5 to stop. (e) Process 6 wins
and tells everyone.

47

Leader Election in a Ring

ID1

ID2

ID3ID4

ID5

 Each process has unique ID; can
receive messages from left, and send
messages to the right

 Goal: agree on who is the leader
(initially everyone knows only its own ID)

 Idea:
 initially send your own ID to the right.

When you receive an ID from left, if it is
higher than what you have seen so far,
send it to right.

 If your own ID is received from left, you
have the highest ID and are the leader

48

Distributed Deadlock

 A deadlock occurs when a set of processes in a
system are blocked waiting for requests that can
never be satisfied.

 Approaches:
 Detection (& Recovery)

 Prevention

 Avoidance - not practical in distributed setting

 Difficulties:
 resource allocation information is distributed

 gathering information requires messages. Since
messages have non-zero delays, it is difficult to have an
accurate and current view of resource allocation.

13

49

Deadlock Detection Recall

 Suppose following information is available:
 For each process, the resources it currently holds

 For each process, the request that it is waiting for

 Then, one can check if the current system state is
deadlocked, or not

 In single-processor systems, OS can maintain this
information, and periodically execute deadlock
detection algorithm

 What to do if a deadlock is detected?
 Kill a process involved in the deadlocked set

 Inform the users, etc.

50

Wait For Graph (WFG)

 Definition. A resource graph is a bipartite directed graph (N,E),
where
– N = P U R,

– P = {p1, ... pn} , R = {r1 , ... rn}

– (r1 , ... rn) available unit vector,

– An edge (pi , rj) a request edge, and

– An edge (ri , pj) an allocation edge.

 Definition: Wait For Graph (WFG) is a directed graph, where
nodes are processes and a directed edge from P → Q
represents that P is blocked waiting for Q to release a resource.

 So, there is an edge from process P to process Q if P needs a
resource currently held by Q.

51

Definitions

 Def: A node Y is reachable from a node X, X ⇒ Y, if
there is a path (i.e., a sequence of directed edges)
from node X to node Y.

 Def: A cycle in a graph is a path that starts and ends
on the same node. If a set C of nodes is a cycle, then
for all X in C : X ⇒ X

 Def: A knot K in a graph is a non-empty set of nodes
such that, for each X in K, all nodes in K and only the
nodes in K are reachable from X. That is,
– (for every X for every Y in K, X ⇒ Y) and
– (for every X in K, there exists Z s.t. X ⇒ Z implies Z is

in K)

52

Sufficient Conditions for Deadlock

 Resource Model
1 reusable resource
2 exclusive access

 Three Request Models
1 Single-unit request model:

• a cycle in WFG
2 AND request model : simultaneous requests

• blocked until all of them granted
• a cycle in WFG
• a process can be in more than one cycle

3 OR request model : any one, e.g., reading a replicated data object
• a cycle in WFG not a sufficient condition (but necessary)
• a knot in WFG is a sufficient condition (but not necessary)

14

53

Deadlock Detection Algorithms
• Centralized Deadlock Detection

• false deadlock

(a) Initial resource graph for machine 0.

(b) Initial resource graph for machine 1.

(c) The coordinator’s view of the world.

(d) The situation after the delayed message.
54

Wait-for Graph for Detection

 Assume only one instance of each resource
 Nodes are processes

 Recall Resource Allocation Graph: it had nodes for resources as
well as processes (basically same idea)

 Edges represent waiting: If P is waiting to acquire a resource
that is currently held by Q, then there is an edge from P to Q

 A deadlock exists if and only if the global wait-for graph has a
cycle

 Each process maintains a local wait-for graph based on the
information it has

 Global wait-for graph can be obtained by the union of the
edges in all the local copies

55

Distributed Cycle Detection

 Each site looks for potential cycles
 Suppose site S1 has processes P1, P2, P3, P4.
 S1 knows that P7 (on a different site) is waiting for P1, P1 is

waiting for P4, P4 is waiting for P2, and P2 is waiting for P9
(on a different site S3)

 This can be a potential cycle
 S1 sends a message to S3 giving the chain P7, P1, P4, P2,

P9
 Site S3 knows the local dependencies, and can extend the

chain, and pass it on to a different site
 Eventually, some site will detect a deadlock, or will stop

forwarding the chain
56

Deadlock Detection Algorithms

• Distributed Deadlock Detection: An Edge-Chasing
Algorithm

Chandy, Misra, and Haas distributed deadlock detection algorithm.

