
1

1

CSE 380
Computer Operating Systems

Instructor: Insup Lee and Dianna Xu

University of Pennsylvania
Fall 2003

Lecture Notes: File Systems

2

File Systems

 Computer applications need to store and retrieve
information:
 need to store large amount of information
 need to store information permanently
 need to share information

 A file is a collection of data records grouped together for
purpose of access control and modification

 A file system is software responsible for creating,
destroying, organizing, reading, writing, modifying,
moving, and controlling access to files; and for
management of resources used by files.

3

User-Level View

 Naming convention
 File structures
 File types
 File access: sequential vs random access
 File operations:

 system calls (file/directory operations)

 Memory-mapped files
 Directory structure (single-level vs. two-level vs.

hierarchical
 path names

 directory operations

4

File Naming

 Naming convention
 number of characters (e.g. limited to 8+3 in MS-DOS)

 case sensitive or not, Which chars are allowed

 special prefixes/extensions (.txt, .ps, .gif, .mpg, …..)

 The family of MS-DOS
 Win3.1, Win95, Win98

 NT, Win2000 (supports MS-DOS, but have native file
system NTFS)

 In Unix, many extensions are just conventions
 exceptions are for example compilers

 Windows assigns meaning to extensions

2

5

File Naming

Typical file extensions.
6

File Structure

 Three kinds of files
 byte sequence both Unix and Windows

 record sequence: when 80-column punch cards were king

 tree: data processing on large mainframe

7

File Types

 Unix
 regular files

• ASCII

• binary

 directory files

 character special files (I/O devices that operate on streams)

 block special files (disk I/O)

 Every OS must at least recognize its own executables
 Unix: header, text and data

 magic numbers

8

File Types

(a) An executable file (b) An archive

3

9

File Access

 Sequential access
 read all bytes/records from the beginning

 cannot jump around, could rewind or back up

 convenient when medium was magnetic tape

 Random access
 bytes/records read in any order

 essential for many applications

 read can be …
• move file pointer (seek), then read or …

• read and then move file marker

 all modern OS have all files as random access

10

File Attributes

 File name
 Size information (current, limit)
 Physical address
 File type

 ASCII vs binary

 Temporary vs Permanent

 Access rights: owner, protection (who can access it)
 Access type: Sequential/Random
 History: Creator, time of last access/modification, other usage

data
 Info for managing links

11

File Attributes

Possible file attributes
12

File Operations

1. Create (creat)

2. Delete (unlink)

3. Open

4. Close

5. Read

6. Write

7. Append (write)

8. Seek (lseek)

9. Get attributes (stat,
lstat, fstat, fcntl)

10.Set Attributes (fcntl)

11.Rename

4

13

Memory Mapped Files

 Instead of making a series of system calls that
involve I/O, map files into the address space of a
running process

 Just two system calls, map and unmap
 File I/O can be done in simple instructions that

address memory as usual
 Problems:

 files must fit in memory

 modifications will not be written to disk until
unmapped

14

Memory-Mapped Files

(a) Segmented process before mapping files
into its address space

(b) Process after mapping
 existing file abc into one segment

 creating new segment for xyz

15

Directories
Single-Level Directory Systems

 A single level directory system
 contains 4 files

 owned by 3 different people, A, B, and C

 ownerships are shown, not file names

16

Two-level Directory Systems

Naming conflicts between different users are eliminated

5

17

Hierarchical Directory Systems

A hierarchical directory system

18

A UNIX directory tree

Path Names

19

Directory Operations

1. Create
2. Delete
3. Opendir
4. Closedir

5. Readdir
6. Rename
7. Link
8. Unlink

20

File System Implementation

 Sector 0 is called the Master Boot Record
 used to boot the computer

 contains partition table at the end

 one partition must be marked as active/primary

 BIOS (located on the parentboard) reads and
executes MBR (after trying to boot from floppy or CD-
ROM)

 MBR locates the active partition and reads in its first
block

 Every partitions comes with a boot block

6

21

Booting and Disk Layout

 ROM (read-only, persistent) memory
contains a small bootstrap loader
program

 System disk contains boot block in first
block of each partition

 Boot block has bootstrap executable
 Bootstrap loader copies bootstrap

program into memory
 Bootstrap program initializes all registers,

finds OS kernel on disk, loads OS, and
jumps to the initial address of OS

 Why is bootstrap not in ROM?

