
CSE 380 Homework 2 1

CSE 380: Homework 2: Synchronization

Due : Thursday, October 2, 2003

Submit a hardcopy solution of the problems in class on Oct 2, and submit code and
documentation for the programs using the turnin command to the account cse380@eniac
by 11.59pm on Oct 2. The code should include comments which adequately describe the
solution, as described below.

Reminder: Copying the solution from a fellow student, a website, or some other source,
is a violation of the University policies on academic integrity.

Implementing Dining Philosophers

Recall the dining philosophers problem of philosophers seated around a table eating spaghetti
periodically. In this question, you have to implement a solution using system calls for
semaphores. You will submit two variations of the dining philosophers problem:

a) a solution to the dining philosophers problem using processes, shared memory, and
semaphores

b) a solution using threads and semaphores.

A skeleton for each part is available at:

http://www.cis.upenn.edu/~cse380/hw2.tar.gz

It specifies the basic routines that need to be implemented. The skeleton includes a makefile
that will allow you to type make proc to generate the part one and make thread to generate
the program for part two. Please do not change the name of the files or the targets in the
makefile.

This assignment uses POSIX semaphores, Solaris shared memory functions, and POSIX

threads. You are expected to use these calls for your programs.
As far as the solution to the problem is concerned, you can use class notes, textbook,

or design your own solution.

Part One: Using Process and Shared Memory

For part one, your solution should work in the following way (see dinPhil proc.c in the
skeleton):

1. Create one process for each philosopher

2. The number of philosophers should be the first argument to your program. The input
range is restricted from three to 20 philosophers, inclusive.

3. Each philosopher should eat bites times, which is the second input parameter to the
program. Count the number of times each philosopher eats, and when (s)he has eaten
the maximum number of bites, (s)he stops eating (the corresponding process exits).

CSE 380 Homework 2 2

4. For mutual exclusion, use POSIX semaphores. Relevant system calls are: sem init(),
sem post(), sem wait, sem getvalue and sem destroy().

The semaphores should be allocated in shared memory (see Appendix A on the system
support for doing this in Solaris).

5. Simulate thinking and eating using the random and sleep system calls.

6. Your code should be well documented with sufficient explanation of high-level objec-
tives as well as of details. Your documentation will serve as the main justification for
the correctness of your program. It is your responsibility to convince the graders that
your solution makes sense.

Part Two: Using Threads

Threads should be created using POSIX threads (man pthreads on eniac. An example of a
creating pthreads is shown in Appendix B. Part two has the same basic requirements for
part one with the following exceptions:

1. Create one thread for each philosopher instead of a process for each.

2. Shared memory is not required.

3. Mutual exclusion for the pthreads version can be implemented using either semaphores
as in part one or by using pthread mutex lock and pthread mutex unlock.

Submission

We have created specific requirements for the naming of your source files, your program,
the output, and the compilation process. Please do not remove targets from the makefile, or
alter the names of the source files. Your hardcopy should divided into two sections, one for
each part of the assignment. Separately staple each section and include your name, email
address, and a designation of the part of the assignment at the beginning of each of the two
sections. Please include an explanation before your code to explain your solution.

• use turnin with the following syntax:

turnin -ccse380 -phw2 Makefile dinPhil_thread.c dinPhil_proc.c

• For every critical section in your code, add statements that identify the entering and
exiting from that section. If your program has two critical sections, then the lock of
the mutex before the first should be directly followed by the line:

printf("Starting critical section 1\n");

• Unlocking the mutex to exit the critical section should be directly preceded by this
line:

printf("Stopping critical section 1\n");

CSE 380 Homework 2 3

Use the exact format above.

• When philosopher ‘i’ takes their forks, print a line with the following format to stdout:

printf("Philosopher %d taking forks\n", i);

Similarly, when philosopher ‘i’ puts their forks down, print a line with the following
format:

printf("Philosopher %d putting forks\n", i);

• Keep track of each time a philosopher eats. When philosopher ‘i’ eats for the ’j’-th
time, print the followinng:

printf("Philosopher %d eating for time %d\n", i, j);

Use the man pages (as well as class notes and textbook) for information on necessary
system calls (e.g. man semaphore and man pthreads).

CSE 380 Homework 2 4

Appendix A: Shared Memory System Calls

This section gives information on how Unix processes can request and use shared memory
segments. For every shared memory segment, the kernel maintains the following structure
of information:

/*

* There is a shared mem id data structure (shmid_ds) for each

* segment in the system.

