
1

1

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture Note on Disk I/O

2

I/O Devices

 Storage devices
 Floppy, Magnetic disk, Magnetic tape, CD-ROM, DVD…

 User interaction
 Keyboard, mouse, monitor, sound card, printer, modem ….

 Significant part of OS code deals with I/O devices
 Communication with device drivers
 Error handling
 Interrupt management
 Convenient interfaces

3

Pentium Bus Architecture

4

Device Controllers

 I/O devices have components:
 mechanical component
 electronic component

 The electronic component is the device controller
 may be able to handle multiple devices
 Should have a standardized interface

 Controller's tasks
 convert serial bit stream to block of bytes
 perform error correction as necessary

 Controller interface
 Device registers
 Data buffers for reading/writing data (separate from main

memory, or not?)

2

5

Accessing the device

 Basically, two choices: I/O instructions that read/write I/O
ports, or memory mapped I/O

 I/O instructions can be of the form
 IN R, P R is a register, P is a port number

 In memory mapped I/O, no special instructions, but some
addresses in virtual memory correspond to ports

 MOV R, L L can be an address which is reserved for a
specific device

 Pentium provides both schemes
 I/O ports numbered 0 to 64K used for control information
 Memory addresses from 64K to 1M used for device buffers

6

Memory Mapped I/O
 In an instruction such as MOV R, L, L can be

 A location in main memory, or
 A control register, or address in data buffer, of a specific I/O

device
 I/O space viewed as an extension of main memory, and

addressed in the same way
 Of course, no overlap between the two address spaces

 Advantages
 Device drivers are written in C
 Protection managed by pages accessible in each user space
 Savings in number of instructions

 Issues
 Caching must be disabled for I/O pages (why?)
 How to separate real memory references from I/O ones

7

I/O Programming

 Uniform naming of devices
 In Unix, special directories such as /dev/lp, /dev/tty

 Device Independence
 Buffering of data

 user-space or kernel-space or double buffering
 Driver routines

 Busy waiting vs. Interrupt driven vs. DMA

8

I/O Code with Busy Waiting

 Goal: user wants to send N bytes from Buffer to an I/O
device (e.g. printer or floppy)

 Device controller has registers for status and for putting
data

 Basic approach (too wasteful for CPU):

Copy data into kernel buffer B;
for (i=0; i< N; i++) {

 /* wait for device to be free */
 while (*DeviceStatusReg != READY);

*DeviceDataReg = B[i];
 }

3

9

I/O Code with Interrupts

 Goal: To let CPU schedule other processes while device
is busy processing data

 Code for driver:
Copy data into kernel buffer B

 while (*DeviceStatusReg != ready);
DeviceDataReg = B[0]; / Do only the first step */

 InvokeScheduler();
 Code for interrupt handler:

if (N == 0) Wakeup(); /* unblock the process */
else {

DeviceDataReg = B[i];
N--; i++;
};

ResetInterrupt(); /*Notify device as an ack */

10

I/O with Direct Memory Access

 Goal: Device should interrupt CPU only after the entire
transfer

 Solution: Provide direct access between memory and
device so that data can be copied into memory

 DMA Controller: separate unit that manages this
 Driver routine

 Copy data into kernel space

 Set up DMA controller registers

 Schedule another process

 Interrupt handler
 Ack the interrupt

 Wakeup User

11

Mechanism of DMA Transfer

 A program running on CPU sets up the registers in DMA
controller (e.g. write N bytes into memory starting at
location XYZ)

 Is the address XYZ virtual or physical ?
 DMA controller sets up the registers in device controller to

request the transfer
 Original request may be divided into chunks

 Disk controller transfers the data directly into memory
 Bus architecture should resolve contention for memory

 Disk controller notifies DMA controller
 When the original request is entirely processed, DMA

controller interrupts the CPU

12

Secondary Storage Management

 Why secondary storage?
1 main memory too small

2 main memory volatile

 Devices: Disks, Tapes, Drums
 Disks are critical components

 For virtual memory management

 Storing files

 Disk technology hasn’t changed much compared to
processor technology (esp., speed)

4

13

Disk Drives

Tracks and Cylinders
14

Typical Disk Parameters

Compare Seek time, rotation time, transfer time

15

Disk Formatting

 Typical sector is 512 bytes
 Preamble identifying start code and sector address
 Data
 Error correction code (16 bits). At least detecting errors

possible with probability almost 1

 Cylinder skew:
After reading an entire track, as head is moved across a cylinder,

seeking next sector shouldn’t cause waiting for full rotation

 Interleaving sectors:
As a sector is copied into controller buffer, it needs to be copied

into main memory. So next sector should not be adjacent if
we wish to avoid waiting for one full rotation