Boot block

FAT

Root directory

0

1

MS-DOS disk layout

Sector number

22

File System Layout

A possible file system layout with a Unix partition

23

Disk Space Organization

 Disk can be partitioned
 Each partition can have a different OS and/or different file system
 One partition can be swap space for main memory

 First block of disk has master boot record specifying primary
partition

 Each partition has
 Boot block (loads OS in kernel space)
 Superblock (contains key info about file system which is read into

memory at boot time)
 Free space management
 List of I-nodes (or other data structure) giving info about all files
 Directories and Files

24

File Space Allocation

 Goals
 Fast sequential access

 Fast random access

 Ability to dynamically grow

 Minimum fragmentation

 Standard schemes
 Contiguous allocation (fixed)

 Linked list allocation

 Linked list with file allocation table (FAT)

 Linked list with Indexing (I-nodes)

7

25

Contiguous Allocation

 Each file occupies a contiguous region of blocks
 Fast random access (only one seek needed)
 Useful when read-only devices or small devices

 CD-ROMs, DVD-ROMs and other optical media

 Embedded/personal devices

 Management is easy
 Directory entry of a file needs to specify its size and start location

 Fragmentation is a problem if deletes are allowed, or if files
grow in size

 After disk is full, new files need to fit into holes advanced
declaration of size at the time of creation

26

Implementing Files (1)

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and E have been removed

27

Linked Lists

 Natural choice: maintain a linked list of blocks that contain
each file

 Directory entry of a file points to first block, and each block
begins with a pointer to next block

 No external fragmentation
 Speed of random access is slow

 Accessing νth block requires ν disk accesses, i.e. ν-1 accesses
for pointers

 Data size in a block is no longer power of 2 because of
pointer storage

28

Implementing Files (2)

Storing a file as a linked list of disk blocks

8

29

Linked List with FAT

 So pointers are trouble, don’t store them in blocks!
 Solution: Maintain a File Allocation Table in main

memory
 FAT is an array indexed by blocks
 Each array entry is a pointer to next block

 Accessing νth block would still require traversing the
chain of pointers, however, they are in main memory
and no disk I/O is needed

 Problem: the entire FAT must be in memory, and as
disk size increases, so does FAT
 20GB disk with 1k block size needs 20 million entries,

which requires entry sizes of minimum 3 bytes, which is
results a FAT of 60MB

30

Implementing Files (3)

Linked list allocation using FAT in RAM

31

Indexing with i-nodes

 Each file has an associated fixed length record called an i-
node

 i-node maintains all attributes of the file
 i-node also keeps addresses of fixed number of blocks
 Additional levels of indexing possible to accommodate

larger files
 last address reserved for pointer to another block of addresses

 Space required is much less than FAT
 only i-nodes of open files need to be in memory

 an array of i-node numbers, whose size is proportional to the
max # of open files allowed by the system, not disk size

 Time required to access specific block can vary
32

Implementing Files (4)

A sample i-node

9

33

Directories

 A directory entry provides the info needed to find the
disk data blocks of a file
 disk address of first block and size

 address of first block

 number of associated i-node

 File attributes can be stored in the directory entry
(Windows) or in its i-node (Unix)

 File name and support of variable length and long file
names (255 chars)

34

Implementing Directories (1)

(a) A simple MS-DOS directory
fixed size entries

disk addresses and attributes in directory entry
(b) Unix directory in which each entry just refers to an i-node

35

Implementing Directories (2)

