
1

CSE 380
Computer Operating Systems

Instructor: Insup Lee

University of Pennsylvania, Fall 2002
Lecture Note: Memory Management

2

Memory Management

q The memory management portion of the Operating System is
responsible for the efficient usage of main memory, especially in a
multiprogramming environment where processes contend for
memory.

q It must also offer protection of one process address space from
another (including protection of system address space from user
processes).

q The memory subsystem should also provide programmers with a
convenient logical or virtual address space, in which the low-level
details of memory management are hidden.

3

Sharing of Memory

Issues

q Allocation schemes

q Protection from each other

q Protecting OS code

q Translating logical addresses to physical

q Swapping programs

q What if physical memory is small: Virtual
memory

Program 2

O S

Program 3

Free space

Program 1

4

Memory Hierarchy

ß small amount of fast, expensive memory – cache

ß some medium-speed, medium price main memory

ß gigabytes of slow, cheap disk storage

5

Memory Management Strategies

1 Fetch Strategy:
Determine when to load and how much to load at a time.
E.g., demand fetching, anticipated fetching (pre-
fetching).

2 Placement (or allocation) Strategy:
Determine where information is to be placed.
E.g., Best-Fit, First-Fit, Buddy-System.

3 Replacement Strategy:
Determine which memory area is to be removed under
contention conditions.
E.g., LRU, FIFO.

6

Memory Management Evolution

q Variations
1 Fixed Partitions

2 Variable Partitions

3 Segmentation

4 Paging

q Criteria
1 How efficiently can it be implemented?

2 How effectively can the physical memory be utilized?

Modern PCs

Early computers
Relevant again: PDAs, smartcards

7

Fixed Partitions
1 Divide all physical memory into a fixed set of contiguous

partitions. E.g., early IBM 360 models.
 +---------+

 | 12K | Queue for waiting processes
 +---------+
 | 2K |
 +---------+
 | 6K |
 +---------+
 | OS: 2K |

 +---------+
2 Place only one process at a time in any partition.
3 Bind physical to virtual address during loading, not during

execution.
4 Partition boundaries limit the available memory for each

process.
5 A process is either entirely in main memory or entirely on

backing store (i.e., swapped in or swapped out).

8

6 A process may only be swapped into the same partition from
which it was swapped out (why?)

7 It can only simulate smaller, not larger, virtual space than physical
space.

8 No sharing between processes.
9 Should there be a single queue per partition or one global queue?
10 Memory space wasted:

• Internal fragmentation: memory which is internal to a partition, but
not used.

• External fragmentation: a partition is unused and available, but too
small for any waiting job.

9

Effect of Multiprogramming
q Recall: A central goal of multiprogramming is to keep CPU busy while one

process waits for an I/O
q Number of processes constrained by memory size
q Tradeoff between memory size and CPU utilization
q Can we have estimate of desired number of processes? If each process

spends 75% time waiting, how many processes would keep CPU busy all the
time?

q If each process spends .75 fraction waiting, then assuming independence,
probability that N processes will all wait at the same time is .75N (this equals
.05 for N = 10). So effective CPU utilization is 1 - .75N

q If waiting fraction is p then CPU utilization is 1 – pN

q This is only a crude estimate, but a useful guide

10

CPU Utilization Curve

Degree of multiprogramming

11

Relocation and Protection

q Cannot be sure where program will be loaded in memory
ß address locations of variables, code routines cannot be absolute, and some

scheme for mapping compile-time (logical) addresses to run-time (physical)
addresses needed

ß must keep a program out of other processes’ partitions (protection)

q Simplest scheme: Loader performs relocation (feasible only for fixed
partitions)

q Use base and limit registers in the hardware
ß Logical addresses added to base value to map to physical addr

ß Logical addresses larger than limit value is an error

ß Frequently used, so special hardware required

12

Swapping

q Swapper decides which processes
should be in main memory

q How to allocate memory?

q For now, assume the entire memory
needed by a process is allocated in a
single block

q Suppose, 180K free memory, and A
needs 30K

A: 30K

O S: 20K

Free: 150K

13

Swapping

q B requests 50K

q C requests 20K

q D requests 20K

q A exits

q C exits

qMemory is fragmented

q Should OS compact it to make free
memory contiguous?

