
1

1

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania
Fall 2003

Lecture Note: Virtual Memory
(revised version)

2

Virtual Memory

 Recall: memory allocation with variable partitions requires
mapping logical addresses to physical addresses

 Virtual memory achieves a complete separation of logical and
physical address-spaces

 Today, typically a virtual address is 32 bits, this allows a
process to have 4GB of virtual memory
 Physical memory is much smaller than this, and varies from

machine to machine

 Virtual address spaces of different processes are distinct

 Structuring of virtual memory
 Paging: Divide the address space into fixed-size pages

 Segmentation: Divide the address space into variable-size
segments (corresponding to logical units)

3

Virtual Memory
Paging (1)

The position and function of the MMU

4

Paging

 Physical memory is divided into chunks called page-frames (on
Pentium, each page-frame is 4KB)

 Virtual memory is divided into chunks called pages; size of a
page is equal to size of a page frame
 So typically, 220 pages (a little over a million) in virtual memory

 OS keeps track of mapping of pages to page-frames
 Some calculations:

 10-bit address : 1KB of memory; 1024 addresses

 20-bit address : 1MB of memory; about a million addresses

 30-bit address : 1 GB of memory; about a billion addresses

2

5

Paging (2)

The relation between
virtual addresses
and physical
memory addres-
ses given by
page table

6

Virtual Memory in Unix

Process A

Virtual space

Process B

Virtual space

7

Paging
 A virtual address is considered as a pair (p,o)

 Low-order bits give an offset o within the page

 High-order bits specify the page p

 E.g. If each page is 1KB and virtual address is 16 bits, then
low-order 10 bits give the offset and high-order 6 bits give
the page number

 The job of the Memory Management Unit (MMU) is to
translate the page number p to a frame number f
 The physical address is then (f,o), and this is what goes on the

memory bus

 For every process, there is a page-table (basically, an array),
and page-number p is used as an index into this array for
the translation

8

Page Table Entry

1. Validity bit: Set to 0 if the corresponding page is not in
memory

2. Frame number
 Number of bits required depends on size of physical memory

3. Protection bits:
 Read, write, execute accesses

4. Referenced bit is set to 1 by hardware when the page is
accessed: used by page replacement policy

5. Modified bit (dirty bit) set to 1 by hardware on write-access:
used to avoid writing when swapped out

3

9

Page Tables (1)

Internal operation of MMU with 16 4 KB pages
10

Design Issues

 What is the “optimal” size of a page frame ?
 Typically 1KB – 4KB, but more on this later

 How to save space required to store the page table
 With 20-bit page address, there are over a million pages, so the

page-table is an array with over million entries
 Solns: Two-level page tables, TLBs (Translation Lookaside

Beffers), Inverted page tables
 What if the desired page is not currently in memory?

 This is called a page fault, and it traps to kernel
 Page daemon runs periodically to ensure that there is enough

free memory so that a page can be loaded from disk upon a
page fault

 Page replacement policy: how to free memory?

11

Multi-Level Paging
 Keeping a page-table with 220 entries in memory is not viable
 Solution: Make the page table hierarchical

 Pentium supports two-level paging

 Suppose first 10-bits index into a top-level page-entry table T1 (1024 or 1K
entries)

 Each entry in T1 points to another, second-level, page table with 1K
entries (4 MB of memory since each page is 4KB)

 Next 10-bits of physical address index into the second-level page-table
selected by the first 10-bits

 Total of 1K potential second-level tables, but many are likely to be unused
 If a process uses 16 MB virtual memory then it will have only 4 entries in

top-level table (rest will be marked unused) and only 4 second-level tables

12

Paging in Linux

Linux uses three-level page tables

4

13

Translation Lookaside Buffer (TLB)

 Page-tables are in main memory
 Access to main memory is slow compared to clock cycle on

CPU (10ns vs 1 ns)
 An instruction such as MOVE REG, ADDR has to decode

ADDR and thus go through page tables
 This is way too slow !!
 Standard practice: Use TLB stored on CPU to map pages

to page-frames
 TLB stores small number (say, 64) of page-table entries to

avoid the usual page-table lookup
 TLB is associative memory and contains, basically, pairs of

the form (page-no, page-frame)
 Special hardware compares incoming page-no in parallel

with all entries in TLB to retrieve page-frame
 If no match found in TLB, standard look-up invoked

14

More on TLB

 Key design issue: how to improve hit rate for TLB?
 Which pages should be in TLB: most recently accessed

 Who should update TLB?
 Modern architectures provide sophisticated hardware support

to do this

 Alternative: TLB miss generates a fault and invokes OS,
which then decides how to use the TLB entries effectively.

