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Abstract. The phrasemodel checkingrefers to algorithms for exploring the state space of a transition system
to determine if it obeys a specification of its intended behavior. These algorithms can perform exhaustive
verification in a highly automatic manner, and, thus, have attracted much interest in industry. Model checking
programs are now being commercially marketed. However, model checking has been held back by thestate
explosion problem, which is the problem that the number of states in a system grows exponentially in the
number of system components. Much research has been devoted to ameliorating this problem.

In this tutorial, we first give a brief overview of the history of model checking to date, and then focus
on recent techniques that combine model checking with satisfiability solving. These techniques, known as
bounded model checking, do a very fast exploration of the state space, and for some types of problems seem to
offer large performance improvements over previous approaches. We review experiments with bounded model
checking on both public domain and industrial designs, and propose a methodology for applying the technique
in industry for invariance checking. We then summarize the pros and cons of this new technology and discuss
future research efforts to extend its capabilities.

1 Introduction

Model checking [9, 10, 14, 29] was first proposed as a verification technique some eighteen years ago. The name,
model checking, encompasses a set of algorithms for verifying properties of state transition systems by a search of
their associated state transition graphs. The properties to be checked are expressed in atemporal logic, a formalism
for reasoning about the ordering of events in time, without introducing time explicitly. In a temporal logic, one
could assert, for example, that a property which is not true in the present may eventually become true in a future
evolution of a system. Or, that the property would inevitably become true in all future evolutions of the system.
Its rich specification language combined with a high degree of automation makes model checking very attractive
to industry. As such, the late 1990s have witnessed a growth in the number of CAD companies that are bringing
model checkers to market.

The first implementations of model checking in the early 1980s, used explicit representations of state transi-
tion graphs and endeavored to explore these with efficient graph traversal techniques. However, the state explosion
problem, wherein the number of system states grows exponentially with the number of system components, gen-
erally limited such techniques to designs with less than a million states. When dealing with hardware designs, this
would limit one to circuits with around twenty latches. Thus, these techniques were unsuitable for most industrial
applications. Around 1990, techniques that usedsymbolicstate space exploration came into being [8, 15, 27]. In
symbolic model checking, a breadth first search of the state space is effected through the use of BDDs (Binary
Decision Diagrams)[6]. The BDDs hold the characteristic functions of sets of states, and allow computation of
transitions among sets of states rather than individual states.

The first BDD based symbolic model checkers were able to verify examples of significant complexity, such
as the Futurebus+ Cache consistency Protocol [11]. However, while these techniques allowed for an order of
? This research is sponsored by the Semiconductor Research Corporation (SRC) under Contract No. 97-DJ-294 and the

National Science Foundation (NSF) under Grant No. CCR-9505472. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect the views of the SRC, NSF or the
United States Government.



magnitude increase in the size of designs that could be model checked, this only brought the size up to the level
of the smallest component designs of interest in industry, since, below a certain size, it is difficult and often not
useful to specify the behavior of a component of a design. The capacity levels of BDD based model checkers have
improved somewhat during the 1990s, through enhancements to BDDs and through improvements in abstraction
and compositional reasoning. But, while these improvements have paved the way for model checkers to become
commercial CAD tools, it remains the case that model checkers lack a certain robustness, in that they cannot
consistently handle designs of the size a typical user in industry would like.

Recently, a new type of model checking technique,bounded model checkingwith satisfiability solving [2–
4], has given promising results. The method can be applied to both safety and liveness properties, where the
verification of a safety property involves checking whether a given set of states is reachable, and the verification
of an eventuality property involves detecting loops in a system’s state transition graph. Favorable experimental
results with bounded model checking have been obtained for safety properties. A simple, yet very important type
of safety property is an invariant, a property that must hold in all reachable states. Obviously, if a sequence of
states can be found that begins at an initial state and ends in a state where the supposed invariant is false, that
property is not an invariant. It turns out that such searches for counterexamples can be done with remarkable
efficiency with bounded model checking, on designs that would be difficult for BDD based model checking.
Another comparative advantage is that bounded model checking seems to require little by-hand manipulation
from the user, while BDD based verifications often require a suitable, manual ordering for BDD variables, or
certain by-hand abstractions. While by-hand adjustments could also be necessary in bounded model checking,
in our experience the technique seems not to require it very often. The robustness and the capacity increase of
bounded model checking make it attractive for industrial use. Behind these advantages is the fact that satisfiability
solvers, such as GRASP [33], SATO [39], andSt̊almarck’s algorithm [35], seldom require exponential space,
while BDDs often do. The disadvantages of bounded model checking, to balance the picture, are that the method
lacks completeness and the types of properties that can currently be checked are very limited. Additionally, it has
not been shown that the method can consistently find long counterexamples or witnesses. However some of these
drawbacks have been addressed in more recent work [32, 37, 1] and encouraging results have been obtained.

Essentially, there are two steps in bounded model checking. In the first step, the sequential behavior of a
transition system over a finite interval is encoded as a propositional formula. In the second step, that formula is
given to a propositional decision procedure, i.e., a satisfiability solver, to either obtain a satisfying assignment or to
prove there is none. Each satisfying assignment that is found can be decoded into a state sequence which reaches
states of interest. In bounded model checking only finite length sequences are explored. At times, as we will
discuss in Section 5.2, a safety property may be entirely verified by looking at only a bounded length sequence.
However, if the property cannot be verified as holding, the technique can still be used for finding counterexamples.
In this mode, the focus is on finding bugs, rather than proving correctness.

