
1

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture Notes: Multiprocessors (updated version)

2

Announcement

q Colloq by Dennis Ritchie
ß “UNIX and Beyond: Themes of Operating Systems

Research at Bell Labs,"

ß 4:30 pm, Wednesday, November 12

ß Wu-Chen Auditorium

q Written Assignment will be post later today

3

Systems with Multiple CPUs

q Collection of independent CPUs (or computers) that
appears to the users/applications as a single system

q Technology trends
ß Powerful, yet cheap, microprocessors

ß Advances in communications

ß Physical limits on computing power of a single CPU

q Examples
ß Network of workstations

ß Servers with multiple processors

ß Network of computers of a company

ß Microcontrollers inside a car

4

Advantages
q Data sharing: allows many users to share a common data

base
q Resource sharing: expensive devices such as a color

printer
q Parallelism and speed-up: multiprocessor system can have

more computing power than a mainframe
q Better price/performance ratio than mainframes
q Reliability: Fault-tolerance can be provided against crashes

of individual machines
q Flexibility: spread the workload over available machines
q Modular expandability: Computing power can be added in

small increments (upgrading CPUs like memory)

5

Design Issues
q Transparency: How to achieve a single-system image

ß How to hide distribution of memory from applications?

ß How to maintain consistency of data?

q Performance
ß How to exploit parallelism?

ß How to reduce communication delays?

q Scalability: As more components (say, processors) are
added, performance should not degrade
ß Centralized schemes (e.g. broadcast messages) don’t work

q Security

6

Classification

q Multiprocessors
ß Multiple CPUs with shared memory
ß Memory access delays about 10 – 50 nsec

q Multicomputers
ß Multiple computers, each with own CPU and memory, connected by a high-

speed interconnect
ß Tightly coupled with delays in micro-seconds

q Distributed Systems
ß Loosely coupled systems connected over Local Area Network (LAN), or even

long-haul networks such as Internet
ß Delays can be seconds, and unpredictable

7

Mutiprocessors

8

Multiprocessor Systems
q Multiple CPUs with a shared memory
q From an application’s perspective, difference with single-

processor system need not be visible
ß Virtual memory where pages may reside in memories

associated with other CPUs

ß Applications can exploit parallelism for speed-up

q Topics to cover
1. Multiprocessor architectures (Section 8.1.1)

2. Cache coherence

3. OS organization (Section 8.1.2)

4. Synchronization (Section 8.1.3)

5. Scheduling (Section 8.1.4)

9

Multiprocessor Architecture

q UMA (Uniform Memory Access)
ß Time to access each memory word is the same
ß Bus-based UMA
ß CPUs connected to memory modules through switches

q NUMA (Non-uniform memory access)
ß Memory distributed (partitioned among processors)
ß Different access times for local and remote accesses

10

Bus-based UMA
q All CPUs and memory module connected over a shared

bus
q To reduce traffic, each CPU also has a cache
q Key design issue: how to maintain coherency of data that

appears in multiple places?
q Each CPU can have a local memory module also that is

not shared with others
q Compilers can be designed to exploit the memory structure
q Typically, such an architecture can support 16 or 32 CPUs

as a common bus is a bottleneck (memory access not
parallelized)

11

Switched UMA
q Goal: To reduce traffic on bus, provide multiple

connections between CPUs and memory units so that
many accesses can be concurrent

q Crossbar Switch: Grid with horizontal lines from CPUs and
vertical lines from memory modules

q Crossbar at (i,j) can connect i-th CPU with j-th memory
module

q As long as different processors are accessing different
modules, all requests can be in parallel

q Non-blocking: waiting caused only by contention for
memory, but not for bus

q Disadvantage: Too many connections (quadratic)
q Many other networks: omega, counting, …

12

Crossbar Switch

13

Cache Coherence
q Many processors can have locally cached copies of the

same object
ß Level of granularity can be an object or a block of 64 bytes

q We want to maximize concurrency
ß If many processors just want to read, then each one can have a

local copy, and reads won’t generate any bus traffic

q We want to ensure coherence
ß If a processor writes a value, then all subsequent reads by

other processors should return the latest value

q Coherence refers to a logically consistent global ordering of
reads and writes of multiple processors

q Modern multiprocessors support intricate schemes

14

Consistency and replication

q Need to replicate (cache) to improve performance
ß How updates are propagated between cached replicas

ß How to keep them consistent

q How to keep them consistency (much more
complicated than sequential processor)
ß When a processor change the vale value of its copy of a

variable,
• the other copies are invalidated (invalidate protocol), or

• the other copies are updated (update protocol).

