
1

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture Note: Virtual Memory
(revised version)

2

Virtual Memory

 Recall: memory allocation with variable partitions requires
mapping logical addresses to physical addresses

 Virtual memory achieves a complete separation of logical and
physical address-spaces

 Today, typically a virtual address is 32 bits, this allows a
process to have 4GB of virtual memory
 Physical memory is much smaller than this, and varies from

machine to machine

 Virtual address spaces of different processes are distinct

 Structuring of virtual memory
 Paging: Divide the address space into fixed-size pages

 Segmentation: Divide the address space into variable-size
segments (corresponding to logical units)

3

Virtual Memory
Paging (1)

The position and function of the MMU

4

Paging

 Physical memory is divided into chunks called page-frames (on
Pentium, each page-frame is 4KB)

 Virtual memory is divided into chunks called pages; size of a
page is equal to size of a page frame
 So typically, 220 pages (a little over a million) in virtual memory

 OS keeps track of mapping of pages to page-frames
 Some calculations:

 10-bit address : 1KB of memory; 1024 addresses

 20-bit address : 1MB of memory; about a million addresses

 30-bit address : 1 GB of memory; about a billion addresses

5

Paging (2)

The relation between
virtual addresses
and physical
memory addres-
ses given by
page table

6

Virtual Memory in Unix

Process A

Virtual space

Process B

Virtual space

7

Paging
 A virtual address is considered as a pair (p,o)

 Low-order bits give an offset o within the page

 High-order bits specify the page p

 E.g. If each page is 1KB and virtual address is 16 bits, then
low-order 10 bits give the offset and high-order 6 bits give
the page number

 The job of the Memory Management Unit (MMU) is to
translate the page number p to a frame number f
 The physical address is then (f,o), and this is what goes on the

memory bus

 For every process, there is a page-table (basically, an array),
and page-number p is used as an index into this array for
the translation

8

Page Table Entry

1. Validity bit: Set to 0 if the corresponding page is not in
memory

2. Frame number
 Number of bits required depends on size of physical memory

3. Protection bits:
 Read, write, execute accesses

4. Referenced bit is set to 1 by hardware when the page is
accessed: used by page replacement policy

5. Modified bit (dirty bit) set to 1 by hardware on write-access:
used to avoid writing when swapped out

9

Page Tables (1)

Internal operation of MMU with 16 4 KB pages

10

Design Issues

 What is the “optimal” size of a page frame ?
 Typically 1KB – 4KB, but more on this later

 How to save space required to store the page table
 With 20-bit page address, there are over a million pages, so the

page-table is an array with over million entries
 Solns: Two-level page tables, TLBs (Translation Lookaside

Beffers), Inverted page tables
 What if the desired page is not currently in memory?

 This is called a page fault, and it traps to kernel
 Page daemon runs periodically to ensure that there is enough

free memory so that a page can be loaded from disk upon a
page fault

 Page replacement policy: how to free memory?

11

Multi-Level Paging
 Keeping a page-table with 220 entries in memory is not viable
 Solution: Make the page table hierarchical

 Pentium supports two-level paging

 Suppose first 10-bits index into a top-level page-entry table T1 (1024 or 1K
entries)

 Each entry in T1 points to another, second-level, page table with 1K
entries (4 MB of memory since each page is 4KB)

 Next 10-bits of physical address index into the second-level page-table
selected by the first 10-bits

 Total of 1K potential second-level tables, but many are likely to be unused
 If a process uses 16 MB virtual memory then it will have only 4 entries in

top-level table (rest will be marked unused) and only 4 second-level tables

12

Paging in Linux

Linux uses three-level page tables

13

Translation Lookaside Buffer (TLB)

 Page-tables are in main memory
 Access to main memory is slow compared to clock cycle on

CPU (10ns vs 1 ns)
 An instruction such as MOVE REG, ADDR has to decode

ADDR and thus go through page tables
 This is way too slow !!
 Standard practice: Use TLB stored on CPU to map pages

to page-frames
 TLB stores small number (say, 64) of page-table entries to

avoid the usual page-table lookup
 TLB is associative memory and contains, basically, pairs of

the form (page-no, page-frame)
 Special hardware compares incoming page-no in parallel

with all entries in TLB to retrieve page-frame
 If no match found in TLB, standard look-up invoked

14

More on TLB

 Key design issue: how to improve hit rate for TLB?
 Which pages should be in TLB: most recently accessed

 Who should update TLB?
 Modern architectures provide sophisticated hardware support

to do this

 Alternative: TLB miss generates a fault and invokes OS,
which then decides how to use the TLB entries effectively.