Page number Frame number

Modified bit

Protection bits

15

Inverted Page Tables

 When virtual memory is much larger than physical
memory, overhead of storing page-table is high

 For example, in 64-bit machine with 4KB per page and
256 MB memory, there are 64K page-frames but 252

pages !
 Solution: Inverted page tables that store entries of the

form (page-frame, process-id, page-no)
 At most 64K entries required!
 Given a page p of process x, how to find the

corresponding page frame?
 Linear search is too slow, so use hashing
 Note: issues like hash-collisions must be handled
 Used in some IBM and HP workstations; will be used

more with 64-bit machines
16

Hashed Page Tables

Page number Offset

Hash

Page
#

Frame #

Hash table
Number of entries: Number of page frames

PID

PID

5

17

Steps in Paging

 Today’s typical systems use TLBs and multi-level paging
 Paging requires special hardware support
 Overview of steps

1. Input to MMU: virtual address = (page p, offset o)

2. Check if there is a frame f with (p,f) in TLB

3. If so, physical address is (f,o)

4. If not, lookup page-table in main memory (a couple of
accesses due to multi-level paging)

5. If page is present, compute physical address

6. If not, trap to kernel to process page-fault

7. Update TLB/page-table entries (e.g. Modified bit)

18

Page Fault Handling

 Hardware traps to kernel on page fault
 CPU registers of current process are saved
 OS determines which virtual page needed
 OS checks validity of address, protection status
 Check if there is a free frame, else invoke page replacement

policy to select a frame
 If selected frame is dirty, write it to disk
 When page frame is clean, schedule I/O to read in page
 Page table updated
 Process causing fault rescheduled
 Instruction causing fault reinstated (this may be tricky!)
 Registers restored, and program continues execution

19

Paging Summary
 How long will access to a location in page p take?

 If the address of the corresponding frame is found in TLB?

 If the page-entry corresponding to the page is valid?
 Using two-level page table

 Using Inverted hashed page-table

 If a page fault occurs?

 How to save space required to store a page table?
 Two-level page-tables exploit the fact only a small and

contiguous fraction of virtual space is used in practice

 Inverted page-tables exploit the fact that the number of valid
page-table entries is bounded by the available memory

 Note: Page-table for a process is stored in user space

20

Page Replacement Algorithms
 When should a page be replaced

 Upon a page fault if there are no page frames available
 By pager daemon executed periodically

 Pager daemon needs to keep free page-frames
 Executes periodically (e.g. every 250 msec in Unix)
 If number of free page frames is below certain fraction (a

settable parameter), then decides to free space
 Modified pages must first be saved

 unmodified just overwritten
 Better not to choose an often used page

 will probably need to be brought back in soon
 Well-understood, practical algorithms
 Useful in other contexts also (e.g. web caching)

6

21

Reference String

Def: The virtual space of a process consists of N = {1,2,…,n}
pages.

A process reference string w is the sequence of pages referenced
by a process for a given input:

w = r1 r2 … rk … rT
where rk ∈ N is the page referenced on the kth memory
reference.

E.g., N = {0,...,5}.
 w = 0 0 3 4 5 5 5 2 2 2 1 2 2 2 1 1 0 0

Given f page frames,
• warm-start behavior of the replacement policy

• cold-start behavior of the replacement policy

22

 Forward and backward distances
 Def: The forward distance for page X at time t,

denoted by dt(X), is

 dt(X) = k if the first occurrence of X in rt+1 rt+2 …at
rt+k.

 dt(X) = ∞ if X does not appear in rt+1 rt+2 ….

 Def: The backward distance for page X at time t,
denoted by bt(X), is

 bt(X) = k if rt-k was the last occurrence of X.
 bt(X) = ∞ if X does not appear in r1 r2 … rt-1.

