CSE 380
Computer Operating Systems

Instructor: Insup Lee and Dianna Xu

University of Pennsylvania
Fall 2003
Lecture Notes: File Systems

File Systems

Q Computer applications need to store and retrieve
information:

= need to store large amount of information
= need to store information permanently
= need to share information

U Afile is a collection of data records grouped together for
purpose of access control and modification

U Afile system is software responsible for creating,
destroying, organizing, reading, writing, modifying,
moving, and controlling access to files; and for
management of resources used by files.

User-Level View

1 Naming convention
U File structures
U File types
U File access: sequential vs random access
U File operations:
= system calls (file/directory operations)
U Memory-mapped files

U Directory structure (single-level vs. two-level vs.
hierarchical

= path names
= directory operations

File Naming

1 Naming convention
= number of characters (e.g. limited to 8+3 in MS-DOS)
= case sensitive or not, Which chars are allowed
= special prefixes/extensions (.txt, .ps, .gif, .mpg,)
U The family of MS-DOS
= Win3.1, Win95, Win98
= NT, Win2000 (supports MS-DOS, but have native file
system NTFS)
U In Unix, many extensions are just conventions
= exceptions are for example compilers
O Windows assigns meaning to extensions

File Naming

Extension Meaning
file.bak Backup file
file.c C source program
file.gif Compuserve Graphical Interchange Format image
file.hip Help file
file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard
file.o Object file (compiler output, not yet linked)
file.pdf Portable Document Format file
file.ps PostScript file
file.tex | Input for the TEX formatting program
txt General text file
file.zip Compressed archive

Typical file extensions.

File Structure

1Byte 1 Record

[[cat Jrcow [pog]| [[oat][tion [0w]| [[Pony [Rat JJworm]]

Hen || 1bis [/Lamb

(a) (b) (©

Q Three kinds of files
= byte sequence =——=> both Unix and Windows
= record sequence: when 80-column punch cards were king
= tree: data processing on large mainframe

File Types

O Unix
= regular files
« ASCII
* binary

= directory files
= character special files (I/O devices that operate on streams)
= block special files (disk 1/0)
U Every OS must at least recognize its own executables
= Unix: header, text and data

= magic numbers

File Types

. Nodua
Wagc number o name
Toxtsize
Datasis \ e
f B5S size \
§ [Smbomesas Object \ Ouer
Enty point \ Protecton
i, \ size
1 i Headr \
Tot
Object
modia
pata Header
Relocation
bis
Object
Symbol modkle
bl
@)

(a) An executable file (b) An archive

File Access File Attributes
O Sequential access U File name
= read all bytes/records from the beginning Q Size information (current, limit)
= cannot jump around, could rewind or back up U Physical address
= convenient when medium was magnetic tape U File type
U Random access = ASCII vs binary
= bytes/records read in any order = Temporary vs Permanent
= essential for many applications O Access rights: owner, protection (who can access it)
= read can be ... O Access type: Sequential/Random
+ move file pointer (seek), then read or ... Q History: Creator, time of last access/modification, other usage
« read and then move file marker data
= all modern OS have all files as random access Q Info for managing links
9

File Attributes File Operations

Attribute Meaning

Protection Who can access the file and in what way .
Pasouord Pasoword neoded accoss hafe 1. Create (creat) 7. Append (write)
Creator ID of the person who created the file .

Owner Gurrent owner (n k) ()
Read-only flag 0 for readwite; 1 for read only 2. Delete (unli 8. Seek (Iseek

Hidden flag 0 for normal; 1 for do not display i listings .

System flag 0 for normal files; 1 for system file 3. Open 9. Get attributes (stat’
Archive flag 0 for has been backed up; 1 for needs to be backed up))
ASClibinary flag | 0 for ASCII file; 1 for binary file)
Random access flag | 0 for sequential access only: 1 for random access 4 . CIOSC Stat’ fStat’ fCIlt
Temporary flag 0 for normal; 1 for delete file on process exit .