15

Example

X = 1

X = 1

P1’s cache

P2’s cache

MemoryX = 1

16

Invalidate vs. update protocols

X = 3

X = 1

P1’s cache

P2’s cache

MemoryX = 1

X = 3

X = 3

P1’s cache

P2’s cache

MemoryX = 3

17

Snoopy Protocol
q Each processor, for every cached object, keeps a state that can be

Invalid, Exclusive or Read-only
q Goal: If one has Exclusive copy then all others must be Invalid
q Each processor issues three types of messages on bus

ß Read-request (RR), Write-request (WR), and Value-response (VR)

ß Each message identifies object, and VR has a tagged value

q Assumption:
ß If there is contention for bus then only one succeeds

ß No split transactions (RR will have a response by VR)

q Protocol is called Snoopy, because everyone is listening to the bus all the
time, and updates state in response to messages RR and WR

q Each cache controller responds to 4 types of events
ß Read or write operation issued by its processor

ß Messages (RR, WR, or VR) observed on the bus

q Caution: This is a simplified version

18

Snoopy Cache Coherence

Processor 1

Cache Controller

Processor N

Read(x), Write(x,u)

RR(x), WR(x), VR(x,u)

x v Exclusive

ID Val State

19

Snoopy Protocol
q If state is Read-only

ß Read operation: return local value
ß Write operation: Broadcast WR message on bus, update state to Exclusive,

and update local value
ß WR message on bus: update state to Invalid
ß RR message on bus: broadcast VR(v) on bus

q If state is Exclusive
ß Read operation: return local value
ß Write operation: update local value
ß RR message on bus: Broadcast VR(v), and change state to Read-only
ß WR message on bus: update state to Invalid

q If state is Invalid
ß Read operation: Broadcast RR, Receive VR(v), update state to Read-only,

and local value to v
ß Write operation: As in first case
ß VR(v) message on bus: Update state to Read-only, and local copy to v
ß WR message on the bus: do nothing

20

Sample Scenario for Snoopy
q Assume 3 processors P1, P2, P3. One object x : int
q Initially, P1’s entry for x is invalid, P2’s entry is Exclusive with value 3, and P3’s entry

is invalid
q A process running on P3 issues Read(x)
q P3 sends the message RR(x) on the bus
q P2 updates its entry to Read-only, and sends the message VR(x,3) on the bus
q P3 updates its entry to Read-only, records the value 3 in the cache, and returns the

value 3 to Read(x)
q P1 also updates the x-entry to (Read-Only, 3)
q Now, if Read(x) is issued on any of the processors, no messages will be exchanged,

and the corresponding processor will just return value 3 by a local look-up

q P1: x=(inv,-) … x=(ro,3)
q P2: x=(exc,3) … X=(ro,3); VR(x,3);
q P3: x=(inv,-) … Read(x); RR(x); … x=(ro,3),return(x,3)

21

Snoopy Scenario (Continued)
q Suppose a process running on P1 issues Write(x,0)
q At the same time, a process running on P2 issues Write(x,2)
q P1 will try to send WR on the bus, as well as P2 will try to send WR on the

bus
q Only one of them succeeds, say, P1 succeeds
q P1 will update cache-entry to (Exclusive,0)
q P3 will update cache-entry to Invalid
q P2 will update cache-entry to Invalid
q Now, Read / Write operations by processes on P1 will use local copy, and

won’t generate any messages

q P1: Write(x,0); WR(x); x=(ex,0)
q P2: Write(x,2); WR(x); x=(inv,-)
q P3: … x=(inv,-)