In this paper, we will first give some background information on model checking in general and temporal
logics and then briefly review the basics of BDDs and BDD based model checking. We must apologize, in advance,
for our inability to cite every important contribution to model checking, as there have been so many. Instead, we
have endeavored to provide the reader with a few references, i.e. [14], from which he or she can learn more. After
reviewing these past model checking efforts, we introduce bounded model checking with satisfiability solving,
and illustrate the method with examples. We then review experimental work and discuss, in this context, an
optimization for bounded model checking known as thebounded cone of influence[4]. We will also discuss a
methodology, first proposed in [4], for using bounded model checking to check invariants on industrial designs.
In conclusion, we will summarize what we feel are the advantages and shortcomings of bounded model checking,
and discuss future research aimed at minimizing the latter and maximizing the former.

2 Temporal Logic Model Checking

Many designs, especially digital hardware designs, can profitably be modeled as state transition systems for the
purposes of design verification. Model checking [9, 10, 14, 29] offers an attractive means of making queries about
state transition systems. In model checking, one describes a property of a transition system in atemporal logicand
then invokes a decision procedure for traversing the state transition graph of the system and determining whether
the property holds for that system. The exact decision procedure will vary with the temporal logic and the type of
formula; further, for a particular logic and a particular type of formula, there may be several, equally sound model
checking procedures.
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In this paper, we will focus on CTL [9] (Computation Tree Logic), because it is a temporal logic that has
achieved wide acceptance, largely due to its balance of expressive power and moderate decision procedure com-
plexity. CTL is defined over Kripke Structures, which are structures having a set of states, a subset of these being
initial states, and a transition relation. In addition, Kripke structures have what is known as a labeling function,
which assigns to states certain atomic propositions from an underlying set of atomic propositions. In practice,
when using Kripke structures to model digital hardware, states are labeled with unique combinations of Boolean
variables representing circuit latches or primary inputs. The transition relation for a Kripke structure relative to a
hardware design, then defines which sets of latch valuations can transition to which other.

CTL is built from path quantifiers and temporal operators. There are two path quantifiers,A and E, with
meanings as follows:

– A, “for every path”
– E, “there exists a path”

A path is an infinite sequence of states such that each state and its successor are related by the transition re-
lation. CTL has four temporal operators. We give English language interpretations of these, below, where, for
convenience, we assumep andq are purely propositional formulas:

– Xp, “ p holds at the next time step”.
– Fp, “ p holds at some time step in the future”
– Gp, “ p holds at every time step in the future”
– pUq, “ p holds untilq holds”

A time stepis usually identified with a computation step, e.g. a clock tick in a synchronous design. The future is
considered to be the reflexive future, i.e., it includes the present, and time is considered to unfold in discrete steps.

The syntax of CTL dictates that each usage of a temporal operator must be preceded by a path quantifier.
These path quantifier and temporal operator pairs can be nested arbitrarily, but must have at their core a purely
propositional formula. CTL formulae may also be connected by Boolean operators. Some typical CTL formulas,
and their English language interpretations are:

– EF(Started∧¬Ready): it is possible to get to a state whereStartedholds butReadydoes not hold.
– AG(Req⇒ AF Ack): if a Requestoccurs, then it will eventually beAcknowledged.
– AG(AF DeviceEnabled): DeviceEnabledholds infinitely often on every computation path.
– AG(EFRestart): from any state it is possible to get to theRestartstate.

The model checking problem for CTL is, then, to take a formula such as those above, and determine whether the
set of states satisfying the formula in a particular system includes or intersects the initial states of the system. If
this is the case, then it is said that the system is amodelof the formula. The choice between requiring inclusion
of the set of initial states and intersection, is an implementation choice.

Often, model checking procedures do not check a formula of interest directly, rather, they check its negation.
For instance,AG p, “ p is true in every reachable state” can be shown to be true by showing thatEF¬p, “there
is a reachable state in whichp is false” is false. Properties of the formAG p, wherep is a purely propositional
formula, i.e. p is an invariant, are the only type of safety properties considered in this tutorial. They can be
falsified by finding a finite path segment that starts at an initial state and ends at a state in whichp is false. If
AG p is false, then it must be the case that the dual of the formula, withp negated, i.e.,EF¬p, is true. Thus
the counterexample forAG p, is a witness, or demonstration of validity, forEF¬p. Model checkers can generate
instructive counterexamples or witnesses of this type, which is a great advantage of the method.

Properties of the formAF p are liveness properties.AF p has the meaning that reaching a state satisfyingp
is inevitable, for each and every computation of the system. Likewise,A [p U q] is a liveness property. These are
also termed eventuality properties, in that they specify behavior that must eventually occur, but need not occur at a
specific time. Violations of liveness properties can only be demonstrated by loops in the state transition graph. For
instance, a counterexample forAF p is a witness forEG¬p, and this is a loop in the state graph in which no state
satisfiesp, the loop being reachable from initial states along a path segment in whichp is always false. Obviously,
since the machine can stay in this loop forever, it need not ever reach a state satisfyingp, and thusAF p is false.
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2.1 BDDs and Symbolic Model Checking

In the late 1980s, algorithms for storing and manipulating Boolean functions in the form of BDDs (Binary De-
cision Diagrams) [6] were introduced. BDDs are directed, acyclic graphs that, essentially, hold a compressed
form of the truth table of a Boolean function. They obtain the compression by utilizing sharing among different
sub-terms of the function. A key advantage of BDDs is that, given a fixed ordering for the variables on which a
function depends, the BDD is a canonical form for that function. Further, there are efficient algorithms for obtain-
ing a BDD from Boolean operations on two existing functions in BDD form. Thus, many operations of interest
can be performed with BDDs: netlists can be parsed and BDDs formed on the fly, two circuit nodes can be tested
for equality (i.e., implementing the same function), satisfiability checking can be carried out in constant time,etc.
Of course, the worst case complexity of these operations, such as satisfiability checking, did not improve. Rather,
it was transferred into building the BDD. Thus, if one could build the BDD for a function, satisfiability checking
could be carried out almost instantly; but, the BDD building could be difficult. For some functions, it is provably
the case that building the BDD is exponential in the number of function variables [6].