Lock flags 0 for unlocked: nonzero for locked 5. Read 10.Set Attributes (fcntl)
Record length Number of bytes in a record .

Key postion Offset of the ke within each record .

Key length Number of bytes in the key field 6 . Write 11 .Rename

Creation time Date and time the file was created

Time of last access | Date and time the file was last accessed

Time of last change | Date and time the file has last changed

Current size Number of bytes in the file

Maximum size Number of bytes the file may grow to

Possible file attributes

Memory Mapped Files

U Instead of making a series of system calls that
involve 1/0, map files into the address space of a
running process

U Just two system calls, map and unmap

Q File 1/0 can be done in simple instructions that
address memory as usual

U Problems:
= files must fit in memory

= modifications will not be written to disk until
unmapped

Memory-Mapped Files

Program Program
text text

Data Data Xyz

(@ (b)

(a) Segmented process before mapping files
into its address space

(b) Process after mapping
existing file abc into one segment
creating new segment for xyz

Directories
Single-Level Directory Systems

. ~—Root directory

0101010

U A single level directory system
= contains 4 files
= owned by 3 different people, A, B, and C
= ownerships are shown, not file names

Two-level Directory Systems

<—Root directory

Naming conflicts between different users are eliminated

Hierarchical Directory Systems

«Root directory

A hierarchical directory system

Path Names

bin_|~— Root directory

ast lib im

™ e ~— s
] [

[

[

L]

A UNIX directory tree

A owon -

Directory Operations

Create 5. Readdir
Delete 6. Rename
Opendir 7. Link
Closedir 8. Unlink

File System Implementation

U Sector 0 is called the Master Boot Record
= used to boot the computer
= contains partition table at the end
= one partition must be marked as active/primary

0 BIOS (located on the parentboard) reads and
executes MBR (after trying to boot from floppy or CD-
ROM)

U MBR locates the active partition and reads in its first
block

U Every partitions comes with a boot block

20

Booting and Disk Layout
Sector number
0 ROM (read-only, persistent) memory
contains a small bootstrap loader
program
U System disk contains boot block in first
block of each partition
U Boot block has bootstrap executable
U Bootstrap loader copies bootstrap
program into memory
U Bootstrap program initializes all registers,
finds OS kernel on disk, loads OS, and
jumps to the initial address of OS
U Why is bootstrap not in ROM?

Boot block

FAT

Root directory

MS-DOS disk Iayout21

File System Layout

Entire disk

Partition table

(e I | | |

| Boot block | Super b\ock| Free space mgmt | I-nodes | Root dir | Files and directories

A possible file system layout with a Unix partition

22

Disk Space Organization

U Disk can be partitioned
= Each partition can have a different OS and/or different file system
= One partition can be swap space for main memory
U First block of disk has master boot record specifying primary
partition
U Each partition has
= Boot block (loads OS in kernel space)
= Superblock (contains key info about file system which is read into
memory at boot time)
= Free space management
= List of I-nodes (or other data structure) giving info about all files
= Directories and Files

23

File Space Allocation

Q Goals

= Fast sequential access

= Fast random access

= Ability to dynamically grow
= Minimum fragmentation

Q Standard schemes

= Contiguous allocation (fixed)

= Linked list allocation

= Linked list with file allocation table (FAT)
= Linked list with Indexing (I-nodes)

24

Contiguous Allocation

U Each file occupies a contiguous region of blocks
U Fast random access (only one seek needed)
U Useful when read-only devices or small devices
= CD-ROMs, DVD-ROMs and other optical media
= Embedded/personal devices
U Management is easy
= Directory entry of a file needs to specify its size and start location

U Fragmentation is a problem if deletes are allowed, or if files
grow in size

U After disk is full, new files need to fit into holes > advanced
declaration of size at the time of creation

25

Implementing Files (1)

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
OITITIT I T T T I T I T T TITIT T IIT].