16

Disk Formatting (1)

A disk sector

5

17

Disk Formatting (2)

An illustration of cylinder skew
18

Disk Formatting (3)

 No interleaving
 Single interleaving
 Double interleaving

19

Disk Access

 Physical address on a disk
(cylinder number, head number, sector number)

 Sectors can be given logical numbers that get decoded by
Disk Controller

 Design considerations
 Seek time (moving head to correct cylinder) and rotational

latency time (waiting for correct sector) are greater than data
transfer time (time to read)

 Lots of errors possible (bad sectors, bad bits)
 Caching blocks that happen to pass under disk head

commonly used

20

Disk-Head Scheduling
 Time required to read or write a disk block

determined by 3 factors
1. Seek time

2. Rotational delay
3. Actual transfer time

 Seek time dominates
 Error checking is done by controllers

6

21

Disk-Arm Scheduling: FCFS

Basic strategy for moving disk arm across cylinders: First-
come-first-served queue

disk queue: 98, 183, 37, 122, 14, 124, 65, 67
initial r/w head position: cylinder 53

 |---|-----|--------|-----------------|----|
 37 53 98 183
 |------|----------------|

 -------------------------------|

 total head movement
 = 45 + 75 + 146 + 85 + 108 + 110 + 59 + 2
 = 640 tracks

 OK for small load, low variance of waiting time

22

Disk-Arm Scheduling:SSF

Shortest Seek-Time First (SSF): Pick the closest one
next

Consider example from last slide: ordering will be
 65, 67, 37, 14, 98, 122, 124, 183

 total head movement (starting at 53)
 = 12 + 2 + 30 + 23 + 84 + 24 + 2 + 59

 = 236 tracks

 High variance (starvation possible)

23

Maintain a direction bit
Pick the request with shortest seek time in current direction first,

and change direction only at edges.

Previous example:
 Assume head was moving toward 0.
Ordering: 37, 14, 0, 65, 67, 98, 122, 124, 183

 total head movement
 = 16+23+14+65+2+31+24+2+59
 = 236 tracks

Almost as good as SSF in mean wait time, lower variance.

Disk-Arm Scheduling: Scan

24

Disk-Arm Scheduling Algorithms

 Look (elevator):
 Variation of Scan algorithm

 Change direction if no more requests farther down in
current direction

 Preferable to Scan (total head movement 208 in our case)

 Circular Look
 Always scan in the same direction servicing cylinders in a

circular manner (i.e. go to lowest numbered pending
request if no requests are higher than current position)

7

25

Fault Tolerance for Disks

Disks can have lots of errors
 Corrupted bits
 Corrupted sectors
 Manufacturing defects
 Disk crashes

Many levels of protection implemented
 Error correction within sectors
 Extra sectors within a disk
 Mirroring
 RAID (redundancy and parallelism)

26

Error Correction Code in Sectors

16 bytes within 512 byte sector used for ECC
Basic idea for k-bit ECC for n-bit data

 Define a function f from n-bit integers to k-bit integers

 n-bit data I is tagged with the ECC f(n)

 If two n-bit data items I and J differ only in small number of bits
then f(I) and f(J) are guaranteed to be different

 To store a value I, write <I,f(I)>

 While reading, read n+k bits, and check that last k-bits correspond
to the ECC of first n-bits

 Simplest scheme: Parity
 k=1, f(I)=1 if number of 1’s in binary encoding of I is even

 Error detection possible if just one bit changes, but can’t correct

27

Hamming Codes (1950’s)
 Let’s see how 1 error can be corrected in n-bits of data by adding (log n)

extra bits
 Suppose 11-bits of data D1 .. D11, we are going compute correction bits C1

.. C4
 Let’s number the total 15 bits together so that correction bits occupy

positions of powers of 2
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 C1 C2 D1 C3 D2 D3 D4 C4 D5 D6 D7 D8 D9 D10 D11
 Consider a sequence of 11 bits, say, 10101000100, map it to above format,

and find out which bit positions are 1’s
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 C1 C2 1 C3 0 1 0 C4 1 0 0 0 1 0 0
 Chosen positions are: 3, 6, 9, 13. Take their binary representations, and

XOR all the words
 (0011) XOR (0110) XOR (1001) XOR (1101) = (0001)
 So the error correction bits are: C1 = 1, C2=0, C3=0, C4=0

28

Error Correction in Hamming Codes
 What happens if a bit, say D11, gets flipped in storage/transmission
 D11 is in position 15, so decoder will compute the correction code as (0001) XOR

(1111) = (1110)
 Correction code in stored data = 0001; computed correction code = 1110.