However, BDDs quite often proved to be a compact and efficient format for Boolean functions. In fact, a
whole segment of the current CAD industry, Boolean equivalence checking, has grown up around them1. Shortly
after the introduction of Bryant’s BDD algorithms [6], BDDs began to be used in state transition system traver-
sals, and, therefore, model checking. This type of system was calledsymbolic model checking, because of the
use of symbolic, Boolean variables. It is also calledimplicit model checking, because the state transition graph
is never explicitly built and is, instead, constructed piecemeal, as necessary, through the BDDs. Around 1990,
several researchers independently arrived at methods for doing this type of model checking [8, 15, 27], while Ken
McMillan, at Carnegie-Mellon University, was the first to create a publicly available symbolic model checker
based on BDDs [26]. This model checker was called SMV.

The main notion on which BDD based model checking is based is that Boolean functions can represent sets.
For instance, for a hardware circuit with 3 latches, represented by Boolean variablesa, b andc, the function:

f = a∧b

represents the set of circuit states where(a,b,c) are (1,1,1) or (1,1,0). The function f = a∧ b is called the
characteristic functionof this set. Further, since a relation defines a set, a relation, too, can be represented by a
characteristic function. The transition relation of a Kripke structure represents the set of all present and next state
pairs that comprise valid transitions. Assuming we are dealing with a typical, digital hardware design, we will
now describe how the BDD of the characteristic function of a transition relation may be formed:

1. We allocate sets of BDD variables for the present state of latches, the next state of latches, and the primary
inputs of the circuit.

2. We compute the BDD,f j , for the input function for each latch,j, in the circuit. Each such function is over a
vector of present state variables, ¯x, and a vector of input variables,ī.

3. For each circuit latch, we form the BDD of the transition relation for thej th latch,x′j ↔ f j(x̄, ī), wherex′j is

the next state variable for thej th latch, and the symbol↔ has the meaning ofif and only if(i.e., XNOR).
4. We form the transition relation,T(s,s′), wheres ands′ denote tuples of present and next state variables, as

T(s,s′) =
n∧

j=1

x′j ↔ f j(x̄, ī)

Over the years, many optimization and approximation techniques have been proposed for this process, since it is
often possible to build BDDs for the individual latch transition relations, but difficult to build the BDD for the
conjunction of these. Techniques for partitioning the transition relation into clusters are discussed in [7, 31].

Once the transition relation is represented in BDD format, it can be manipulated totraversethe underlying
transition system. Traversals are done by obtainingimagesor preimagesof sets of states, these being sets of
successor or predecessor states, respectively. The following is the Boolean formula for theimage, or successors,
of the set of states satisfying predicateP:

ImageP = ∃s
[
T(s,s′)∧P(s)

]
1 Many equivalence checkers use non-BDD based techniques, too; but, most rely on BDDs to a great extent.
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and the following for thepreimage, or predecessors:

PreimageP = ∃s′
[
T(s,s′)∧P(s′)

]
Image and preimage operations on BDDs involve existential quantification of BDD variables. The existential
quantification of variable,xi , from any Boolean function,f (x0, · · · ,xi , · · · ,xn),is defined as:

∃xi [ f (x0, · · · ,xi , · · · ,xn)] = f (x0, · · · ,0, · · · ,xn)∨ f (x0, · · · ,1, · · · ,xn)

Reachability analysis is usually performed by taking images, starting from the set of initial states, until the
set union of reached states does not change. This is an example of what is called reaching afixed point. When
computing a fixed point of a function operating on sets, the function is continuously applied to the set resulting
from its last application, until, eventually, the function value becomes the same as the function argument. Fixpoint
operations are typical of BDD based model checking and are carried out by testing for the equality of characteristic
functions of sets. This latter is quite easy with BDDs, which are a canonical form for Boolean functions.

Specification evaluation, e.g., evaluation of CTL formulae, is usually performed by taking preimages from
a set of states satisfying a Boolean formula. For instance, a fixpoint algorithm for checkingEFP, i.e., checking
whether a state satisfyingP is reachable from initial states, is to:

1. LetQ = the BDD ofP, and letReached= the BDD ofP.
2. LetPre= the BDD of the preimage ofQ.
3. LetUnion Reached= the BDD ofPre∨Reached.
4. If Union Reached= Reached, go to 8.
5. Let Q = Pre∧¬Reached. (This is the set difference of the preimage taken in 2 and the set of previously

reached states)
6. LetReached= Union Reached.
7. Go to 2.
8. If Reached∧ I is satisfiable (initial state intersection),EFP holds, if not,EFP does not hold.

An alternative for step 8 would be to check for inclusion of all initial states in the set of reached states, i.e.,
I→Reached. This is an implementation decision, whether to check for inclusion of all initial states or intersection
with just some.

While BDD based symbolic model checking enabled an order of magnitude increase in the size of designs that
could be verified, in terms of hardware latches (in terms of total states, several orders of magnitude), this still was
inadequate for many industrial designs of interest. In addition, manual intervention is often necessary with BDDs.
For instance, BDDs are very sensitive to orderings of variables, i.e., the order in which variables are encountered
from the root to the leaves of the BDD. The sizes of BDDs can vary dramatically with different orderings, but,
unfortunately, all currently known algorithms for finding a good ordering are of exponential complexity, and only
heuristics exist. In Section 3, we shall discussbounded model checking, a technique which has enabled orders of
magnitude increases in efficiency for some model checking problems, primarily by substituting SAT procedures
(propositional satisfiability checking) for BDDs.

2.2 Examples of Model Checking in Practice

In this section, we offer a few examples of where model checkers have found bugs in real designs.
In 1992 Clarke and his students at CMU (Carnegie-Mellon University) used the SMV model checker, devel-

oped by Ken McMillan at CMU, to verify the cache coherence protocol in the IEEE Futurebus+ Standard [11].
They constructed a precise model of the protocol and attempted to show that it satisfied a formal specification of
cache coherence. In doing so, they found a number of previously undetected errors. This was the first time that
formal methods had been used to find errors in an IEEE standard. Although Futurebus+ development started in
1988, all previous attempts to validate the protocol had been based on informal techniques.