23

Paging Replacement Algorithms

1 Random -- Worst implementable method, easy to implement.

2 FIFO - Replace the longest resident page. Easy to implement since
control information is a FIFO list of pages.

 Consider a program with 5 pages and
reference string
 w = 1 2 3 4 1 2 5 1 2 3 4 5
Suppose there are 3 page frames.
 w = 1 2 3 4 1 2 5 1 2 3 4 5

 PF 1 1 1 1 4 4 4 5 5 5 5 5 5
PF 2 2 2 2 1 1 1 1 1 3 3 3
PF 3 3 3 3 2 2 2 2 2 4 4

 victim 1 2 3 4 1 2

24

Optimal Page Replacement Algorithm

 If we knew the precise sequence of requests for pages, we
can optimize for least number of faults

 Replace page needed at the farthest point in future
 Optimal but unrealizable

 Off-line simulations can estimate the performance of this
algorithm, and be used to measure how well the chosen
scheme is doing
 Competitive ratio of an algorithm = (page-faults generated by

optimal policy)/(actual page faults)
 Consider reference string: 1 2 3 4 1 2 5 1 2 3 2 5

7

25

 Consider a program with 5 pages and
reference string
 w = 1 2 3 4 1 2 5 1 2 3 4 5
Suppose there are 3 page frames.

 w = 1 2 3 4 1 2 5 1 2 3 4 5
PF 1
PF 2
PF 3
victim

26

First Attempts

 Use reference bit and modified bit in page-table entry
 Both bits are initially 0

 Read sets reference to 1, write sets both bits to 1

 Reference bit cleared on every clock interrupt (40ms)

 Prefer to replace pages unused in last clock cycle
 First, prefer to keep pages with reference bit set to 1

 Then, prefer to keep pages with modified bit set to 1

 Easy to implement, but needs additional strategy to resolve ties

 Note: Upon a clock interrupt, OS updates CPU-usage counters for
scheduling in PCB as well as reference bits in page tables

27

Queue Based Algorithms
 FIFO

 Maintain a linked list of pages in memory in order of arrival

 Replace first page in queue

 Easy to implement, but access info not used at all

 Modifications
 Second-chance

 Clock algorithm

28

Second Chance Page Replacement
 Pages ordered in a FIFO queue as before
 If the page at front of queue (i.e. oldest page) has Reference

bit set, then just put it at end of the queue with R=0, and try
again

 Effectively, finds the oldest page with R=0, (or the first one in
the original queue if all have R=1)

 Easy to implement, but slow !!

1 1 0 1 0
A B C D E

1 0 0 0 0
D E A B Free

After Page Replacement (C is replaced)

8

29

Clock Algorithm
 Optimization of Second chance
 Keep a circular list with current pointer
 If current page has R=0 then replace, else set R to 0 and

move current pointer

1

1

01

0

A

B

CD

E

Current
0

0

01

0

A

B

FreeD

E

Current
30

Least Recently Used (LRU)
 Assume pages used recently will be used again soon

 throw out page that has been unused for longest time

 Consider the following references assuming 3 frames
1 2 3 4 1 2 5 1 2 3 2 5

 This is the best method that is implementable since the past is
usually a good indicator for the future.

 It requires enormous hardware assistance: either a fine-grain
timestamp for each memory access placed in the page table,
or a sorted list of pages in the order of references.

31

How to implement LRU?
 Main challenge: How to implement this?

 Reference bit not enough

 Highly specialized hardware required
 Counter-based solution

 Maintain a counter that gets incremented with each memory
access,

 Copy the counter in appropriate page table entry

 On page-fault pick the page with lowest counter

 List based solution
 Maintain a linked list of pages in memory

 On every memory access, move the accessed page to end

 Pick the front page on page fault

32

Approximating LRU: Aging
 Bookkeeping on every memory access is expensive
 Software solution: OS does this on every clock interrupt
 Every page-entry has an additional 8-bit counter
 Every clock cycle, for every page in memory, shift the

counter 1 bit to the right copying R bit into the high-order bit
of the counter, and clear R bit

 On page-fault, or when pager daemon wants to free up
space, pick the page with lowest counter value

 Intuition: High-order bits of recently accessed pages are set
to 1 (i-th high-order bit tells us if page was accessed during i-
th previous clock-cycle)

 Potential problem: Insufficient info to resolve ties
 Only one bit info per clock cycle (typically 40ms)
 Info about accesses more than 8 cycles ago lost

9

33

Aging Illustration

Clock tick

0 0 0 01 1 1 1

Accessed in last clock cycle?
Accessed in previous 8th clock cycle?

