
CSE 380: Extra Credit: Distributed Leader Election

Due : Wednesday, December 10, 2003

Submit the code, executable, and documentation using the turnin command to the account
cse380@eniac by 11.59pm on Dec 10. Reminder: Copying the solution from a fellow student, a
website, or some other source, is a violation of the University policies on academic integrity. On
eniac, you can submit the �les by using the command:

turnin -c cse380 [list of files to turnin]

This assignment requires you to implement a leader election protocol in the context of Unix
processes talking to each other over TCP sockets. You have to write a program leader that takes 3
integers as arguments. First is to be used as the unique identi�er to be used for leader election, the
second is the port number of the socket that the process should receive messages from, and the third
is the port number of the socket that the process should be sending messages to. So an invocation
will be leader id ls rs. Multiple copies of this program are started to form a communication
ring. For example, the following should form a ring of 3 processes:

leader 45 54325 23330 &

leader 21 23330 10010 &

leader 86 10010 54325 &

The program leader should do the following steps:

� Open a server socket, bind the port number ls to this socket, and get ready to listen to
messages over this socket. This would require a sequence of socket, bind, and listen calls.

� Open a client socket, and connect it to the port rs. This would require a sequence of socket
and connect calls.

� Messages should be sent over client socket using send, and received from the server socket
using recv. The goal of the message exchange is to elect a unique leader.

A simple ring based election algorithm that you can use is given here:

In this algorithm, each processor sends a message with its identi�er to its right
neighbor, and then waits for messages from its left neighbor. When it receives such
a message, it checks the identi�er in this message. If the identi�er is greater than
its own identi�er, it forwards the message to the right; otherwise, it 'swallows' the
message and does not forward it. If a processor receives a message with its own
identi�er, it declares itself a leader by sending a termination message to its right
neighbor, and terminating as a leader. A processor that receives a termination
message forwards it to the right, and terminates as a non-leader.

You can experiment with your own protocol as long as it utilizes the ring structure.

Whenever the program decides on the id of the leader, it should print a message mentioning
the id. The protocol should satisfy two properties: eventually all processes should print such
an election message, and there should be no disagreement about who the leader is.

� Once the leader is decided, the program can close the connections and terminate.

To learn about socket programming, consult a network programming book, or Unix man pages.
There is a wealth of information available online. For example, see
http://www.ecst.csuchico.edu/~beej/guide/ You should focus on the network programming
portion of the site, not the IPC portion.



The course site also has a demo program socktest.c which shows how to open server and client
connections and exchange messages.

Here is what you should submit:

1. A �le leader.c. Include a README �le if compilation requires unusual 
ags. It is important
that this �le compiles on eniac without errors.

2. The code should include documentation including an argument about why this implements
the leader election correctly.

3. The program should print a statement whenever an interesting event happens. Interesting
events include opening and closing connections, sending and receiving of messages, and deciding
on the leader. Each such statement should include the id of the current instance. For example,
if we run the script for the 3 process ring from last page, a possible sequence of statements
printed could be

I am 45 : Server connection established for port 54325

I am 21 : Server connection established for port 23330

I am 86 : Server connection established for port 10010

I am 45 : Client connection established for port 23330

I am 86 : Client connection established for port 54325

I am 21 : Client connection established for port 10010

I am 45 : Sending message 45

I am 21 : Sending message 21

I am 86 : Sending message 86

I am 45 : Receiving message 86

I am 86 : Receiving message 21

I am 21 : Receiving message 45

I am 45 : Sending message 86

I am 21 : Receiving message 86

I am 21 : Sending message 86

I am 86 : Receiving message 86

I am 86 : Leader id is 86

I am 86 : Sending leader message 86

I am 45 : Receiving leader message 86

I am 45 : Leader id is 86

I am 45 : Sending leader message 86

I am 21 : Receiving leader message 86

I am 21 : Leader id is 86

You should use the exact syntax above for your output . You may include other
messages in your output as well.

Finally, it is worth noting that we are using sockets for one-way FIFO communication between
a single sender (client) and a single receiver (server), but sockets actually allow more powerful
communication (e.g. multiple clients). Second, the ports are global across the system. That is, in
the above example, if some other process is already binding its socket to the port 54325, bind()
will return an error. Since there are 64000 ports (of which some are already used by the kernel), if
you pick port numbers randomly, or try a couple of times, things should work. If not, devise your
solution (e.g. you can write a parent process that opens sockets, acquires port numbers for them,
and then spawns o� di�erent copies of leader as child processes). Also, note that the hostname for
identifying ports may need to include red or blue system on eniac.