In 1996 researchers at Bell Labs offered to check some properties of a High-level Data Link Controller
(HDLC) that was being designed at AT&T in Madrid. The design was almost finished, so no errors were ex-
pected. Within five hours, six properties were specified and five were verified, using the FormalCheck verifier.
The sixth property failed, uncovering a bug that would have reduced throughput or caused lost transmissions. The
error was corrected in a few minutes and formally verified.
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In 1996, Richard Raimi and Jim Lear, working for Motorola at the PowerPCTM 2 microprocessor design center,
Somerset, used Motorola’s Verdict model checker to debug a hardware laboratory failure on an early version of
the PowerPC 620 microprocessor [30]. The microprocessor had failed to boot an operating system in laboratory
testing. With run time in seconds, Verdict produced an example of how the bus interface unit of the microprocessor
could deadlock, producing the failure.

3 Bounded Model Checking

In bounded model checking, we construct a Boolean formula that is satisfiable if and only if the underlying state
transition system can realize a finite sequence of state transitions that reaches certain states of interest. If such a
path segment cannot be found at a given length,k, the search is continued for largerk. The procedure is symbolic,
i.e., symbolic Boolean variables are utilized; thus, when a check is done for a specific path segment of lengthk,
all path segments of lengthk are being examined. The Boolean formula that is formed is given to a satisfiability
solving program and if a satisfying assignment is found, that assignment is a witness for the path segment of
interest.

There are several advantages of bounded model checking. SAT tools, like PROVER [5], SATO [39] and
GRASP [33], do not require exponential space and large designs can be checked very fast, since the state space
is searched in an arbitrary order. BDD based model checking usually operates in breadth first search consuming
much more memory. Further, the procedure is able to find paths of minimal length, which helps the user understand
the examples that are generated. Lastly, the SAT tools generally need far less by hand manipulation than BDDs.
Usually the default case splitting heuristics are sufficient.

There are several disadvantages to bounded model checking, however. While the method may be extendable,
it has thus far only been used for specifications where fixpoint operations are easy to avoid. Additionally the
method as applied is generally not complete, meaning one cannot be guaranteed a true or false determination for
every specification. This is because the length of the propositional formula subject to satisfiability solving grows
with each time step, and this greatly inhibits the ability to find long witnesses or counterexamples, and certainly
inhibits the ability to check all possible paths through a machine. However, even with these disadvantages, the
advantages of the method make it a valuable complement to existing verification techniques. It is able to find bugs
and sometimes to determine correctness, in situations where other techniques fail completely.

Previous to the efforts in bounded model checking, propositional decision procedures (SAT) [16] had been
applied in both hardware verification [24, 34, 36] and specification logics [17, 19]. In addition, SAT had been used
in the formal verification of railway control systems [5] and in AI (artificial intelligence) planning systems [22].

3.1 Creation of Propositional Formulas

The propositional formula created by a bounded model checker is formed as follows: Given:

– a transition system,M,
– a temporal logic formula,f and
– a user-supplied time bound,k

we construct a propositional formula[[ M, f ]]k which will be satisfiable if and only if the formulaf is valid along
some computation path ofM. We form this formula as follows. For state transition systemM and time boundk,
theunrolled transition relationis

[[ M ]]k := I(s0)∧
k−1∧
i=0

T(si ,si+1) (1)

whereI(s0) is the characteristic function of the set of initial states, andT(si ,si+1) is the characteristic function of
the transition relation. We then form[[ f ]]k, where[[ f ]]k is a formula that will be true if and only if the formulaf
is valid along a path of lengthk. Subsequently, we form the conjunction of[[ M ]]k and[[ f ]]k.

2 PowerPC is a trademark of the International Business Machines Corporation, used under license therefrom.
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As an example, we will consider the CTL formula,EF p. This formula simply asserts that a state satisfying
propositional formulap is reachable from initial states of the system. Let us assume we wish to check whether
EF p can be verified in two time steps, i.e.,k = 2. We would then form the following formula:

[[ M, f ]]2 := I(s0)∧T(s0,s1)∧T(s1,s2)∧ ( p(s0)∨ p(s1)∨ p(s2))

Here,( p(s0)∨ p(s1)∨ p(s2)) is [[ EF p ]]2. We will illustrate this further, and show how the transition relation,
T(si ,si+1), is expanded.

3.2 Safety Property Example

Let us assume we have a 2-bit counter, with the least significant bit represented by a Boolean variable,a, the most
significant by a Boolean variable,b. The transition relation of the counter is:

(a′ ↔ ¬a)∧
(
b′↔ a⊕b

)
Here,⊕ has the meaning of XOR,↔ of XNOR. Let us assume, initially, both bits are at 0. Suppose we wish to
check if (a,b) can transition to(1,1) within two time steps. Unfolding the transition relation and inserting the
formula that performs the reachability check, we get:

I(s0) : ( ¬a0∧¬b0 ) ∧
T(s0,s1) : ((a1↔¬a0) ∧ (b1↔ (a0⊕b0))) ∧
T(s1,s2) : ((a2↔¬a1) ∧ (b2↔ (a1⊕b1))) ∧

p(s0) : ( a0∧b0 ∨
p(s1) : a1∧b1 ∨
p(s2) : a2∧b2 )

This formula is unsatisfiable, as we’d expect, since the count cannot reach(1,1) from (0,0) in 2 time steps. If the
reader wishes, he or she can expand the formula for a third time step, which would produce a satisfiable formula
since the countercantransition to(1,1) in 3 time steps. We now consider liveness properties.