*/

struct shmid_ds {

struct ipc_perm shm_perm; /* operation permission struct */

size_t shm_segsz; /* size of segment in bytes */

/*.... some implementation dependent info */

pid_t shm_lpid; /* pid of last shmop */

pid_t shm_cpid; /* pid of creator */

shmatt_t shm_nattch; /* current # attached */

ulong_t shm_cnattch; /* in-core # attached */

time_t shm_atime; /* last shmat time */

time_t shm_dtime; /* last shmdt time */

time_t shm_ctime; /* last change time */

};

The ipc perm structure contains the access permissions for the shared memory segment.

struct ipc_perm {

uid_t uid; /* owner’s user id */

gid_t gid; /* owner’s group id */

uid_t cuid; /* creator’s user id */

gid_t cgid; /* creator’s group id */

mode_t mode; /* access modes */

uint_t seq; /* slot usage sequence number */

key_t key; /* key */

};

int shmget(key_t key, int size, int shmflag);

The shmflag argument specifies the low-order 9 bits of the mode for the shared memory,
and whether a new segment is being created or if an existing one is being referenced.

The shmflag argument is a combination of the constants:

CSE 380 Homework 2 5

Numeric Symbolic Description

0400 SHM R Read by owner
0200 SHM W Write by owner
0040 SHM R>>3 Read by group
0020 SHM W>>3 Write by group
0004 SHM R>>6 Read by world
0002 SHM W>>6 Write by world

IPC CREAT See below
IPC EXCL See below

The rules for whether a new shared memory segment is created or whether an existing one
is referenced are:

• Specifying a key of IPC PRIVATE guarantees that a unique IPC channel is created.

• Setting the IPC CREATE bit of the shmflag word creates a new entry for the specified
key, if it does not exist. If an existing entry is found, that entry is returned.

• Setting both the IPC CREATE and IPC EXCL bits of the flag word creates a new
entry of the specified key, only if the entry does not already exist. If an existing entry
is found, an error occurs, since the IPC channel already exists.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

• The values of shm perm.cuid, shm perm.uid, shm perm.cgid, and shm perm.gid are
set equal to the effective user ID and effective group ID, respec- tively, of the calling
process.

• The access permission bits of shm perm.mode are set equal to the access permission
bits of shmflg. shm segsz is set equal to the value of size.

• The values of shm lpid, shm nattch shm atime, and shm dtime are set equal to 0.

• The shm ctime is set equal to the current time.

The following example illustrates how shared memory can be used.

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int main (int argc, char *argv[]){

int shmid; /* shared memory ID */

char *p; /* pointer to shared memory area */

/* reserve a 10-byte physical memory segment

using the pid as the key */

CSE 380 Homework 2 6

shmid = shmget ((key_t) getpid (), 10, 0666|IPC_CREAT);

if (shmid == -1) {

puts ("shmget failed");

exit (1);

}

/* attach the shared memory for use by this program */

p = (char *) shmat (shmid, (char *) 0, 0);

strcpy (p, "hello"); /* put string into shared memory */

puts (p);

/* detach the shared memory */

shmdt (p);

/* remove the shared memory */

shmctl (shmid, IPC_RMID, 0);

}

CSE 380 Homework 2 7

Appendix B: Pthreads Example: thread test.c

This program creates two pthreads which share the variable counter. Threads are created
using pthread create which is passed, among other arguments, a pointer to a function
that the thread should begin execution at as well as a pointer to an optional argument to
that function. For a full explanation, see man pthread create. In this case, the function
that each thread will begin execution at is go() and the argument to the function is a
pointer to an element in the array arg. Similar to wait() for process, join() will wait for
the specified thread to exit. For a general overview of pthreads, see man pthreads and for
specific functions, see the appropriate man page.

Semaphores can be used in pthreads and simple mutexes can be created as shown below.
In this example, the variable counter must be protected by a mutex because two different
threads are incrementing the value. Without the mutex, the potential for the counter to
be incorrectly incremented exists. Although the probability of this occurrence is quite low
in this example, as more threads are used and more data is shared, the probability will
obviously increase.

/*

* compile with: "gcc -o thread_test thread_test.c -lpthread"

*/

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

#include <pthread.h>

#include <errno.h>

#define NLOOP 5000

int counter;

pthread_mutex_t counter_mutex = PTHREAD_MUTEX_INITIALIZER;

void *go(void *);

main() {

pthread_t tidA, tidB;

int arg[2];

arg[0] = 1; arg[1] = 2;

pthread_create(&tidA, NULL, &go, (void *) &arg[0]);

pthread_create(&tidB, NULL, &go, (void *) &arg[1]);

/* wait for threads to stop */

pthread_join(tidA, NULL);

CSE 380 Homework 2 8

pthread_join(tidB, NULL);

exit(0);

}

void *

go(void *vptr) {

int i,val;

val = *(int *)vptr;

printf("thread %d’s argument is %d\n", pthread_self(), val);

pthread_mutex_lock(&counter_mutex);

for(i=0; i<NLOOP; i++) {

counter++;

printf("i = %d: id = %d : counter = %d\n", i, pthread_self(), counter);

}

pthread_mutex_unlock(&counter_mutex);

}