22

Notions of consistency
q Strict consistency: any read on a data item x returns a value

corresponding to the result of the most recent write on x (need
absolute global time)
ß P1: w(x)a P1: w(x)a
ß P2: r(x)a P2: r(x)NIL r(x)a

q Sequential consistency: the result of any execution is the same
as if the R/W operations by all processes were executed in
some sequential order and the operations of each process
appear in this sequence in the order specified by its program
ß P1: w(x)a P1: w(x)a
ß P2: w(x)b P2: w(x)b
ß P3: r(x)b r(x)a P3: r(x)b r(x)a
ß P4: r(x,b) r(x,a) P4: r(x)a r(x)b

23

Multiprocessor OS
q How should OS software be organized?
q OS should handle allocation of processes to processors.

Challenge due to shared data structures such as process
tables and ready queues

q OS should handle disk I/O for the system as a whole
q Two standard architectures

ß Master-slave

ß Symmetric multiprocessors (SMP)

24

Master-Slave Organization

q Master CPU runs kernel, all others run user processes
q Only one copy of all OS data structures
q All system calls handled by master CPU
q Problem: Master CPU can be a bottleneck

25

Symmetric Multiprocessing (SMP)
q Only one kernel space, but OS can run on any CPU
q Whenever a user process makes a system call, the same CPU runs OS to

process it
q Key issue: Multiple system calls can run in parallel on different CPUs

ß Need locks on all OS data structures to ensure mutual exclusion for critical
updates

q Design issue: OS routines should have independence so that level of
granularity for locking gives good performance

Bus

26

Synchronization
q Recall: Mutual exclusion solutions to protect critical regions

involving updates to shared data structures
q Classical single-processor solutions

ß Disable interrupts

ß Powerful instructions such as Test&Set (TSL)

ß Software solution such as Peterson’s algorithm

q In multiprocessor setting, competing processes can all be
OS routines (e.g., to update process table)

q Disabling interrupts is not relevant as there are multiple
CPUs

q TSL can be used, but requires modification

27

Original Solution using TSL

Shared variable: lock :{0,1}
lock==1 means some process is in CS
Initially lock is 0
Code for process P0 as well as P1:
while (TRUE) {
 try: TSL X, lock /* test-and-set lock */
 if (X!=0) goto try; /*retry if lock set*/
 CS();
 lock = 0; /* reset the lock */
 Non_CS();
 }

28

TSL solution for multi-processors
q TSL involves testing and setting memory, this can require 2

memory accesses
ß Not a problem to implement this in single-processor system

q Now, bus must be locked to avoid split transaction
ß Bus provides a special line for locking

q A process that fails to acquire lock checks repeatedly
issuing more TSL instructions
ß Requires Exclusive access to memory block

ß Cache coherence protocol would generate lots of traffic

q Goal: To reduce number of checks
1. Exponential back-off: instead of constant polling, check only

after delaying (1, 2, 4, 8 instructions)

2. Maintain a list of processes waiting to acquire lock.

29

Busy-Waiting vs Process switch

q In single-processors, if a process is waiting to acquire lock,
OS schedules another ready process

q This may not be optimal for multiprocessor systems
ß If OS itself is waiting to acquire ready list, then switching

impossible

ß Switching may be possible, but involves acquiring locks, and
thus, is expensive

q OS must decide whether to switch (choice between
spinning and switching)
ß spinning wastes CPU cycles

ß switching uses up CPU cycles also

ß possible to make separate decision each time locked mutex
encountered

30

Multiprocessors: Summary
q Set of processors connected over a bus with shared memory

modules
q Architecture of bus and switches important for efficient

memory access
q Caching essential; to manage multiple caches, cache

coherence protocol necessary (e.g. Snoopy)
q Symmetric Multiprocessing (SMP) allows OS to run on

different CPUs concurrently
q Synchronization issues: OS components work on shared data

structures
ß TSL based solution to ensure mutual exclusion

ß Spin locks (i.e. busy waiting) with exponential backoff to reduce
bus traffic

31

Scheduling
q Recall: Standard scheme for single-processor scheduling

ß Make a scheduling decision when a process blocks/exits or when
a clock interrupt happens indicating end of time quantum