 Two ways of handling long file names in directory
 (a) In-line

 (b) In a heap
36

Links

 Convenient solution to file sharing
 Hard link

 pointer to i-node added to the directory entries

 link counter in the i-node linked to incremented

 i-node can only be deleted (data addresses cleared) if
counter goes down to 0, why?

 original owner can not free disk quota unless all hard
links are deleted

 Soft link (symbolic)
 new special file created of type LINK, which contains

just the path name

 new file also has its own i-node created

10

37

Shared Files – Link

File system containing a shared file
38

Shared Files – i-node

(a) Situation prior to linking
(b) After the link is created
(c)After the original owner removes the file

39

Disk Space Management
 Many of the same trade-offs or issues in memory

management are also present in disk management
 keeping track of free blocks
 segmentation
 caching and paging

 Block size, how big?
 smaller block size leads to less waste in a block
 larger block size leads to better data transfer rate (block

assess time is dominated by seek time and rotational delay)
 experiments lead to estimate of median file size at 2KB
 Unix systems commonly keep 1KB, because its choice was

made a long time ago
 MS-Dos has a limit on number of blocks, making block

size proportional to disk size

162

40

Block size

 Dark line (left hand scale) gives data rate of a disk
 Dotted line (right hand scale) gives disk space efficiency
 All files 2KB

Block size

11

41

Managing Free Disk Space

 How to keep track of free blocks?
 Linked List Method

 Maintained as a list of blocks containing addresses of free blocks
 Each block address is 32 bits or 4 Bytes
 A 1KB block used can hold addresses of 255 free blocks and an

address of the next block in the list for free space management
 Note: This list is stored in free blocks themselves

 Bitmap method:
 Keep an array of bits, one per block indicating whether that block

is free or not
 A 16-GB disk has 16 million 1 KB blocks
 Storing the bitmap requires 16 million bits, or 2048 blocks

 How do the two methods compare in terms of space
requirements?

42

Free Blocks

(a) Storing the free list on a linked list
(b) A bit map

43

System Reliability

 Destruction of a file system is the worst disaster
known to a computer

 Backups
 recover from (natural) disaster

 recover from stupidity

 Different dumps
 full dump

 incremental dump

 physical dump

 logical dump

44

Logical Dump

 A file system to be dumped
 squares are directories, circles are files
 shaded items, modified since last dump
 each directory & file labeled by i-node number

File that has
not changed

12

45

Logical Dump Bitmaps

(a) all directories and modified files
(b) all modified files, their parent directories and modified directories

(c) all directories to be dumped
(d) all files to be dumped

46

File System Consistency

 Disk I/O is buffered
 There may be a crash before the modified blocks in

memory are written back to the disk
 File system consistency must be checked after a

crash
 fsck

 scandisk

 block consistency – a block is either used (listed in i-
node) by only one file or is free (listed in free list)

 file consistency – a file has the same number of
directory entries (i.e. the same number of hard links) as
the link count in its i-node

47

Consistency Check

 File system states
(a) consistent
(b) missing block
(c) duplicate block in free list
(d) duplicate data block

48

Caching
 Since disk I/O is slow, a part of memory is reserved to hold disk blocks

that are likely to be accessed repeatedly
 Basic data structure:

 Maintain a doubly linked list of blocks

 Use hashing so that a block can be quickly accessed from its address

 LRU implementation possible: every time a block is accessed move it to the
back of the list

13

49

Writing Strategies
 Problem: If there is a crash, modifications to blocks in cache will be lost

 disastrous for blocks containing i-nodes or FAT
 LRU guarantees loss of the exactly wrong blocks

 MS-DOS: write-through cache
 every time a block is modified, a request to write it to disk is issued
 loop with putchar() generates busy disk I/O
 reads can still be fast

 Classify blocks and treat them separately (Unix)
1. i-node blocks
2. indirect blocks with addresses of file blocks
3. free space management blocks
4. data blocks of files