R 1 0 10 0 0 1

R bit of current cycle

Update upon clock interrupt

34

Analysis of Paging Algorithms

 Reference string r for a process is the sequence of pages
referenced by the process

 Suppose there are m frames available for the process, and
consider a page replacement algorithm A
 We will assume demand paging, that is, a page is brought in only

upon fault

 Let F(r,m,A) be the faults generated by A
 Belady’s anomaly: allocating more frames may increase the

faults: F(r,m,A) may be smaller than F(r,m+1,A)
 Worth noting that in spite of decades of research

 Worst-case performance of all algorithms is pretty bad

 Increase m is a better way to reduce faults than improving A
(provided we are using a stack algorithm)

35

Effect of replacement policy

 Evaluate a page replacement policy by observing how it
behaves on a given page-reference string.

Page faults

No. of page frames

36

Belady’s Anomaly

For FIFO algorithm, as the following counter-example shows,
increasing m from 3 to 4 increases faults

 w | 1 2 3 4 1 2 5 1 2 3 4 5

 | 1 2 3 4 1 2 5 5 5 3 4 4 9 page
 m=3 | 1 2 3 4 1 2 2 2 5 3 3 faults
 | 1 2 3 4 1 1 1 2 5 5

 | 1 2 3 4 4 4 5 1 2 3 4 5 10 page
 m=4 | 1 2 3 3 3 4 5 1 2 3 4 faults
 | 1 2 2 2 3 4 5 1 2 3
 | 1 1 1 2 3 4 5 1 2

10

37

Stack Algorithms

 For an algorithm A, reference string r, and page-frames m, let
P(r,m,A) be the set of pages that will be in memory if we run A
on references r using m frames

 An algorithm A is called a stack algorithm if for all r and for all
m, P(r,m,A) is a subset of P(r,m+1,A)
 Intuitively, this means the set of pages that A considers relevant

grows monotonically as more memory becomes available

 For stack algorithms, for all r and for all m, F(r,m+1,A) cannot
be more than F(r,m,A) (so increasing memory can only reduce
faults!)

 LRU is a stack algorithm: P(r,m,LRU) should be the last m
pages in r, so P(r,m,LRU) is a subset of P(r,m+1,LRU)

38

 |
 |
 |
CPU |
util. |
 |

 degree of
 multiprogramming

Thrashing
Will the CPU Utilization increase monotonically as the degree
Of multiprogramming (number of processes in memory) increases?

Not really! It increases for a while, and then starts dropping again.
Reason: With many processes around, each one has only a few pages in memory,
so more frequent page faults, more I/O wait, less CPU utilization

Bottomline: Cause of low CPU utilization is either too few or too many processes!

39

Locality of Reference
 To avoid thrashing (i.e. too many page faults), a process

needs “enough” pages in the memory
 Memory accesses by a program are not spread all over its

virtual memory randomly, but show a pattern
 E.g. while executing a procedure, a program is accessing the

page that contains the code of the procedure, the local variables,
and global vars

 This is called locality of reference
 How to exploit locality?

 Prepaging: when a process is brought into memory by the
swapper, a few pages are loaded in a priori (note: demand
paging means that a page is brought in only when needed)

 Working set: Try to keep currently used pages in memory

40

Locality

 The phenomenon that programs actually use only a limited set
of pages during any particular time period of execution.

 This set of pages is called the locality of the program during that
time.

 Ex. Program phase diagram
 virtual ^

address |--------------------------
 5| | | x | x | |
 |--------------------------
 4| | | x | x | |
 |--------------------------
segments 3| | x | x | x | x |
 |--------------------------
 2| x | x | | x | x |
 |--------------------------
 1| x | x | | | |
 |-------------------------->
 1 2 3 4 5 virtual
 phases time

11

41

Working Set
 The working set of a process is the set of all pages accessed by

the process within some fixed time window.
Locality of reference means that a process's working set is
usually small compared to the total number of pages it
possesses.