15

57

Deadlock Prevention

 Hierarchical ordering of resources avoids cycles
 Time-stamp ordering approach:

Prevent the circular waiting condition by preempting resources if
necessary.
– The basic idea is to assign a unique priority to each process and use

these priorities to decide whether process P should wait for process Q.

– Let P wait for Q if P has a higher priority than Q; Otherwise, P is
rolled back.

– This prevents deadlocks since for every edge (P ,Q) in the wait-for

graph, P has a higher priority than Q.

Thus, a cycle cannot exist.

58

Two commonly used schemes
 Wait-Die (WD): Non-preemptive

When P requests a resource currently held by Q , P is
allowed to wait only if it is older than Q. Otherwise, P is
rolled back (i.e., dies).

 Wound-Wait (WW): Preemptive
When P requests a resource currently held by Q , P is
allowed to wait only if P is younger than Q. Otherwise, Q is
rolled back (releasing its resource). That is, P wounds Q.

 Note:
 Both favor old jobs (1) to avoid starvation, and (2) since older

jobs might have done more work, expensive to roll back.
 Unnecessary rollbacks may occur.

59

Sample Scenario

 Processes P, Q, R are executing at 3 distributed sites
 Suppose the time-stamps assigned to them (at the

time of their creation) are 5, 10, 20, resp
 Q acquires a shared resource
 Later, R requests the same resource

 WD would roll back R

 WW would make R wait

 Later, P requests the same resource
 WD would make P wait

 WW would roll back Q, and give the resource to P

60

WD versus WW

16

61

Example

 Let P1 (5), P2 (10), P3 (15), and P2 has a resource.

Wait-Die (WD):

 (1) P1 requests the resource held by P2. P1 waits.
 (2) P3 requests the resource held by P2. P3 rolls back.

Wound-Wait (WW):

 (1) P1 requests the resource held by P2. P1 gets the resource
and P2 is rolled back.

 (2) P3 requests the resource held by P2. P3 waits.

62

Differences between WD and WW

 In WD, older waits for younger to release resources.

 In WW, older never waits for younger.

 WD has more roll back than WW.
In WD, P3 requests and dies because P2 is older in the above
example. If P3 restarts and again asks for the same resource, it rolls
back again if P2 is still using the resource.
However, in WW, P2 is rolled back by P1. If it requests the
resource again, it waits for P1 to release it.

 When there are more than one process waiting for a resource held
by P, which process should be given the resource when P finishes?
In WD, the youngest among waiting ones. In WW, the oldest.

63

Layers of distributed systems

 Computer networks
 Local area networks such as Ethernet

 Wide area networks such as Internet

 Network services
 Connection-oriented services

 Connectionless services

 Datagrams

 Network protocols
 Internet Protocol (IP)

 Transmission Control Protocol (TCP)

 Middleware

64

Middleware for Distributed Systems

 Middleware is a layer of software between applications and
OS that gives a uniform interface

 Central to developing distributed applications
 Different types

 Document based (world-wide web)

 File-system based (e.g., NFS)

 Shared object-based (CORBA)

 Coordination based (Linda, Publish-subscribe, Jini)

17

65

Summary

 Distributed coordination problems
 Event ordering

 Agreement

 Mutual exclusion

 Leader election

 Deadlock detection

 Middleware for distributed application support

 Starting next week: Chapter 9 (Security)