— [E— P

File B File D File F

(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)

OITTITITITIT I I T T TITITITTIITITITITITTITT

File B 5 Free blocks 6 Free blocks

(b)

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and E have been removed

26

Linked Lists

U Natural choice: maintain a linked list of blocks that contain
each file

U Directory entry of a file points to first block, and each block
begins with a pointer to next block

U No external fragmentation
O Speed of random access is slow

= Accessing v block requires v disk accesses, i.e. v-1 accesses
for pointers

U Data size in a block is no longer power of 2 because of
pointer storage

27

Implementing Files (2)

File A

File File File File File
block block block block block
0 1 2 3 4

2 10 12

Physical 4 7
block

File B

File File File File
block block block block
0 1 2 3

3 11 14

Physical 6
block

Storing a file as a linked list of disk blocks

28

Linked List with FAT

O So pointers are trouble, don’t store them in blocks!
O Solution: Maintain a File Allocation Table in main
memory
= FAT is an array indexed by blocks
= Each array entry is a pointer to next block
0 Accessing vi" block would still require traversing the
chain of pointers, however, they are in main memory
and no disk 1/O is needed
U Problem: the entire FAT must be in memory, and as
disk size increases, so does FAT
= 20GB disk with 1k block size needs 20 million entries,
which requires entry sizes of minimum 3 bytes, which is
results a FAT of 60MB

29

Implementing Files (3)

Physical
block

0
1
2 10
3 1
4 7 |<— File A starts here
5
6 3 |<— File B starts here
7 2
8
9
10 12
1 14
12 1
13
14 1
15 |=— Unused block

Linked list allocation using FAT in RAM

30

Indexing with i-nodes

U Each file has an associated fixed length record called an i-
node
U i-node maintains all attributes of the file
U i-node also keeps addresses of fixed number of blocks
U Additional levels of indexing possible to accommodate
larger files
= last address reserved for pointer to another block of addresses
Q Space required is much less than FAT
= only i-nodes of open files need to be in memory
= an array of i-node numbers, whose size is proportional to the
max # of open files allowed by the system, not disk size
U Time required to access specific block can vary

Implementing Files (4)

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

Address of disk block 7

Address of block of pointers.

A sample i-node

Disk block
containing
additional

disk addresses

32

Directories

U A directory entry provides the info needed to find the
disk data blocks of a file
= disk address of first block and size
= address of first block
= number of associated i-node
U File attributes can be stored in the directory entry
(Windows) or in its i-node (Unix)
U File name and support of variable length and long file
names (255 chars)

Implementing Directories (1)

games | atiributes games |:|
mail attributes mail 4+

news | attributes news ~\|:|
work | atiributes work

(a) (b) Q Data structure
containing the

attributes

(a) A simple MS-DOS directory
fixed size entries
disk addresses and attributes in directory entry
(b) Unix directory in which each entry just refers to an i-node

34

Implementing Directories (2)

File 1 entry length Pointer to file 1's name ‘ Entry
} for one
File 1 attributes. File 1 attributes J file
Entry
for'ons, P [r [o7 Pointer to file 2's name <
file 0 G t -
T 9 File 2 attributes
e |t Pointer 1o file 3's name

=]
File 2 entry length

File 3 attributes
File 2 attributes

I B I
o [n [~ =
T = | P r ° i
File 3 entry length e c t -
b | v d o
File 3 attibutes
° tlR e Heap
[N ES N P
n | e | 1
R~ | o | o
X
(@ (b)

4 Two ways of handling long file names in directory
= (a) In-line
= (b) In a heap

Links

U Convenient solution to file sharing
U Hard link
pointer to i-node added to the directory entries

link counter in the i-node linked to incremented

i-node can only be deleted (data addresses cleared) if
counter goes down to 0, why?

original owner can not free disk quota unless all hard
links are deleted

U Soft link (symbolic)

= new special file created of type LINK, which contains
just the path name

= new file also has its own i-node created

36

Shared Files - Link

. Root directory

Shared file

File system containing a shared file

Shared Files - i-node

B's directory C's directory

C's directory

/

Owner =C

T

Owner=C

Count =1 Count = 2

O

(a) (b)
(a) Situation prior to linking
(b) After the link is created
(c)After the original owner removes the file