ß Scheduling policy needed to pick among ready processes, e.g.
multi-level priority (queues for each priority level)

q In multiprocessor system, scheduler must pick among ready
processes and also a CPU

q Natural scheme: when a process executing on CPU k finishes
or blocks or exceeds its time quantum, then pick a ready
process according to scheduling policy and assign it to CPU k.
But this ignores many issues…

32

Issues for Multiprocessor Scheduling

q If a process is holding a lock, it is unwise to switch it even if
time quantum expires

q Locality issues
ß If a process p is assigned to CPU k, then CPU k may hold

memory blocks relevant to p in its cache, so p should be assigned
to CPU k whenever possible

ß If a set of threads/processes communicate with one another then
it is advantageous to schedule them together

q Solutions
ß Space sharing by allocating CPUs in partitions

ß Gang scheduling: scheduling related threads in same time slots

33

Multicomputers

34

Multicomputers

q Definition:
Tightly-coupled CPUs that do not share memory

q Communication by high-speed interconnect via
messages

q Also known as
ß cluster computers

ß clusters of workstations (COWs)

35

Clusters

qInterconnection topologies
(a) single switch
(b) ring
(c) grid

(d) double torus
(e) cube
(f) Hypercube (2**d, d is dimeter)

36

Switching Schemes
q Messages are transferred in chunks called packets
q Store and forward packet switching

ß Each switch collects bits on input line, assembles the packet, and
forwards it towards destination

ß Each switch has a buffer to store packets
ß Delays can be long

q Hot-potato routing: No buffering
ß Necessary for optical communication links

q Circuit switching
ß First establish a path from source to destination
ß Pump bits on the reserved path at a high rate

q Wormhole routing
ß Split packet into subpackets to optimize circuit switching

37

Interprocess Communication

q How can processes talk to each other on multi-computers?
ß User-level considerations: ease of use etc

ß OS level consideration: efficient implementation

q Message passing
q Remote procedure calls (RPC)
q Distributed shared memory (DSM)

38

Message-based Communication

q Minimum services
 provided
ß send and receive

commands

q These are blocking
(synchronous) calls

(a) Blocking send call

(b) Nonblocking send call

39

User-level Communication Primitives

q Library Routines
ß Send (destination address, buffer containing message)

ß Receive (optional source address, buffer to store message)

q Design issues
ß Blocking vs non-blocking calls

ß Should buffers be copied into kernel space?

40

Blocking vs Non-blocking

q Blocking send: Sender process waits until the message is
sent
ß Disadvantage: Process has to wait

q Non-blocking send: Call returns control to sender immediately
ß Buffer must be protected

q Possible ways of handling non-blocking send
ß Copy into kernel buffer

ß Interrupt sender upon completion of transmission`

ß Mark the buffer as read-only (at least a page long), copy on write

q Similar issues for handling receive calls

41

Buffers and Copying

q Network interface card has its own buffers
ß Copy from RAM to sender’s card
ß Store-and-forward switches may involve copying
ß Copy from receiver’s card to RAM

q Copying slows down end-to-end communication
ß Copying not an issue in disk I/O due to slow speed

q Additional problem: should message be copied from
sender process buffer to kernel space?
ß User pages can be swapped out

q Typical solutions
ß Programmed I/O for small packets
ß DMA for large messages with disabling of page replacement

42

The Problem with Messages

q Messages are flexible, but
q They are not a natural programming model

ß Programmers have to worry about message formats

ß messages must be packed and unpacked

ß messages have to be decoded by server to figure out
what is requested

ß messages are often asynchronous

ß they may require special error handling functions

43

Remote Procedure Call

q Procedure call is a more natural way to communicate
ß every language supports it
ß semantics are well defined and understood
ß natural for programmers to use

q Basic idea of RPC (Remote Procedure Call)
ß define a server as a module that exports a set of

procedures that can be called by client programs.

call

return

Client Server

44

A brief history of RPC

q Birrell and Nelson in 1980, based on work done at
Xerox PARC.

q Similar idea used in RMI, CORBA or COM standards
q Core of many client-server systems
q Transparency is to goal!