3.3 Liveness Property Example

00
�

01
�

10

11

Fig. 1.A two-bit counter with an extra transition

We consider again a two-bit counter, one similar to, but slightly different that the counter in Section 3.2.
As in Section 3.2, the counter is encoded by two state variablesa andb, denoting the least significant and most
significant bits, respectively, and the initial state of the counter is 0, i.e., state(0,0). However, the transition relation
T(s,s′) is different from that in Section 3.2, in that we add a transition from state(1,0) back to itself. This new
counter is shown as a Kripke structure in Figure 1. Let us define a function,inc(s,s′), as(a′↔¬a)∧(b′↔ (a⊕b)).
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The reader will recognize this as the transition relation of the counter in Section 3.2. The new transition relation,
containing the transition from(1,0) back to itself can then be written as:

T(s,s′) = inc(s,s′)∨ (b∧¬a∧b′∧¬a′)

Suppose we claim that this new counter must eventually reach state(1,1). We can specify this property as
AF (b∧a). Clearly, from Figure 1, this specification is false. Now, a counterexample that demonstrates this would
be a path, starting in the initial state, in which the counter never reaches state(1,1). This can be expressed as
EG p, wherep = ¬b∨¬a. We check this formula to determine the truth value ofAF (b∧a).

Let us assume we set the time bound,k, for checkingEG p at 2. All candidate paths will then havek+ 1, or
3 states: an initial state, and two others reached upon two successive transitions. We will name these statess0, s1,
s2. We now formulate the constraints anys0,s1 ands2 must meet in order to be a witness ofEG p, or equivalently,
a counterexample forAF (b∧a).

First,s0,s1,s2 must be part of valid path starting from the initial state. In other words, the unrolled transition
relation, formula 1 from Section 3.1, must hold fork = 2. This is[[ M ]]2 = I(s0)∧T(s0,s1)∧T(s1,s2). Second,
the sequence of statess0,s1,s2 must be part of a loop, meaning there must be a transition from the last state,s2,
back to eithers0, s1, or itself. This is

T(s2,s3)∧ (s3 = s0 ∨ s3 = s1 ∨ s3 = s2 )

We further constrain that the specified temporal propertyp must hold on every state of the path. Combining all
these constraints for the system in Figure 1, we get the following, expanded formula:

I(s0) : ( ¬a0∧¬b0 ) ∧
T(s0,s1) : ((a1↔¬a0)∧ (b1↔ (a0⊕b0)) ∨

b1∧¬a1∧b0∧¬a0 ) ∧
T(s1,s2) : ((a2↔¬a1)∧ (b2↔ (a1⊕b1)) ∨

b2∧¬a2∧b1∧¬a1 ) ∧
T(s2,s3) : ((a3↔¬a2)∧ (b3↔ (a2⊕b2)) ∨

b3∧¬a3∧b2∧¬a2 ) ∧
s3 = s0 : ( (a3↔ a0)∧ (b3↔ b0) ∨
s3 = s1 : (a3↔ a1)∧ (b3↔ b1) ∨
s3 = s2 : (a3↔ a2)∧ (b3↔ b2) ) ∧

p(s0) : ( ¬a0∨¬b0 ) ∧
p(s1) : ( ¬a1∨¬b1 ) ∧
p(s2) : ( ¬a2∨¬b2 )

This formula is indeed satisfiable. The satisfying assignment corresponds to a path from initial state(0,0) to (0,1)
and then to(1,0), followed by the self-loop at state(1,0), and is a counterexample toAF (b∧a). If the self-loop
out of (1,0) were removed, giving us the counter in Section 3.2, this would remove the lines of the form

bi ∧¬a1∧bi−1∧¬ai−1

from the formula, fori from 1 to 3. Under those circumstances, the reader can verify that the altered version of
the formula would then become unsatisfiable, as it should, sinceAF (b∧a) holds for the counter in Section 3.2.

Specifying liveness properties often makes sense only if certainfairness constraintsare added as well. Fairness
constraints are conditions which must occur infinitely often in the continuous operation of a system. For example,
circuits on a microprocessor may be verified under fairness constraints that reflect the bus arbitration scheme of
the computer system in the processor will eventually operate.

A simple example of a possible fairness constraint would be to assume that continuous operation of the counter
in Figure 1 must cause the initial state to be visited infinitely often. While there is no particular reason a counter
should work this way, we use the example to illustrate how fairness constraints are imposed in bounded model
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checking. Given such a fairness constraint, a counterexample to the liveness propertyAF (b∧a) would then need
to include a transition to the(0,0) state. This is a path with a loop as before, but with the additional constraint that
¬a∧¬b has to hold somewhere on the loop. This changes the generated Boolean formula as follows. For each
backloop,T(s2,s3), where the states3 is required to be equivalent to eithers0, s1 or s2, we add a term that requires
¬a∧¬b to hold on the loop. For example, for the possible loop froms2 to s0 (the case wheres3 = s0), we would
replace

a3↔ a0 ∧ b3↔ b0

by
(a3↔ a0 ∧ b3↔ b0)∧ (c0∨c1∨c2)

with ci defined as¬ai ∧¬bi . As there is no counterexample that would satisfy this fairness constraint, in this case
the resulting propositional formula would be unsatisfiable.

3.4 Conversion to CNF

Satisfiability testing for propositional formulae in known to be an NP-complete problem, and all known decision
procedures are exponential in the worst case. However, they may use different heuristics in guiding their search
and, therefore, exhibit different average complexities in practice. Precise characterization of the “hardness” of a
certain propositional problem is difficult and is likely to be dependent on the specific decision procedure used.
Many propositional decision procedures assume the input problem to be in CNF (conjunctive normal form).
Usually, it is a goal to reduce the size of the CNF version of the formula, although this may not always reduce the
complexity of the search. Our experience has been, however, that reducing the size of the CNF does reduce the
time for the satisfiability test as well.