O

B's directory

Owner =C
Count =1
(c)

38

Disk Space Management

O Many of the same trade-offs or issues in memory
management are also present in disk management

= keeping track of free blocks

= segmentation

= caching and paging
U Block size, how big?
smaller block size leads to less waste in a block
larger block size leads to better data transfer rate (block
assess time is dominated by seek time and rotational delay)
experiments lead to estimate of median file size at 2KB
Unix systems commonly keep 1KB, because its choice was
made a long time ago
MS-Dos has a 2'° limit on number of blocks, making block
size proportional to disk size

Block size

1000 ——— e — e —— e ———
Disk space utilization

600 |-

400 |-

Data rate (KB/sec)

200 |-

Data rate
n n

0 128 256 512 1K 2K 4K 8K
Block size

QO Dark line (left hand scale) gives data rate of a disk
QO Dotted line (right hand scale) gives disk space efficiency
Q All files 2KB

1000

@
<]

@
3

IS
S

N
o

o

Disk space utilization
(percent)

40

10

Managing Free Disk Space

U How to keep track of free blocks?

U Linked List Method
= Maintained as a list of blocks containing addresses of free blocks
= Each block address is 32 bits or 4 Bytes

= A 1KB block used can hold addresses of 255 free blocks and an
address of the next block in the list for free space management

= Note: This list is stored in free blocks themselves
U Bitmap method:

= Keep an array of bits, one per block indicating whether that block
is free or not

= A 16-GB disk has 16 million 1 KB blocks
= Storing the bitmap requires 16 million bits, or 2048 blocks

U How do the two methods compare in terms of space
requirements?

Free Blocks

81,113t :zioold seib ee1d

10MTOFFOITOrTO0r 8 = 0£8 ~ N
ITMOPMIPPOMTOTTD »ES sar et
ILPOMTOMTOPTOrOr ves RX ors
“TOITTOITOMTOrr0 seb She e
IETOPRROPPROPTE [e e
“PITO00FOFOM O £88 0ar £3
“'OTONTOPTT0000 £88 233 X
“PPPOPTOINON MO 0ar are 8
“PPrOTTT000M00 asr 0se sag
ITTOPPPOPTTOTTTO Shr 081 ore
PERORPRORPRROTY A N are
qsm tid A 82 blorl 162 ¥o0ld zib 8 I A

Z1edmun soold zib fid-S&
@ ®)

(a) Storing the free list on a linked list
(b) A bit map

41 @
System Reliability Logical Dump
U Destruction of a file system is the worst disaster Root directory
known to a computer
U Backups
= recover from (natural) disaster Diecory
= recover from stupidity changed
U Different dumps
= full dump hat pangad Pt s
= incremental dump .
= physical dump U A file system tq be dgmpgd
. logical d = squares are directories, circles are files
ogical dump = shaded items, modified since last dump
= cach directory & file labeled by i-node number
43 44

11

Logical Dump Bitmaps

@ [1[2][3]4]5]e]7[8]eto[t1]t2[1a[r4]ts e[17[18fio]20f21]22[esfe4]25]z6]27]os]es]s0]3]s2]

o) [1]2]s]4]s]e[7[e]atoft1]r=]ta[14[1s[te[17[1efis[eoe1[ez]esfea]es[es]e7[2s[zs]0fs1]s2]

© [1]2]3]4]s]e]7]8]e [to[t]t2]taf14f1s[re]17[1e]1e[eo]e1[22[2ale4]os]oc]27]z8]efe0]51]32]

@ [1]2][3]4]5]e]7[8]e]tot1]12[1a[14] 15[e[17]18]1o]20]21]22]es]o4]25]z6]27]s]os]s031]s2]

(a) all directories and modified files
(b) all modified files, their parent directories and modified directories
(c) all directories to be dumped
(d) all files to be dumped