45

Remote Procedure Call

q Use procedure call as a model for distributed communication
q RPCs can offer a good programming abstraction to hide low-

level communication details
q Goal - make RPC look as much like local PC as possible
q Many issues:

ß how do we make this invisible to the programmer?
ß what are the semantics of parameter passing?
ß how is binding done (locating the server)?
ß how do we support heterogeneity (OS, arch., language)?
ß how to deal with failures?
ß etc.

46

Steps in Remote Procedure Calls

q There are 3 components on each side:
ß a user program (client or server)

ß a set of stub procedures

ß RPC runtime support

q Steps in RPC
ß Client invokes a library routine called client stub, possibly with

parameters

ß Client stub generates a message to be sent: parameter marshaling

ß Kernels on client and server handle communication

ß Receiver kernel calls server stub

ß Server stub unpacks parameters and invokes server routine

47

Remote Procedure Call

q Steps in making a remote procedure call
ß the stubs are shaded gray

48

RPC Call Structure

call foo(x,y)

proc foo(a,b) call foo(x,y)

proc foo(a,b)

 begin foo...

 end foo

client
program

client
stub

RPC
runtime

RPC
runtime

server
stub

server
program

Call

client makes
local call to
stub proc.

stub builds msg
packet, inserts
params

runtime sends
msg to remote
node

server is
called by
its stub

stub unpacks
params and
makes call

runtime
receives msg
and calls stub

call foo

send msg

call foo

msg received

49

RPC Return Structure

call foo(x,y)

proc foo(a,b) call foo(x,y)

proc foo(a,b)

 begin foo...

 end foo

client
program

client
stub

RPC
runtime

RPC
runtime

server
stub

server
program

return

client continues

stub unpacks
msg, returns
to caller

runtime
receives msg,
calls stub

server proc
returns

stub builds
result msg
with output
args

runtime
responds
to original
msg

return

msg received

return

send msg

50

RPC Stubs

q A client-side stub is a procedure that looks to the client as if it
were a callable server procedure.

q A server-side stub looks to the server as if it’s a calling client.
q The stubs send messages to each other to make the RPC

happen.
q Server program defines the server’s interface using an interface

definition language (IDL)
ß Define names, parameters, and types

q A stub compiler reads the IDL and produces two stub
procedures for each server procedure

q The server program links it with the server-side stubs; the client
program links with the client-side stubs.

51

RPC Parameter Marshalling

q The packing of procedure parameters into a message packet.
q The RPC stubs call type-specific procedures to marshall (or unmarshall)

all of the parameters to the call.
q Representation needs to deal with byte ordering issues

ß Different data representatin (ASCII, UNICODE, EBCDIC)
ß big-endian (bytes from left to rigth, Intel) versus little-endian (bytes from

right to left, SPARC)
ß strings (some CPUs require padding)
ß alignment, etc.

q Parameter passing
ß By value
ß By reference
ß Size limit?

52

RPC failure semantics

q A remote procedure call makes a call to a remote
service look like a local call
ß RPC makes transparent whether server is local or

remote

ß RPC allows applications to become distributed
transparently

ß RPC makes architecture of remote machine transparent

q What if there is a failure?
q Goal: Make RPC behave like local procedure call

53

Types of failure

q Cannot locate the server
ß server down

ß version mismatch

ß raise an exception

q Request message is lost
q Reply message is lost
q Server crashes after receiving a request
q Client crashes after sending a request

54

Handling message failure

q request msg is lost
ß use timer and resend request msg

q reply msg is lost
ß use timer and resend another request

ß server need to tell whether the request is duplicate
unless the request is idempotent
• make all request idempotent

– redefine read (fd, buf, n) to read (fd, buf, pos, n)

– deposit (money) -- not possible to make it idempotent

• assign request numbers and keep track

55

Possible semantics to deal with crashes

q Do nothing and leave it up to the user
q At least once

ß Successful return
• Executed at lease once.