A formula f in CNF is represented as a set of clauses. Each clause is a set of literals, and each literal is either
a positive or negative propositional variable. In other words, a formula is a conjunction of clauses, and a clause is
a disjunction of literals. For example,((a∨¬b∨c)∧ (d∨¬e)) is represented as{{a,¬b,c},{d,¬e}}. CNF is is
also referred to as clause form.

Given a Boolean formulaf , one may replace Boolean operators inf with ¬,∧ and∨ and apply the distribu-
tivity rule and De Morgan’s law to convertf to CNF. The size of the converted formula can be exponential with
respect to the size off , the worst case occurring whenf is in disjunctive normal form. To avoid the exponential
explosion, we use a structure preserving clause form transformation [28].

procedurebool-to-cnf(f , vf )
{

case
cached(f ) == v:

return clause(vf ↔ v);
atomic(f ):

return clause(f ↔ vf );
f == h◦g:

C1 = bool-to-cnf(h, vh);
C2 = bool-to-cnf(g, vg);
cached(f ) = vf ;
return clause(vf ↔ vh ◦vg) ∪C1 ∪C2;

esac;
}

Fig. 2. An algorithm for generating conjunctive normal form.f , g and h are Boolean formulas.v, vh and vg are Boolean
variables. ‘◦’ represents a Boolean operator.

Figure 2 outlines our procedure. Statements which are underlined represent the different cases considered, the
symbol “=” denotes assignment while the symbol “==” denotes equality. Given a Boolean formulaf , bool-to-
cnf( f ,true) returns a set of clausesC which is satisfiable if and only if the original formula,f , is satisfiable. Note
thatC is not logically equivalent to the original formula, but, rather, preserves its satisfiability. The procedure
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traverses the syntactical structure off , introduces a new variable for each subexpression, and generates clauses
that relate the new variables. In Figure 2, we use symbolsg and h to denote subexpressions of the Boolean
formula f , and we usevf , vg andvh to denote new variables introduced forf , g andh. C1 andC2 denote sets
of clauses. If a subexpression,q, has been cached, the call to cached(q) returns the variablevq introduced for
q. The procedure, clause(), translates a Boolean formula into clause form. It replaces Boolean connectives such
as implication,→, or equality,↔, etc., by combinations ofand, or and negationoperators and subsequently
converts the derived formula into conjunctive normal form. It does this in a brute force manner, by applying the
distributivity rule and De Morgan’s law. As an example, ifu andv are Boolean variables, clause() called onu↔ v
returns{{¬u,v},{u,¬v}}. It should be noted that clause() will never be called bybool-to-cnf with more than 3
literals, and so, in practice, the cost of this conversion is quite acceptable. Ifv, vh, vg are Boolean variables and
‘◦’ is a Boolean operator,v↔ (vh◦vg) has a logically equivalent clause form, clause(vf ↔ vh◦vg), with no more
than 4 clauses, each of which contains no more than 3 literals.

Internally, we represent a Boolean formulaf as a directed acyclic graph (DAG), i.e., common subterms of
f are shared. In the procedurebool-to-cnf(), we preserve this sharing of subterms, in that for each subterm inf ,
only one set of clauses is generated. For any Boolean formulaf , bool-to-cnf( f ,true) generates a clause setC with
O(| f |) variables andO(| f |) clauses, where| f | is the size of the DAG forf .

In Figure 2, we assume thatf only involves binary operators, however, the unary operator, negation, can be
handled similarly. We have also extended the procedure to handle operators with multiple operands. In particular,
we treat conjunction and disjunction as N-ary operators. For example, let us assume thatvf represents the formula∧n

i=0 ti . The clause form for

vf ↔
n∧

i=0

ti

is then:
{{¬vf , t0},{¬vf , t1}, . . . ,{¬vf , tn},{vf ,¬t0, . . . ,¬tn}}

If we treat∧ as a binary operator, we need to introducen−1 new variables for the subterms in
∧n

i=0 ti . With this
optimization, the comparison between two 16 bit registersr ands occurring as a subformula,

∧15
i=0(r[i]↔ s[i]),

can be converted into clause form without introducing new variables.

4 Experimental Results

At Carnegie-Mellon University, a model checker has been implemented calledBMC , based on bounded model
checking. Its input language is a subset of the SMV language [26]. It takes in a circuit description, a property to be
proven, and a user supplied time bound,k. It then generates the type of propositional formula described in Section
3.1. It supports both the DIMACS format [20] for CNF formulae, and the input format for the PROVER Tool [5]
which is based onSt̊almarck’s Method [35]. In our experiments, we have used the PROVER tool, as well as two
public domain SAT solvers, SATO [39] and GRASP [33], both of which use the DIMACS format.

We first discuss experiments on circuits available in the public domain, that are known to be difficult for BDD-
based approaches. First we investigated a sequential multiplier, the shift and add multiplier of [12]. We specified
that when the sequential multiplier is finished, its output is the same as the output of a certain combinational
multiplier, the C6288 circuit from the ISCAS’85 benchmark set, when the same input words are applied to both
multipliers. The C6288 multiplier is a 16x16 bit multiplier, but we only allowed 16 output bits as in [12], together
with an overflow bit. We checked the above property for each output bit individually, and the results are shown
in Table 1. For BDD-based model checkers, we used a manually chosen variable ordering where the bits of the
registers are interleaved. Dynamic reordering, where the application tries to change reorderings on the fly, failed
to find a considerably better ordering in a reasonable amount of time. The proof that the multiplier is finished after
a finite number of steps involves the verification of a simple liveness property which can be checked instantly both
with BDD based methods and bounded model checking.