Page number Frame number

Modified bit

Protection bits

15

Inverted Page Tables

 When virtual memory is much larger than physical
memory, overhead of storing page-table is high

 For example, in 64-bit machine with 4KB per page and
256 MB memory, there are 64K page-frames but 252

pages !
 Solution: Inverted page tables that store entries of the

form (page-frame, process-id, page-no)
 At most 64K entries required!
 Given a page p of process x, how to find the

corresponding page frame?
 Linear search is too slow, so use hashing
 Note: issues like hash-collisions must be handled
 Used in some IBM and HP workstations; will be used

more with 64-bit machines

16

Hashed Page Tables

Page number Offset

Hash

Page
#

Frame #

Hash table
Number of entries: Number of page frames

PID

PID

17

Steps in Paging

 Today’s typical systems use TLBs and multi-level paging
 Paging requires special hardware support
 Overview of steps

1. Input to MMU: virtual address = (page p, offset o)

2. Check if there is a frame f with (p,f) in TLB

3. If so, physical address is (f,o)

4. If not, lookup page-table in main memory (a couple of
accesses due to multi-level paging)

5. If page is present, compute physical address

6. If not, trap to kernel to process page-fault

7. Update TLB/page-table entries (e.g. Modified bit)

18

Page Fault Handling

 Hardware traps to kernel on page fault
 CPU registers of current process are saved
 OS determines which virtual page needed
 OS checks validity of address, protection status
 Check if there is a free frame, else invoke page replacement

policy to select a frame
 If selected frame is dirty, write it to disk
 When page frame is clean, schedule I/O to read in page
 Page table updated
 Process causing fault rescheduled
 Instruction causing fault reinstated (this may be tricky!)
 Registers restored, and program continues execution

19

Paging Summary
 How long will access to a location in page p take?

 If the address of the corresponding frame is found in TLB?

 If the page-entry corresponding to the page is valid?
 Using two-level page table

 Using Inverted hashed page-table

 If a page fault occurs?

 How to save space required to store a page table?
 Two-level page-tables exploit the fact only a small and

contiguous fraction of virtual space is used in practice

 Inverted page-tables exploit the fact that the number of valid
page-table entries is bounded by the available memory

 Note: Page-table for a process is stored in user space

20

Page Replacement Algorithms
 When should a page be replaced

 Upon a page fault if there are no page frames available
 By pager daemon executed periodically

 Pager daemon needs to keep free page-frames
 Executes periodically (e.g. every 250 msec in Unix)
 If number of free page frames is below certain fraction (a

settable parameter), then decides to free space
 Modified pages must first be saved

 unmodified just overwritten
 Better not to choose an often used page

 will probably need to be brought back in soon
 Well-understood, practical algorithms
 Useful in other contexts also (e.g. web caching)

21

Reference String
Def: The virtual space of a process consists of N = {1,2,…,n}

pages.
A process reference string w is the sequence of pages referenced

by a process for a given input:
w = r1 r2 … rk … rT

where rk ∈ N is the page referenced on the kth memory
reference.

E.g., N = {0,...,5}.
 w = 0 0 3 4 5 5 5 2 2 2 1 2 2 2 1 1 0 0

Given f page frames,
• warm-start behavior of the replacement policy

• cold-start behavior of the replacement policy

22

 Forward and backward distances
 Def: The forward distance for page X at time t,

denoted by dt(X), is

 dt(X) = k if the first occurrence of X in rt+1 rt+2 …at
rt+k.

 dt(X) = ∞ if X does not appear in rt+1 rt+2 ….

 Def: The backward distance for page X at time t,
denoted by bt(X), is

 bt(X) = k if rt-k was the last occurrence of X.
 bt(X) = ∞ if X does not appear in r1 r2 … rt-1.