Free: 30K

O S: 20K

Free: 20K

B: 50K

Free: 60K
D: 20K

14

More on swapping

q There should be some free space for dynamic allocation of memory
(heaps) within the space allocated to a process
ß In modern systems, stack grows downwards and heap grows upwards, with

fixed space for compiled code

q With variable partitions, OS must keep track of memory that is free
ß Bitmaps (arrays)

ß Linked lists

q Classical tradeoffs: space required vs time for (de)allocation

15

Managing Free Space

q Bit-map

ß Suppose memory is divided in chunks

of 10K

ß Maintain a vector of 0/1’s that

specifies availability

ß i-th bit tells whether i-th chunk is free

ß For the current example: 20 bits

00000011 00111110 0011

Free: 30K

O S: 20K

Free: 20K

B: 50K

Free: 60K
D: 20K

16

Managing Free Space: Linked Lists

q Each record has

ß Process ID/ Free (H: hole)

ß Start location

ß Size

ß Pointer to Next record

q Current state
(H,2,3),(B,5,5),(H,10,2),(D,12,2),(H,14,6)

Free: 30K

O S: 20K

Free: 20K

B: 50K

Free: 60K
D: 20K

How should we update the list when B leaves?

17

Managing Free Space: Linked Lists

q Current state
(H,2,3),(B,5,5),(H,10,2),(D,12,2),(H,14,6)

q PCB for a process can have a pointer
into the corresponding record

qWhen a process terminates, neighboring
blocks need to be examined

ß Doubly-linked lists

Free: 30K

O S: 20K

Free: 20K

B: 50K

Free: 60K
D: 20K

18

Allocation Strategy

q Suppose a new process requests 15K,
which hole should it use?

q First-fit: 30K hole

q Best-fit: 20K hole

qWorst-fit: 60K hole

Free: 30K

O S: 20K

Free: 20K

B: 50K

Free: 60K
D: 20K

19

Allocation strategies
q Let {Hi | i = 1,…,n} be unused blocks and k be the size

of a requested block.
q First-Fit
ß Select the first Hi such that size (Hi) ≥ k.
ß That is, select the first block that is big enough

q Best-Fit
ß Select Hi such that size (Hi) ≥ k and, if size (Hj) ≥ k then size (Hj) ≥

size (Hi) for i ≠ j.
ß That is, select the smallest block that is big enough.

qWorst-Fit
ß Select Hi such that size (Hi) ≥ k, and if size(Hj) ≥ k then size(Hj) ≥

size(Hi) for i ≠ j. (idea: to produce the largest left-over block.)

q Buddy System

20

Best-fit vs. First-fit

q Both could leave many small and useless holes.
q To shorten search time for First-Fit, start the next

search at the next hole following the previously selected
hole.

q Best-Fit performs better: Assume holes of 20K and 15K,
requests for 12K followed by 16K can be satisfied only
by best-fit

q First-Fit performs better: Assume holes of 20K and 15K,
requests for 12K, followed by 14K, and 7K, can be
satisfied only by first-fit

q In practice,
F-F is usually better than B-F, and
F-F and B-F are better than W-F.

21

Buddy Systems

q Allocation algorithm that forms basis of Linux memory management
q Suppose we have 128 units (128 pages or 128K)
q Each request is rounded up to powers of 2
q Initially a single hole of size 128
q Suppose, A needs 6 units, request rounded up to 8
q Smallest hole available: 128. Successively halved till hole of size 8 is

created
q At this point, holes of sizes 8, 16, 32, 64
q Next request by B for 5 units: hole of size 8 allocated
q Next request by C for 24 units: hole of size 32 allocated

22

Buddy Systems

64H

32C

16H

8A

8B

64H

32C

8A

8B

8H
4H

4D

D requests 3

64H

32C

16H

8H
4H

4D

B exits

64H

32C

8H

8B

8H
4H

4D

A exits