File System Consistency

U Disk I/O is buffered

U There may be a crash before the modified blocks in

memory are written back to the disk

U File system consistency must be checked after a
crash
= fsck

scandisk

node) by only one file or is free (listed in free list)

file consistency — a file has the same number of

block consistency — a block is either used (listed in i-

directory entries (i.e. the same number of hard links) as

the link count in its i-node

45 46
Consistency Check Caching
. . 0 Since disk I/O is slow, a part of memory is reserved to hold disk blocks
012345678 8910112131415 01234567 8910112131415 that are likely to be accessed repeatedly
[{[*Jo[+ o[+ [+]1]1]e]o] 1[1]1]o]o] Blocks inuse [+]1]o[1]o[1]1]1]1]o]o1]1]*]o]o] Biocks in use 0 Basic data structure:
ofo[1]o[1]o[o[o]o[1]1]o[o]o]]1] Free biocks o[o[o]o[]o]o]o[o[1]1]o[o]o]]1] Free blocks = Maintain a doubly linked list of blocks
y
@ (6) = Use hashing so that a block can be quickly accessed from its address
= LRU implementation possible: every time a block is accessed move it to the
0123458678 9101112131415 012345678 8910112131415 .
[+ Jo[o[[1]*]1Jo]o] 1]1]1]o]o] Brocks inuse [1]1]o]1]o]2[1]1]1]o[o]]1]1]o]o] Bocks in use back of the list
[o]o[*Jo[2]o[o]o]o]1]1Jo]o] o] 1]1] Free blocks [o]o[1]o[1]o[o]o[o]]1]o]o]o]1]] Free blocks
N Hash table Front (LRU) Rear (MRU)
. —— - -
Q File system states —
(a) consistent
(b) missing block
(c) duplicate block in free list
(d) duplicate data block
47 - 48

12

oo

Writing Strategies

Problem: If there is a crash, modifications to blocks in cache will be lost
= disastrous for blocks containing i-nodes or FAT

= LRU guarantees loss of the exactly wrong blocks

MS-DOS: write-through cache

= every time a block is modified, a request to write it to disk is issued

= loop with putchar() generates busy disk I/O

= reads can still be fast

Classify blocks and treat them separately (Unix)

1. i-node blocks

2. indirect blocks with addresses of file blocks

3. free space management blocks

4. data blocks of files

Write critical blocks (types 1, 2, 3) on disk immediately upon modification
Transfer data blocks in LRU

49

The CD-ROM

Q0 1SO 9660
= adopted in 1988
= block size 2048

= begins with 16 blocks whose functions are undefined
+ can be used as boot blocks

= primary volume descriptor
= root and directories

U Directory
= filename 8+3

= depth of nesting limited to 8

50

CD-ROM Directory Entry

Padding

8 7 12 4 1 4-15

FileSize | Dateandtime] [| cD# L] Filename | :
Flags ™ f et

iereave [Baserame] [Ex],

es 11
[T] Location of fte

Extended attribute record length
Directory entry length

The system use field is undefined, but used
by many OS to extend ISO 9660
Unix — Rock Ridge
Windows — Joliet

CP/M

1 Dominated the microcomputer world in the early 80s
= Intel 8 bit 8080 CPUs
= By Gary Kildall, Digital Research

a Ran on 16KB of RAM, well. Entire OS under 4KB

U Direct ancestor of MS-DOS

U Only one directory

0 Block size 1KB

Bytes 1 8 3 12 16

‘ File name
"

Disk block numbers

User code File type Extent Block count

(extension)

52

13

The CP/M File System

Address

O0xFFFF BIOS

User program

0x100 Zero page

Memory layout of CP/M

MS-DOS
U Originally invented as a method for storing data on
floppy disks, first version has single directory
Q Later used by MS-DOS with supports for a
hierarchical directory structure, and fixed disks as
well as floppy disks
= directory entries are fixed 32 bytes
= different versions support FAT-12, FAT-16 or FAT-32