23

Paging Replacement Algorithms

1 Random -- Worst implementable method, easy to implement.

2 FIFO - Replace the longest resident page. Easy to implement since
control information is a FIFO list of pages.

 Consider a program with 5 pages and
reference string
 w = 1 2 3 4 1 2 5 1 2 3 4 5
Suppose there are 3 page frames.
 w = 1 2 3 4 1 2 5 1 2 3 4 5

 PF 1 1 1 1 4 4 4 5 5 5 5 5 5
PF 2 2 2 2 1 1 1 1 1 3 3 3
PF 3 3 3 3 2 2 2 2 2 4 4

 victim 1 2 3 4 1 2

24

Optimal Page Replacement Algorithm

 If we knew the precise sequence of requests for pages, we
can optimize for least number of faults

 Replace page needed at the farthest point in future
 Optimal but unrealizable

 Off-line simulations can estimate the performance of this
algorithm, and be used to measure how well the chosen
scheme is doing
 Competitive ratio of an algorithm = (page-faults generated by

optimal policy)/(actual page faults)
 Consider reference string: 1 2 3 4 1 2 5 1 2 3 2 5

25

 Consider a program with 5 pages and
reference string
 w = 1 2 3 4 1 2 5 1 2 3 4 5
Suppose there are 3 page frames.

 w = 1 2 3 4 1 2 5 1 2 3 4 5
PF 1
PF 2
PF 3
victim

26

First Attempts

 Use reference bit and modified bit in page-table entry
 Both bits are initially 0

 Read sets reference to 1, write sets both bits to 1

 Reference bit cleared on every clock interrupt (40ms)

 Prefer to replace pages unused in last clock cycle
 First, prefer to keep pages with reference bit set to 1

 Then, prefer to keep pages with modified bit set to 1

 Easy to implement, but needs additional strategy to resolve ties

 Note: Upon a clock interrupt, OS updates CPU-usage counters for
scheduling in PCB as well as reference bits in page tables

27

Queue Based Algorithms
 FIFO

 Maintain a linked list of pages in memory in order of arrival

 Replace first page in queue

 Easy to implement, but access info not used at all

 Modifications
 Second-chance

 Clock algorithm

28

Second Chance Page Replacement
 Pages ordered in a FIFO queue as before
 If the page at front of queue (i.e. oldest page) has Reference

bit set, then just put it at end of the queue with R=0, and try
again

 Effectively, finds the oldest page with R=0, (or the first one in
the original queue if all have R=1)

 Easy to implement, but slow !!

1 1 0 1 0
A B C D E

1 0 0 0 0
D E A B Free

After Page Replacement (C is replaced)

29

Clock Algorithm
 Optimization of Second chance
 Keep a circular list with current pointer
 If current page has R=0 then replace, else set R to 0 and

move current pointer

1

1

01

0

A

B

CD

E

Current
0

0

01

0

A

B

FreeD

E

Current

30

Least Recently Used (LRU)
 Assume pages used recently will be used again soon

 throw out page that has been unused for longest time

 Consider the following references assuming 3 frames
1 2 3 4 1 2 5 1 2 3 2 5

 This is the best method that is implementable since the past is
usually a good indicator for the future.

 It requires enormous hardware assistance: either a fine-grain
timestamp for each memory access placed in the page table,
or a sorted list of pages in the order of references.

31

How to implement LRU?
 Main challenge: How to implement this?

 Reference bit not enough

 Highly specialized hardware required
 Counter-based solution

 Maintain a counter that gets incremented with each memory
access,

 Copy the counter in appropriate page table entry

 On page-fault pick the page with lowest counter

 List based solution
 Maintain a linked list of pages in memory

 On every memory access, move the accessed page to end

 Pick the front page on page fault

32

Approximating LRU: Aging
 Bookkeeping on every memory access is expensive
 Software solution: OS does this on every clock interrupt
 Every page-entry has an additional 8-bit counter
 Every clock cycle, for every page in memory, shift the

counter 1 bit to the right copying R bit into the high-order bit
of the counter, and clear R bit

 On page-fault, or when pager daemon wants to free up
space, pick the page with lowest counter value

 Intuition: High-order bits of recently accessed pages are set
to 1 (i-th high-order bit tells us if page was accessed during i-
th previous clock-cycle)

 Potential problem: Insufficient info to resolve ties
 Only one bit info per clock cycle (typically 40ms)
 Info about accesses more than 8 cycles ago lost

33

Aging Illustration

Clock tick

0 0 0 01 1 1 1

Accessed in last clock cycle?
Accessed in previous 8th clock cycle?