In [25] an asynchronous circuit for distributed mutual exclusion is described. It consists ofn cells forn users
that want to have exclusive access to a shared resource. We proved the liveness property that a request for using
the resource will eventually be acknowledged. This liveness property is only true if each asynchronous gate does
not delay execution, indefinitely. This assumption is modeled by afairness constraint(fairness constraints were
explained in Section 3.3). Each cell has exactly 18 gates and therefore the model hasn ·18 fairness constraints
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SMV1 SMV2 SATO PROVER
bit sec MB sec MB sec MB sec MB
0 919 13 25 79 0 0 0 1
1 1978 13 25 79 0 0 0 1
2 2916 13 26 80 0 0 0 1
3 4744 13 27 82 0 0 1 2
4 6580 15 33 92 2 0 1 2
5 10803 25 67 102 12 0 1 2
6 43983 73 258 172 55 0 2 2
7 >17h 1741 492 209 0 7 3
8 >1GB 473 0 29 3
9 856 1 58 3
10 1837 1 91 3
11 2367 1 125 3
12 3830 1 156 4
13 5128 1 186 4
14 4752 1 226 4
15 4449 1 183 5

sum 71923 2202 23970 1066

Table 1.16x16 bit sequential shift and add multiplier with overflow flag and 16 output bits.

wheren is the number of cells. Since we do not have a bound for the maximal length of a counterexample for
the verification of this circuit we could not verify the liveness property completely, rather, we showed that there
are no counterexamples of particular lengthk. To illustrate the performance of bounded model checking we chose
k = 5,10. The results can be found in Table 2.

We repeated the experiment with a buggy design, by simply removing several fairness constraints. Both
PROVER and SATO generate a counterexample (a 2 step loop) nearly instantly (see Table 3).

SMV1 SMV2 SATO PROVER SATO PROVER
k = 5 k = 5 k = 10 k = 10

cells sec MB sec MB sec MB sec MB sec MB sec MB
2 63 7 4 30 0 1 0 2 1 3 10 3
3 275 9 20 50 0 2 1 2 2 5 27 4
4 846 11 159 217 0 3 1 3 3 6 54 5
5 2166 15 530 703 0 4 2 3 9 8 95 5
6 4857 18 1762 703 0 4 3 3 7 9 149 6
7 9985 24 6563 833 0 5 4 4 15 10 224 8
8 19595 31 >1GB 1 6 6 5 16 12 323 8
9 >10h 1 6 9 5 24 13 444 9
10 1 7 10 5 36 15 614 10
11 1 8 13 6 38 16 820 11
12 1 9 16 6 40 18 1044 11
13 1 9 19 8 107 19 1317 12
14 1 10 22 8 70 21 1634 14
15 1 11 27 8 168 22 1992 15

Table 2.Liveness for one user in the DME.
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SMV1 SMV2 SATO PROVER
cells sec MB sec MB sec MB sec MB

2 62 7 3 28 0 0 0 1
3 295 9 7 34 0 0 0 1
4 799 11 14 44 0 1 0 2
5 1661 14 24 57 0 1 0 2
6 3155 21 40 76 0 1 0 2
7 5622 38 74 137 0 1 0 2
8 9449 73 118 217 0 1 0 2
9 segmentation172 220 0 1 1 2
10 fault 244 702 0 1 0 3
11 413 702 0 1 0 3
12 719 702 0 2 1 3
13 843 702 0 2 1 3
14 1060 702 0 2 1 3
15 1429 702 0 2 1 3

Table 3.Counterexample for liveness in a buggy DME.

5 Experiments on Industrial Designs

In this section, we will discuss a series of experiments on industrial designs, checking whether certain predicates
were invariants of these designs. First, we explain an optimization for bounded model checking that was used in
these experiments.

5.1 Bounded Cone of Influence

TheCone of Influence Reductionis a well known technique3 that reduces the size of a model if the propositional
formulae in the specification do not depend on all state variables in the structure. The basic idea of the Cone
of Influence (COI) reduction is to construct a dependency graph of the state variables in the specification. In
building the dependency graph, a state variable is represented by a node, and that node has edges emanating out to
nodes representing those state variables upon which it combinationally depends. The set of state variables in this
dependency graph is called the COI of the variables of the specification. In this paper, we call this the “classical”
COI, to differentiate it from the bounded version. The variables not in the classical COI can not influence the
validity of the specification and can therefore be removed from the model.

This idea can be extended to what we call the Bounded Cone of Influence. The formal definition for the
bounded COI is given in [4], and we give, here, an intuitive explanation. The intuition is that, over a bounded
time interval, we need not consider every state variable in the classical COI at each time point. For example, if
we were to checkEF p, wherep is a propositional formula, for a time bound ofk = 0, we would need to consider
only those state variables upon whichp combinationally depends. If the initial values for these were consistent
with p holding, thenEF p would evaluate to true, without needing to consider any additional state variables in
the classical COI. Let us, for convenience, call the set of state variables upon whichp combinationally depends
its initial support. If we could not proveEF p true fork = 0, and wanted to check it fork = 1, we would need to
consider the set of state variables upon which those in the initial support depend. These may include some already
in the initial support set, if feedback is present in the underlying circuit. Clearly, the set union of the initial support
set plus this second support set are theonly state variables upon which the truth value ofEF p depends for time
boundk = 1. Again, this will always be a subset of the state variables in the entire classical COI. If we restrict
ourselves to expanding formula 1 of Section 3.1 only for those variables in the bounded COI for a particulark, we
will get a smaller CNF formula, in general, than if we were to expand it for the entire, classical COI. This is the
main idea behind the Bounded Cone of Influence.