ß Only for idempotent functions
q At most once

ß Suppress duplicated requests
ß Client

• Each request has an unique id

ß Server
• Saves request results

q Exactly once (not possible to implement)

56

Shared memory vs. message passing

q Message passing
ß better performance
ß know when and what msgs sent: control, knowledge

q Shared memory
ß familiar
ß hides details of communication
ß no need to name receivers or senders, just write to

specific memory address and read later
ß caching for “free”
ß porting from centralized system (the original “write

once run anywhere”)
ß no need to rewrite when adding processs, scales because

adds memory for each node
ß Initial implementation correct (agreement is reached at

the memory system level), all changes are just
optimizations

57

Distributed Shared Memory (DSM)

Replication
(a) Pages distributed on 4

machines

(b) CPU 0 reads page 10

(c) CPU 1 reads page 10

58

Distributed Shared Memory (DSM)
q data in shared address space accessed as in traditional VM.
q mapping manager -- maps the shared address space to the

physical address space.
q Advantage of DSM

ß no explicit comm. primitives, send and receive, needed in program.
It is believed to be easier to design and write parallel alg's using
DSM

ß complex data structure can be passed by reference.
ß moving page containing the data take advantage of locality and

reduce comm. overhead.
ß cheaper to build DSM system than tightly coupled multiprocessor

system.
ß scalable -- improved portability of programs written for

multiprocessors.

59

DSM Implementation Issues
q Recall: In virtual memory, OS hides the fact that pages may reside in

main memory or on disk
q Recall: In multiprocessors, there is a single shared memory (possibly

virtual) accessed by multiple CPUs. There may be multiple caches, but
cache coherency protocols hide this from applications
ß how to make shared data concurrently accessible

q DSM: Each machine has its own physical memory, but virtual memory
is shared, so pages can reside in any memory or on disk
ß how to keep track of the location of shared data

q On page fault, OS can fetch the page from remote memory
ß how to overcome comm. delays and protocol overhead when accessing

remote data

60

Distributed Shared Memory

q Note layers where it can be implemented
ß hardware
ß operating system
ß user-level software

61

Some Implementation Details

q Every computer has its own page-table
q If accessed page is not in memory, then message sent to lookup where it

resides, and the page is fetched
ß The client-server algorithm
ß The migration algorithm

q Replication used to reduce the traffic
ß The read-replication algorithm
ß The full-replication algorithm

q As in cache coherence for multiple caches in a multiprocessor system, a
page can reside on multiple computers with read-only flag set

q To write a page other copies must be invalidated
q False sharing: No variables actually shared, but they may reside on the

same page
ß Compiler should make an effort to avoid this

62

Cache/Memory Coherence and
Consistency

qCoherence: every cache/CPU must have a coherent
view of memory
ß If P writes X to A, then reads A, if no other proc writes

A, then P reads X

ß If P1 writes X to A, and no other processor writes to A,
then P2 will eventually read X from A.

ß If P1 writes X to A, and P2 writes Y to A, then every
processor will either read X then Y, or Y then X, but all
will see the writes in the same order.

qConsistency: memory consistency model tells us
when writes to different locations will be seen by
readers.

63

False sharing in DSM

q False Sharing
q Must also achieve sequential consistency

64

Load Balancing

q In a multicomputer setting, system must determine
assignment of processes to machines

q Formulation as an optimization problem:
ß Each process has estimated CPU and memory requirements

ß For every pair of processes, there is an estimated traffic

q Goal: Given k machines, cluster the processes into k clusters
such that
ß Traffic between clusters is minimized

ß Aggregate memory/CPU requirements of processes within each
cluster are evenly balanced (or are below specified limits)

65

Algorithms for Load Balancing

q Finding optimal allocation is computationally expensive
ß NP-hard (must try all possible combinations in the worst case)

ß Must settle for greedy heuristics that perform well

q Dynamic adaptation schemes
ß Sender Initiated Schemes

• Assign processes by default choices

• If one machine senses overload, probe others for help

• If load is low, respond to probes, and accept process migration

ß Receiver Initiated Schemes
• When load is low, probe other machines if they are loaded with processes

• Probe traffic does not degrade performance during overload