R 1 0 10 0 0 1

R bit of current cycle

Update upon clock interrupt

34

Analysis of Paging Algorithms

 Reference string r for a process is the sequence of pages
referenced by the process

 Suppose there are m frames available for the process, and
consider a page replacement algorithm A
 We will assume demand paging, that is, a page is brought in only

upon fault

 Let F(r,m,A) be the faults generated by A
 Belady’s anomaly: allocating more frames may increase the

faults: F(r,m,A) may be smaller than F(r,m+1,A)
 Worth noting that in spite of decades of research

 Worst-case performance of all algorithms is pretty bad

 Increase m is a better way to reduce faults than improving A
(provided we are using a stack algorithm)

35

Effect of replacement policy

 Evaluate a page replacement policy by observing how it
behaves on a given page-reference string.

Page faults

No. of page frames

36

Belady’s Anomaly

For FIFO algorithm, as the following counter-example shows,
increasing m from 3 to 4 increases faults

 w | 1 2 3 4 1 2 5 1 2 3 4 5

 | 1 2 3 4 1 2 5 5 5 3 4 4 9 page
 m=3 | 1 2 3 4 1 2 2 2 5 3 3 faults
 | 1 2 3 4 1 1 1 2 5 5

 | 1 2 3 4 4 4 5 1 2 3 4 5 10 page
 m=4 | 1 2 3 3 3 4 5 1 2 3 4 faults
 | 1 2 2 2 3 4 5 1 2 3
 | 1 1 1 2 3 4 5 1 2

37

Stack Algorithms

 For an algorithm A, reference string r, and page-frames m, let
P(r,m,A) be the set of pages that will be in memory if we run A
on references r using m frames

 An algorithm A is called a stack algorithm if for all r and for all
m, P(r,m,A) is a subset of P(r,m+1,A)
 Intuitively, this means the set of pages that A considers relevant

grows monotonically as more memory becomes available

 For stack algorithms, for all r and for all m, F(r,m+1,A) cannot
be more than F(r,m,A) (so increasing memory can only reduce
faults!)

 LRU is a stack algorithm: P(r,m,LRU) should be the last m
pages in r, so P(r,m,LRU) is a subset of P(r,m+1,LRU)

38

 |
 |
 |
CPU |
util. |
 |

 degree of
 multiprogramming

Thrashing
Will the CPU Utilization increase monotonically as the degree
Of multiprogramming (number of processes in memory) increases?

Not really! It increases for a while, and then starts dropping again.
Reason: With many processes around, each one has only a few pages in memory,
so more frequent page faults, more I/O wait, less CPU utilization

Bottomline: Cause of low CPU utilization is either too few or too many processes!

39

Locality of Reference

 To avoid thrashing (i.e. too many page faults), a process
needs “enough” pages in the memory

 Memory accesses by a program are not spread all over its
virtual memory randomly, but show a pattern
 E.g. while executing a procedure, a program is accessing the

page that contains the code of the procedure, the local variables,
and global vars

 This is called locality of reference
 How to exploit locality?

 Prepaging: when a process is brought into memory by the
swapper, a few pages are loaded in a priori (note: demand
paging means that a page is brought in only when needed)

 Working set: Try to keep currently used pages in memory

40

Locality

 The phenomenon that programs actually use only a limited set
of pages during any particular time period of execution.

 This set of pages is called the locality of the program during that
time.

 Ex. Program phase diagram
 virtual ^

address |--------------------------
 5| | | x | x | |
 |--------------------------
 4| | | x | x | |
 |--------------------------
segments 3| | x | x | x | x |
 |--------------------------
 2| x | x | | x | x |
 |--------------------------
 1| x | x | | | |
 |-------------------------->
 1 2 3 4 5 virtual
 phases time

41

Working Set
 The working set of a process is the set of all pages accessed by

the process within some fixed time window.
Locality of reference means that a process's working set is
usually small compared to the total number of pages it
possesses.