Bytes 8 3 1 10 2 2 2 4

File name Size

NN T TIN

Extension Atftributes Reserved Time Date First
block
number

54

Block Sizes and FAT Sizes

Disk Size FAT-12 FAT-16 FAT-32
FAT entry 12 bits 16 bits 28 bits
Max # of 4086 65526 268435456
blocks ~212 ~216 ~D28
Block size 0.5KB to 4KB | 2KB to 32KB | 4KB to 32KB
FAT size 8KB 128KB 1GB

Block Sizes and Max Partition Sizes

Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1TB
8 KB 512 MB 27TB
16 KB 1024 MB 2TB
32 KB 2048 MB 27T8B

U Internally sector sizes are 512 bytes
U Empty boxes represent invalid combinations

14

Windows 95 and 98

U Long file names supported by Win95 V2 and Win98

Q In order to be backwards compatible to MS-DOS, decisions
were made to assign internal 8 char DOS file names in
addition

Cc
68 d o g Alolk 0
Cc
3lo v e Alolk| t h e I alo|z y
C
2| w n 1 o |Afo|k| x j u m [0 s
C
1T h e q |A[0|k| u i c k b | O r o
N Creation |Last Last y
THEQU I~ 1 AlT[S| tme |ace |YPP| wite |Low| Size
Bytes L N T | L LA L I I

An example of how a long name is stored in Windows 98

The Classic Unix File System

U Each disk partition has 4 Regions
= block 0: boot block
= block 1: super block. Contains the size of the disk and the
boundaries of the other regions
= i-nodes: list of i-nodes, each is a 64-byte structure
= free storage blocks for the contents of files.
U Each i-node contains owner, protection bits, size,
directory/file and 13 disk addresses.

U The first 10 of these addresses point directly at the first 10
blocks of a file. If a file is larger than 10 blocks (5,120 bytes),
the 11th points at a block for secondary indexing — single
indirect block

58

Classic Unix File System Cont.

Q Second-level index block contains the addresses of the
next 128 blocks of the file (70,656 bytes)

Q Two levels of indirection:12th entry (double indirect block)
points at up to 128 blocks, each pointing to 128 blocks of
the file (8,459,264 bytes)

Q Three levels of indirection: 13th address (triple indirect
block) is for a three layered indexing of 1,082,201,087
bytes.

U A directory is accessed exactly as an ordinary file.

It contains 16 byte entries consisting of a 14-byte name and
an i-number (index or ID of an i-node). The root of the file
system hierarchy is at a known i-number (2).

Unix i-node

I-node
Attributes

Single
indirect

Y

block

Addresses of
data blocks

Double
indirect
block

Disk addresses

Triple
indirect
block

=
=)
=
=

15

Directory Entry: Unix V7 Traversing Directory Structure

U Each entry has file name and an I-node number O Suppose we want to read the file /usr/ast/mbox
Q I-node has all the attributes U Location of a i-node, given i-number, can be computed
Q Restriction: File name size is bounded (14 chars) O i-number of the root directory known, say, 2

U Read in the i-node 2 from the disk into memory

U Find out the location of the root directory file on disk, and read
the directory block in memory

Bytes 2 14 = If directory spans multiple blocks, then read blocks until usr found
U Find out the i-number of directory usr, which is 6
File name Q Read in the i-node 6 from disk
} U Find out the location of the directory file usr on disk, and read in
T the block containing this directory
I-node Q Find out the i-number of directory ast (26), and repeat
number
61 62

The UNIX V7 Directory Lookup
Block 132 I-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory lusr/ast directory
Tl Mode |- Mode %
- size 1] .- size 6
4| bin tmes 19 | dick times 64 | grants
7 | dev 132 30 | erik 406 92 | books
14 | lib 51 [jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 [usr 45 | bal 17 | src
8 | tmp
I-node 6 I-node 26
Looking up says that fusr/ast says that Jusr/ast/mbox
usr yields lusrisin is i-node Jusr/ast is in is i-node
i-node 6 block 132 26 block 406 60
The steps in looking up /usr/ast/mbox
63