 Write critical blocks (types 1, 2, 3) on disk immediately upon modification
 Transfer data blocks in LRU

50

The CD-ROM

 ISO 9660
 adopted in 1988

 block size 2048

 begins with 16 blocks whose functions are undefined
• can be used as boot blocks

 primary volume descriptor

 root and directories

 Directory
 filename 8+3

 depth of nesting limited to 8

51

CD-ROM Directory Entry

The system use field is undefined, but used
by many OS to extend ISO 9660

Unix – Rock Ridge
Windows – Joliet

52

CP/M
 Dominated the microcomputer world in the early 80s

 Intel 8 bit 8080 CPUs

 By Gary Kildall, Digital Research

 Ran on 16KB of RAM, well. Entire OS under 4KB
 Direct ancestor of MS-DOS
 Only one directory
 Block size 1KB

14

53

The CP/M File System

Memory layout of CP/M
54

MS-DOS
 Originally invented as a method for storing data on

floppy disks, first version has single directory
 Later used by MS-DOS with supports for a

hierarchical directory structure, and fixed disks as
well as floppy disks
 directory entries are fixed 32 bytes

 different versions support FAT-12, FAT-16 or FAT-32

55

Block Sizes and FAT Sizes

4KB to 32KB2KB to 32KB0.5KB to 4KBBlock size

1GB128KB8KBFAT size

268435456
~228

65526
~216

4086
~212

Max # of
blocks

28 bits16 bits12 bitsFAT entry

FAT-32FAT-16FAT-12Disk Size

56

Block Sizes and Max Partition Sizes

 Internally sector sizes are 512 bytes
 Empty boxes represent invalid combinations

15

57

Windows 95 and 98

 Long file names supported by Win95 V2 and Win98
 In order to be backwards compatible to MS-DOS, decisions

were made to assign internal 8 char DOS file names in
addition

An example of how a long name is stored in Windows 98
58

The Classic Unix File System

 Each disk partition has 4 Regions
 block 0: boot block

 block 1: super block. Contains the size of the disk and the
boundaries of the other regions

 i-nodes: list of i-nodes, each is a 64-byte structure

 free storage blocks for the contents of files.

 Each i-node contains owner, protection bits, size,
directory/file and 13 disk addresses.

 The first 10 of these addresses point directly at the first 10
blocks of a file. If a file is larger than 10 blocks (5,120 bytes),
the 11th points at a block for secondary indexing – single
indirect block

59

Classic Unix File System Cont.
 Second-level index block contains the addresses of the

next 128 blocks of the file (70,656 bytes)
 Two levels of indirection:12th entry (double indirect block)

points at up to 128 blocks, each pointing to 128 blocks of
the file (8,459,264 bytes)

 Three levels of indirection: 13th address (triple indirect
block) is for a three layered indexing of 1,082,201,087
bytes.

 A directory is accessed exactly as an ordinary file.
It contains 16 byte entries consisting of a 14-byte name and
an i-number (index or ID of an i-node). The root of the file
system hierarchy is at a known i-number (2).

60

Unix i-node

16

61

Directory Entry: Unix V7

 Each entry has file name and an I-node number
 I-node has all the attributes
 Restriction: File name size is bounded (14 chars)

62

Traversing Directory Structure

 Suppose we want to read the file /usr/ast/mbox
 Location of a i-node, given i-number, can be computed
 i-number of the root directory known, say, 2
 Read in the i-node 2 from the disk into memory
 Find out the location of the root directory file on disk, and read

the directory block in memory
 If directory spans multiple blocks, then read blocks until usr found

 Find out the i-number of directory usr, which is 6
 Read in the i-node 6 from disk
 Find out the location of the directory file usr on disk, and read in

the block containing this directory
 Find out the i-number of directory ast (26), and repeat

63

The UNIX V7 Directory Lookup

The steps in looking up /usr/ast/mbox