 A program's working set at the k-th reference with window size h
is defined to be
W(k,h) = { i ∈ N | page i appears among rk-h+1 … rk }

 The working set at time t is
W(t,h) = W(k,h) where time(rk) ≤ t < t(rk+1)

 Ex. h=4
 w = 1 2 3 4 1 2 5 1 2 5 3 2

 | | | | | | | | | | | |
 {1} | | | | | | | | | | |
 {1,2}| {1,2,3,4} | {1,2,5} | |
 {1,2,3} {1,2,4,5} {1,2,3,5}

42

Working Set
 Working set of a process at time t is the set of pages

referenced over last k accesses (here, k is a parameter)
 Goal of working set based algorithms: keep the working set in

memory, and replace pages not in the working set
 Maintaining the precise working set not feasible (since we

don’t want to update data structures upon every memory
access)

 Compromise: Redefine working set to be the set of pages
referenced over last m clock cycles
 Recall: clock interrupt happens every 40 ms and OS can check if

the page has been referenced during the last cycle (R=1)
 Complication: what if a process hasn’t been scheduled for a

while? Shouldn’t “over last m clock cycles” mean “over last m
clock cycles allotted to this process”?

43

Virtual Time and Working Set

 Each process maintains a virtual time in its PCB entry
 This counter should maintain the number of clock cycles that

the process has been scheduled

 Each page table entry maintains time of last use (wrt to the
process’s virtual time)

 Upon every clock interrupt, if current process is P, then
increment virtual time of P, and for all pages of P in memory,
if R = 1, update “time of last use” field of the page to current
virtual time of P

 Age of a page p of P = Current virtual time of P minus time of
last use of p

 If age is larger than some threshold, then the page is not in
the working set, and should be evicted

44

WSClock Replacement Algorithm

 Combines working set with clock algorithm
 Each page table entry maintains modified bit M
 Each page table entry maintains reference bit R indicating

whether used in the current clock cycle
 Each PCB entry maintains virtual time of the process
 Each page table entry maintains time of last use
 List of active pages of a process are maintained in a ring with

a current pointer

45

WSClock Algorithm

1

A
Current030

0

B

125

0

C

1180

D

020

0

E

031

RMLast use

Current Virtual Time = 32
Threshold for working set = 10

0

ACurrent

030

0

B

125

0

C

1180

Free

00

0

E

031

RMLast use

Write to disk Scheduled

46

WSClock Algorithm
Maintain reference bit R and dirty bit M for each page
Maintain process virtual time in each PCB entry
Maintain Time of last use for each page (age=virtual time – this field)
To free up a page-frame, do:
 Examine page pointed by Current pointer

 If R = 0 and Age > Working set window k and M = 0 then add this page to
list of free frames

 If R = 0 and M = 1 and Age > k then schedule a disk write, advance current,
and repeat

 If R = 1or Age <= k then clear R, advance current, and repeat

 If current makes a complete circle then
 If some write has been scheduled then keep advancing current till some

write is completed

 If no write has been scheduled then all pages are in working set so pick a
page at random (or apply alternative strategies)

47

Page Replacement in Unix

 Unix uses a background process called paging daemon that
tries to maintain a pool of free clean page-frames

 Every 250ms it checks if at least 25% (a adjustable
parameter) frames are free
 selects pages to evict using the replacement algorithm
 Schedules disk writes for dirty pages

 Two-handed clock algorithm for page replacement
 Front hand clears R bits and schedules disk writes (if needed)
 Page pointed to by back hand replaced (if R=0 and M=0)

48

UNIX and Swapping
 Under normal circumstances pager daemon keeps enough pages free to

avoid thrashing. However, when the page daemon is not keeping up with
the demand for free pages on the system, more drastic measures need
be taken: swapper swaps out entire processes

 The swapper typically swaps out large, sleeping processes in order to
free memory quickly. The choice of which process to swap out is a
function of process priority and how long process has been in main
memory. Sometimes ready processes are swapped out (but not until
they've been in memory for at least 2 seconds).