 Compute XOR of these two values; this gives 1111, which is the position number of the
corrupted bit

 This correction scheme works for all bits (data as well as correction)
 Why does this work?

 C4 gives number of 1’s among bits D5 – D11
 C3 gives number of 1’s among bits D2 – D4 and D8 – D11
 C2 gives number of 1’s among bits D1, D3, D4, D6, D7, D10, D11
 C1 gives number of 1’s among bits D1, D2, D4, D5, D7, D9, D11

 If C4 is decoded incorrectly, decoder knows that error must be in either C4 or D5 –
D11.

 Now if C3 is correct, then D8 – D11 must be correct, and error must be in C4 or
D5—D7.

 What happens if C2 is incorrect? Wrong bit must be D7.

8

29

Error Correction Continued

 In general, in Hamming code, k-bits of error correction are used
to augment 2k – 1 – k bits of data giving a encoded string of 2k -
1 bits

 If there is a single error in storing or transmitting the encoded
string, the decoder can detect the error, as well as correct it

 Reed-Solomon codes (1960’s: Polynomial codes over certain
finite fields)
 Original codes can correct upto 2 errors in 251 bit/byte long messages by adding

5 extra bits/bytes
 Works well for bursty errors

 Error correction technology is central all data transmission, data
storage for disks, CDs etc

30

Bad Sectors

 Sectors can get defective for a variety of reasons
 Detected by the format command (in MS-DOS)
 Every track has extra (spare) sectors that are not part of logical

address space
 Disk controller keeps track of bad sectors and does remapping

of sector numbers
 Two choices for renumbering

 Substitute a spare sector for defective
 Renumber all by shifting

 Obvious tradeoff
 Efficiency of reading consecutive sectors
 Initial effort of rewriting preambles in each sector

31

Read Errors

 After reading a sector, what if ECC indicates an error?
1 ECC may allow error correction
2 Read again, and error may go away
3 If read error seems to happen repeatedly, then the sector can

be marked as bad, and replaced by a spare sector

 Instead of the driver, OS may need to keep track of bad sectors

 Backups have to worry about bad sectors

32

Reliability by Redundancy

 Mirroring (or Shadowing): duplicate disks
 Write every block to both the disks
 Read can be performed from any of the two disks

 This can be exploited to allow parallelism and speeding up of
reads

 Also for error correction: if first read fails, try the other
 Crash: If one disk crashes, then the other one can be used to

restore data
 If failures are independent, this dramatically increases mean-

time to failure
 This can be managed by device driver (if it can handle multiple

disks) or by OS
 Duplicating a disk is expensive.

9

33

RAID
Redundant Array of Independent Disks

 Disk access times are still slow compared to CPU/memory
 Natural solution: Read concurrently from multiple disks
 RAID Controller talks to OS just like a device driver and

manages a suite of disks to improve reliability and performance
 Striping:

 Organize logically consecutive chunks of data across different
disks to improve performance

 Striping can be at bit-level, byte-level, or sector-level
 Incoming request is split into all relevant disks by RAID controller,

and their outputs are put together
 Redundancy through duplication

 Multiple requests can be load-balanced
 Error recovery on faults

34

RAID Level 0

 Array of disks with block-level striping
 Strip = k sectors (for suitably chosen k)
 First k sectors are on first strip of first disk, next k sectors are

on first strip of second disk, and so on
 Advantages:

 A large request spanning multiple strips can be parallelized easily
 Not much overhead
 Used in high-performance applications

 Disadvantages
 No redundancy
 Mean-time to failure is, in fact, less than standard disks (why?)
 No parallelism for small requests

35

RAID Level 0

0
4

1
5

2
6

3
7

36

RAID Level 1

 Like mirroring, but with striping of level 0
 Use same number of backup disks with same striping
 Same benefits/issues as in mirroring

0
4

1
5

2
6

3
7

0
4

1
5

2
6

3
7

10

37

RAID Level 2

 Called memory-style error correcting code organization
 Uses bit-level striping
 Some of the bits used for parity or other error correction
 Sample: 4-bits of data encoded by additional 3-bits of ECC, and

resulting 7 bits stored on 7 different disks
 CM-2 machine: 32-bits of data with 7-bits of ECC spanning over

array of 39 disks
 Advantages

 Great parallelism for read as well as write
 Even if one disk crashes, all data can be recovered (due to ECC)

 Disadvantages
 Drives have to synchronized
 Overhead in putting together reads from different disks
 Crash recovery much slower (compared to RAID-1) 38

RAID Levels 3-5

 Raid levels 3 through 5
 Backup and parity drives are shaded