 A program's working set at the k-th reference with window size h
is defined to be
W(k,h) = { i ∈ N | page i appears among rk-h+1 … rk }

 The working set at time t is
W(t,h) = W(k,h) where time(rk) ≤ t < t(rk+1)

 Ex. h=4
 w = 1 2 3 4 1 2 5 1 2 5 3 2

 | | | | | | | | | | | |
 {1} | | | | | | | | | | |
 {1,2}| {1,2,3,4} | {1,2,5} | |
 {1,2,3} {1,2,4,5} {1,2,3,5}

42

Working Set
 Working set of a process at time t is the set of pages

referenced over last k accesses (here, k is a parameter)
 Goal of working set based algorithms: keep the working set in

memory, and replace pages not in the working set
 Maintaining the precise working set not feasible (since we

don’t want to update data structures upon every memory
access)

 Compromise: Redefine working set to be the set of pages
referenced over last m clock cycles
 Recall: clock interrupt happens every 40 ms and OS can check if

the page has been referenced during the last cycle (R=1)
 Complication: what if a process hasn’t been scheduled for a

while? Shouldn’t “over last m clock cycles” mean “over last m
clock cycles allotted to this process”?

43

Virtual Time and Working Set
 Each process maintains a virtual time in its PCB entry

 This counter should maintain the number of clock cycles that
the process has been scheduled

 Each page table entry maintains time of last use (wrt to the
process’s virtual time)

 Upon every clock interrupt, if current process is P, then
increment virtual time of P, and for all pages of P in memory,
if R = 1, update “time of last use” field of the page to current
virtual time of P

 Age of a page p of P = Current virtual time of P minus time of
last use of p

 If age is larger than some threshold, then the page is not in
the working set, and should be evicted

44

WSClock Replacement Algorithm
 Combines working set with clock algorithm
 Each page table entry maintains modified bit M
 Each page table entry maintains reference bit R indicating

whether used in the current clock cycle
 Each PCB entry maintains virtual time of the process
 Each page table entry maintains time of last use
 List of active pages of a process are maintained in a ring with

a current pointer

12

45

WSClock Algorithm

1

A
Current030

0

B

125

0

C

1180

D

020

0

E

031

RMLast use

Current Virtual Time = 32
Threshold for working set = 10

0

ACurrent

030

0

B

125

0

C

1180

Free

00

0

E

031

RMLast use

Write to disk Scheduled
46

WSClock Algorithm
Maintain reference bit R and dirty bit M for each page
Maintain process virtual time in each PCB entry
Maintain Time of last use for each page (age=virtual time – this field)
To free up a page-frame, do:
 Examine page pointed by Current pointer

 If R = 0 and Age > Working set window k and M = 0 then add this page to
list of free frames

 If R = 0 and M = 1 and Age > k then schedule a disk write, advance current,
and repeat

 If R = 1or Age <= k then clear R, advance current, and repeat

 If current makes a complete circle then
 If some write has been scheduled then keep advancing current till some

write is completed

 If no write has been scheduled then all pages are in working set so pick a
page at random (or apply alternative strategies)

47

Page Replacement in Unix

 Unix uses a background process called paging daemon that
tries to maintain a pool of free clean page-frames

 Every 250ms it checks if at least 25% (a adjustable
parameter) frames are free
 selects pages to evict using the replacement algorithm
 Schedules disk writes for dirty pages

 Two-handed clock algorithm for page replacement
 Front hand clears R bits and schedules disk writes (if needed)
 Page pointed to by back hand replaced (if R=0 and M=0)

48

UNIX and Swapping
 Under normal circumstances pager daemon keeps enough pages free to

avoid thrashing. However, when the page daemon is not keeping up with
the demand for free pages on the system, more drastic measures need
be taken: swapper swaps out entire processes

 The swapper typically swaps out large, sleeping processes in order to
free memory quickly. The choice of which process to swap out is a
function of process priority and how long process has been in main
memory. Sometimes ready processes are swapped out (but not until
they've been in memory for at least 2 seconds).