 The swapper is also responsible for swapping in ready-to-run but
swapped-out processes (checked every few seconds)

49

Local Vs Global Policy

Paging algorithm can be applied either
1 locally: the memory is partitioned into “workspace”, one for each

process.
(a) equal allocation: if m frames and n processes then m/n frames.

(b) proportional allocation: if m frames & n processes, let si be the size
of Pi.

2 globally: the algorithm is applied to the entire collection of running
programs. Susceptible to thrashing (a collapse of performance due
to excessive page faults).
Thrashing directly related to the degree of multiprogramming.

S s

a s S m
ii

n

i i

=

= ×
=∑ 1

/

50

PFF (page Fault Frequency)

 direct way to control page faults.
 |

 |
page |- - - - - - - - - - - upper bound
fault| (increase # of frames)
rate |
 |
 |- - - - - - - - - - - lower bound
 | (decrease # of frames)
 |

 # of frames

 Program restructuring
 to improve locality
 at compile-time
 at run-time
 (using information saved during exec)

51

Data structure on page faults

 int a[128][128]
for (j=0, j<128, j++)
 for (i=0, i<128, i++)
 a[i,j]=0

for (i=0, i<128, i++)
 for (j=0, j<128, j++)
 a[i,j]=0

 C row first
FORTRAN column first

52

What’s a good page size ?

 OS has to determine the size of a page
 Does it have to be same as size of a page frame (which is

determined by hardware)? Not quite!

 Arguments for smaller page size:
 Less internal fragmentation (unused space within pages)

 Can match better with locality of reference

 Arguments for larger page size
 Less number of pages, and hence, smaller page table

 Less page faults

 Less overhead in reading/writing of pages

53

Page Size

1 (to reduce) table fragmentation ⇒ larger page

2 internal fragmentation ⇒ smaller page

3 read/write i/o overhead for pages ⇒ larger page

4 (to match) program locality (& therefore to reduce total
i/o) ⇒ smaller page

5 number of page faults ⇒ larger page

54

Thm. (Optimal Page Size)
 (wrt factors 1 & 2)

Let c1 = cost of losing a word to table fragmentation and c2 =
cost of losing a word to internal fragmentation.
Assume that each program begins on a page boundary.
If the avg program size s0 is much larger than the page size z,
then the optimal page size z0 is approximately √2cs0 where c =
c1 /c2.

 Proof.
int. .cos /

.cos /

[cos |] / /

/ / /

/ /

/

/

/

frag t c z

tablefrag t c s z

E t z c s z c z

dE ez c s z c

c s z c

c s c z

c c s z

z c c s

=

=

= +

= − +

= − +

=

=

=

2

1 0

1 0 2

1 0
2

2

1 0
2

2

1 0 2
2

1 2 0
2

1 2 0

2

2

2

0 2

2

2

2

55

Page size examples

 c1=c2=1
 z s0 f=z/s0× 100%

 8 32 25
16 128 13
32 512 6
64 2K 3
128 8K 1.6
256 32K .8
512 128K .4
1024 512K .2

 c1 > c2⇒ larger page than above (need cache)
c1 < c2 (unlikely) ⇒smaller

 GE645 64 word & 1024 word pages
IBM/370 2K & 4K
VAX 512bytes
Berkeley Unix 2 x 512 = 1024

56

Page Size: Tradeoff

Overhead due to page table and internal fragmentation

where
 s = average process size in bytes

 p = page size in bytes

 e = page entry

2sepoverheadp⋅=+page table space

internal
fragmentation

Optimized when2pse=

If s = 4 MB, and e = 8B, then p = 8 KB

57

Sharing of Pages

 Can two processes share pages (e.g. for program text)
 Solution in PDP-11:

 Use separate address space and separate page table for
instructions (I space) and data (D space)

 Two programs can share same page tables in I space

 Alternative: different entries can point to the same page
 Careful management of access writes and page replacement

needed

 In most versions of Unix, upon fork, parent and child use same
pages but have different page table entries
 Pages initially are read-only

 When someone wants to write, traps to kernel, then OS copies the
page and changes it to read-write (copy on write)

58

Shared Pages with separate page tables

Two processes sharing same pages with “copy on write”