 The swapper is also responsible for swapping in ready-to-run but
swapped-out processes (checked every few seconds)

13

49

Local Vs Global Policy

Paging algorithm can be applied either
1 locally: the memory is partitioned into “workspace”, one for each

process.
(a) equal allocation: if m frames and n processes then m/n frames.

(b) proportional allocation: if m frames & n processes, let si be the size
of Pi.

2 globally: the algorithm is applied to the entire collection of running
programs. Susceptible to thrashing (a collapse of performance due
to excessive page faults).
Thrashing directly related to the degree of multiprogramming.

S s

a s S m
ii

n

i i

=

= ×
=∑ 1

/

50

PFF (page Fault Frequency)

 direct way to control page faults.
 |

 |
page |- - - - - - - - - - - upper bound
fault| (increase # of frames)
rate |
 |
 |- - - - - - - - - - - lower bound
 | (decrease # of frames)
 |

 # of frames

 Program restructuring
 to improve locality
 at compile-time
 at run-time
 (using information saved during exec)

51

Data structure on page faults

 int a[128][128]
for (j=0, j<128, j++)
 for (i=0, i<128, i++)
 a[i,j]=0

for (i=0, i<128, i++)
 for (j=0, j<128, j++)
 a[i,j]=0

 C row first
FORTRAN column first

52

What’s a good page size ?
 OS has to determine the size of a page

 Does it have to be same as size of a page frame (which is
determined by hardware)? Not quite!

 Arguments for smaller page size:
 Less internal fragmentation (unused space within pages)

 Can match better with locality of reference

 Arguments for larger page size
 Less number of pages, and hence, smaller page table

 Less page faults

 Less overhead in reading/writing of pages

14

53

Page Size

1 (to reduce) table fragmentation ⇒ larger page

2 internal fragmentation ⇒ smaller page

3 read/write i/o overhead for pages ⇒ larger page

4 (to match) program locality (& therefore to reduce total
i/o) ⇒ smaller page

5 number of page faults ⇒ larger page

54

Thm. (Optimal Page Size)
 (wrt factors 1 & 2)

Let c1 = cost of losing a word to table fragmentation and c2 =
cost of losing a word to internal fragmentation.
Assume that each program begins on a page boundary.
If the avg program size s0 is much larger than the page size z,
then the optimal page size z0 is approximately √2cs0 where c =
c1 /c2.

 Proof.
int. .cos /

.cos /

[cos |] / /

/ / /

/ /

/

/

/

frag t c z

tablefrag t c s z

E t z c s z c z

dE ez c s z c

c s z c

c s c z

c c s z

z c c s

=

=

= +

= − +

= − +

=

=

=

2

1 0

1 0 2

1 0
2

2

1 0
2

2

1 0 2
2

1 2 0
2

1 2 0

2

2

2

0 2

2

2

2

55

Page size examples

 c1=c2=1
 z s0 f=z/s0× 100%

 8 32 25
16 128 13
32 512 6
64 2K 3
128 8K 1.6
256 32K .8
512 128K .4
1024 512K .2

 c1 > c2⇒ larger page than above (need cache)
c1 < c2 (unlikely) ⇒smaller

 GE645 64 word & 1024 word pages
IBM/370 2K & 4K
VAX 512bytes
Berkeley Unix 2 x 512 = 1024

56

Page Size: Tradeoff

Overhead due to page table and internal fragmentation

where
 s = average process size in bytes

 p = page size in bytes

 e = page entry

2sepoverheadp⋅=+page table space

internal
fragmentation

Optimized when2pse=

If s = 4 MB, and e = 8B, then p = 8 KB

15

57

Sharing of Pages
 Can two processes share pages (e.g. for program text)
 Solution in PDP-11:

 Use separate address space and separate page table for
instructions (I space) and data (D space)

 Two programs can share same page tables in I space

 Alternative: different entries can point to the same page
 Careful management of access writes and page replacement

needed

 In most versions of Unix, upon fork, parent and child use same
pages but have different page table entries
 Pages initially are read-only

 When someone wants to write, traps to kernel, then OS copies the
page and changes it to read-write (copy on write)

58

Shared Pages with separate page tables

Two processes sharing same pages with “copy on write”