P

Frame g, read

Frame f, read
Frame g, read

Frame f, read

Page table for Q

Page table for P

Process table

Memory

f

Q

g

59

Segmentation

 Recall: Paging allows mapping of virtual addresses to
physical addresses and is transparent to user or to
processes

 Orthogonal concept: Logical address space is partitioned
into logically separate blocks (e.g. data vs code) by the
process (or by the compiler) itself

 Logical memory divided into segments, each segment has a
size (limit)

 Logical address is (segment number, offset within seg)
 Note: Segmentation can be with/without virtual memory and

paging
 Conceptual similarity to threads: threads is a logical

organization within a process for improving CPU usage,
segments are for improving memory usage

60

 Segment Table Physical Memory
 +------------+ +------------+
0 | 10, 8 | | |
 +------------+ 5 +------------+
1 | 30, 5 | | seg 3 |
 +------------+ 10 +------------+
2 | not present| | seg 0 |
 +------------+ | |
3 | 5, 5 | +------------+
 +------------+ | |
 | illeg. seg | | |
 +------------+ | |
 30 +------------+
 | seg 1 |
 35 +------------+
 | |
 | |
 +------------+

 logical address physical address
 0,2 ------> 12
 1,4 ------> 34
 0,9 ------> illegal offset
 2,1 ------> absent seg.

Implementation without Paging

First few bits of
address give segment

Segment table keeps
Base, Limit

61

Advantages

 Address allocation is easy for compiler
 Different segments can grow/shrink independently
 Natural for linking separately compiled code without

worrying about relocation of virtual addresses
 Just allocate different segments to different packages

 Application specific
 Large arrays in scientific computing can be given their own

segment (array bounds checking redundant)

 Natural for sharing libraries
 Different segments can have different access protections

 Code segment can be read-only

 Different segments can be managed differently

62

Segmentation with Paging

 Address space within a segment can be virtual, and
managed using page tables
 Same reasons as we saw for non-segmented virtual memory

 Two examples
 Multics

 Pentium

 Steps in address translation
1. Check TLB for fast look-up

2. Consult segment table to locate segment descriptor for s

3. Page-table lookup to locate the page frame (or page fault)

63

Multics: Segmentation+ Paging

Physical address: (f,o)

Segment # Page #
18 bits

Offset
6 bits 10 bits

s p o

Segment Table

base addr b Length l base +s

base

Base + 218

At most 64

Page Table for segment s

Valid Frame number fb06+p

b06
Check p <= l

64

Multics Memory

 34-bit address split into 18-bit segment no, and 16 bit
(virtual) address within the segment

 Thus, each segment has 64K words of virtual memory
 Physical memory address is 24 bits, and each page frame

is of size 1K
 Address within segment is divided into 6-bit page number

and 10-bit offset
 Segment table has potentially 256K entries
 Each segment entry points to page table that contains upto

64 entries

65

Multics details cont

 Segment table entry is 36 bits consisting of
 main memory address of page table (but only 18 bits needed,

last 6 bits assumed to be 0)

 Length of segment (in terms of number of pages, this can be
used for a limit check)

 Protection bits

 More details
 Different segments can have pages of different sizes

 Segment table itself can be in a segment itself (and can be
paged!)

 Memory access first has to deal with segment table and
then with page table before getting the frame

 TLBs absolutely essential to make this work!

66

Pentium
 16K segments divided into LDT and GDT (Local/Global

Descriptor Tables)
 Segment selector: 16 bits

 1 bit saying local or global
 2 bits giving protection level
 13 bits giving segment number

 Special registers on CPU to select code segment, data
segment etc

 Incoming address: (selector,offset)
 Selector is added to base address of segment table to

locate segment descriptor
 Phase 1: Use the descriptor to get a “linear” address

 Limit check
 Add Offset to base address of segment

67

Paging in Pentium

 Paging can be disabled for a segment
 Linear virtual address is 32 bits, and each page is 4KB
 Offset within page is 12 bits, and page number is 20 bits.

Thus, 220 pages, So use 2-level paging
 Each process has page directory with 1K entries
 Each page directory entry points to a second-level page

table, in turn with 1K entries (so one top-level entry can
cover 4MB of memory)

 TLB used
 Many details are relevant to compatibility with earlier

architectures