P

Frame g, read

Frame f, read
Frame g, read

Frame f, read

Page table for Q

Page table for P

Process table

Memory

f

Q

g

59

Segmentation
 Recall: Paging allows mapping of virtual addresses to

physical addresses and is transparent to user or to
processes

 Orthogonal concept: Logical address space is partitioned
into logically separate blocks (e.g. data vs code) by the
process (or by the compiler) itself

 Logical memory divided into segments, each segment has a
size (limit)

 Logical address is (segment number, offset within seg)
 Note: Segmentation can be with/without virtual memory and

paging
 Conceptual similarity to threads: threads is a logical

organization within a process for improving CPU usage,
segments are for improving memory usage

60

 Segment Table Physical Memory
 +------------+ +------------+
0 | 10, 8 | | |
 +------------+ 5 +------------+
1 | 30, 5 | | seg 3 |
 +------------+ 10 +------------+
2 | not present| | seg 0 |
 +------------+ | |
3 | 5, 5 | +------------+
 +------------+ | |
 | illeg. seg | | |
 +------------+ | |
 30 +------------+
 | seg 1 |
 35 +------------+
 | |
 | |
 +------------+

 logical address physical address
 0,2 ------> 12
 1,4 ------> 34
 0,9 ------> illegal offset
 2,1 ------> absent seg.

Implementation without Paging

First few bits of
address give segment

Segment table keeps
Base, Limit

16

61

Advantages
 Address allocation is easy for compiler
 Different segments can grow/shrink independently
 Natural for linking separately compiled code without

worrying about relocation of virtual addresses
 Just allocate different segments to different packages

 Application specific
 Large arrays in scientific computing can be given their own

segment (array bounds checking redundant)

 Natural for sharing libraries
 Different segments can have different access protections

 Code segment can be read-only

 Different segments can be managed differently

62

Segmentation with Paging
 Address space within a segment can be virtual, and

managed using page tables
 Same reasons as we saw for non-segmented virtual memory

 Two examples
 Multics

 Pentium

 Steps in address translation
1. Check TLB for fast look-up

2. Consult segment table to locate segment descriptor for s

3. Page-table lookup to locate the page frame (or page fault)

63

Multics: Segmentation+ Paging

Physical address: (f,o)

Segment # Page #
18 bits

Offset
6 bits 10 bits

s p o

Segment Table

base addr b Length l base +s

base

Base + 218

At most 64

Page Table for segment s

Valid Frame number fb06+p

b06
Check p <= l

64

Multics Memory

 34-bit address split into 18-bit segment no, and 16 bit
(virtual) address within the segment

 Thus, each segment has 64K words of virtual memory
 Physical memory address is 24 bits, and each page frame

is of size 1K
 Address within segment is divided into 6-bit page number

and 10-bit offset
 Segment table has potentially 256K entries
 Each segment entry points to page table that contains upto

64 entries

17

65

Multics details cont
 Segment table entry is 36 bits consisting of

 main memory address of page table (but only 18 bits needed,
last 6 bits assumed to be 0)

 Length of segment (in terms of number of pages, this can be
used for a limit check)

 Protection bits

 More details
 Different segments can have pages of different sizes

 Segment table itself can be in a segment itself (and can be
paged!)

 Memory access first has to deal with segment table and
then with page table before getting the frame

 TLBs absolutely essential to make this work!
66

Pentium
 16K segments divided into LDT and GDT (Local/Global

Descriptor Tables)
 Segment selector: 16 bits

 1 bit saying local or global
 2 bits giving protection level
 13 bits giving segment number

 Special registers on CPU to select code segment, data
segment etc

 Incoming address: (selector,offset)
 Selector is added to base address of segment table to

locate segment descriptor
 Phase 1: Use the descriptor to get a “linear” address

 Limit check
 Add Offset to base address of segment

67

Paging in Pentium
 Paging can be disabled for a segment
 Linear virtual address is 32 bits, and each page is 4KB
 Offset within page is 12 bits, and page number is 20 bits.

Thus, 220 pages, So use 2-level paging
 Each process has page directory with 1K entries
 Each page directory entry points to a second-level page

table, in turn with 1K entries (so one top-level entry can
cover 4MB of memory)

 TLB used
 Many details are relevant to compatibility with earlier

architectures