3 The cone of influence reduction seems to have been discovered and utilized by a number of people, independently. We note
that it can be seen as a special case of Kurshan’s localization reduction [23].
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5.2 PowerPC Circuit Experiments

We ran experiments on subcircuits from a PowerPC microprocessor under design at Motorola’s Somerset design
center, in Austin, Texas. While a processor is under design at Somerset, designers insert assertions into the register
transfer level (RTL) simulation model. These Boolean expressions are important safety properties, i.e., properties
which should hold at all time points. If an assertion is ever false during simulation, an immediate error is flagged. In
our experiments, we checked, using BMC and two public domain SAT checkers, SATO and GRASP, 20 assertions
chosen from 5 different processor design blocks. We turned each into anAG p property, wherep was the original
assertion. For each of these, we:

1. Checked whetherp was a tautology.
2. Checked whetherp was otherwise an invariant.
3. Checked whetherAG p held for various time bounds,k, from 0 to 20.

The gate level netlist for each of the 5 design blocks was translated into an SMV file, with each latch repre-
sented by a state variable having individual next state and initial state assignments. For the latter, we assigned the 0
or 1 values we knew the latches would have after a designated power-on-reset sequence4 Primary inputs to design
blocks were modeled as unconstrained state variables, i.e., having neither next state nor initial state assignments.

For combinational tautology checking we eliminated all initialization statements and ran BMC with a bound of
k = 0, checking the inner, propositional formula,p, from each of theAG p specifications. Under these conditions,
the specification could hold only ifp was true for all assignments to the state variables in its support.

Invariance checking entails checking whether a propositional formula holds in all initial states and is preserved
by the transition relation, the latter meaning that all successors of states satisfying the formula also satisfy it.
If these conditions are met, we call the predicate aninductive invariant. We ran BMC on input files with all
initialization assignments intact, for each design block and eachp in eachAG p specification, with a time bound
of k = 0. This determined whether each formula,p, held in the single, valid initial state of each design. We then
ran BMC in a mode in which, for each design block and eachAG p specification, all initialization assignments
were removed from the input file, and, instead, an initial states predicate was added that indicated the initial
states should be all those states satisfyingp. Note that we did not really believe the initial states actually were
those satisfyingp. This technique was simply a way of getting the BMC tool to check all successors of all states
satisfyingp, in one time step. The time bound,k, was set to 1, and theAG p specification was checked. If the
specification held, this showedp was preserved by the transition relation, sinceAG p could only hold, under these
circumstances, if the successors of every state satisfyingp also satisfiedp. Note thatAG p not holding under these
conditions could possibly be due exclusively to behaviors in unreachable states. For instance, if an unreachable
state,s, existed which satisfiedp but had a successor,s′, which did not, then the check would fail. Therefore,
because of possible “bad” behaviors in unreachable states, this technique can only show thatp isan invariant, but
cannot show that it is not. However, we found this type of inductive invariance checking to be very inexpensive
with bounded model checking, and, therefore, very valuable. In fact, we made it a cornerstone of the methodology
we recommend in Section 6.

In these experiments, we used both the GRASP [33] and SATO [38] satisfiability solvers. When giving results,
however, we do not indicate from which solver they came, rather, we just show the best results from the two. There
is actually an interesting justification for this. In our experience, the time needed for satisfiability solving is often
just a few seconds, and usually no more than a few minutes. However, there are problem instances for which a
particular SAT tool will labor far longer, until a timeout limit is reached. We have quite often found that when
one SAT solving tool needs to be aborted on a problem instance, another such tool will handle it quickly; and,
additionally, the same solvers often switch roles on a later problem instance, the former slow solver suddenly
becoming fast, the former fast one, slow. Since the memory cost of satisfiability solving is usually slight, it makes
sense to give a particular SAT problem, in parallel, to several solvers, or to versions of the same solvers with
different command line arguments, and simply take the first results that come in. So, this method of running
multiple solvers, as we did, on each job, is something which we recommend.

The SMV input files were given to a recent version of the SMV model checker (theSMV1version referred
to earlier) to compare to BDD based model checking. We did 20 SMV runs, checking each of theAG p specifi-
cations, separately. When running SMV, we used command line options that enabled the early detection, during
4 Microprocessors are generally designed with specified reset sequences. In PowerPC designs, the resulting values on each

latch are known to the designers, and this is the appropriate initial state for model checking.
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reachability analysis, of falseAG p properties. In this mode, the verifier did not need to compute a fixpoint if a
counterexample existed, which made the comparison to BMC more appropriate. We also enabled dynamic vari-
able ordering when running SMV.

All experiments were run with wall clock time limits. The satisfiability solvers were given 15 minutes wall
clock time, maximum, to complete each run, while SMV was given an hour for each of its runs. BMC, itself, was
never timed, as its task of translating the design description and the specification is usually done quite quickly.
The satisfiability solving and SMV runs were done on RS6000 model 390 workstations, having 256 Megabytes
of local memory.

5.3 Environment Modeling

We did not model the interfaces between the subcircuits on which we ran our experiments and the rest of the
microprocessor or the external computer system in which the processor would eventually be placed. This is com-
monly referred to as “environment modeling”. One would ideally like to do environment modeling on subcircuits
such as we experimented on, since these are not closed systems. Rather, they depend for their correct function-
ing upon input constraints, i.e., certain input combinations or sequencesnot occurring. The rest of the system
must guarantee this [21]. However, in the type of invariant checking we did, one would always be assured of
true positives, since if a safety property holds with a totally unconstrained environment, then it holds in the real
environment (this is proven in [13, 18]).

It is likely that an industrial design team would first check safety properties with unconstrained environments,
since careful environment modeling can be time consuming. They would then decide, on an individual basis, what
to do about properties that failed: invest in the environment modeling for more accurate model checking, in order
to separate false failures from real ones, or hope that digital simulation will find any real violations that exist.
Importantly, the model checker’s counterexamples could provide hints as to which simulations, on the complete
design not just the subcircuit, may need to be run. For instance, the counterexample may indicate that certain
instructions need to be in execution, certain exceptions occurring, etc. The properties that pass the invariance test
need no more digital simulation, and thus conserve CPU resources.

In the examples we did run, all the negatives proved, upon inspection with designers, to be false negatives.
The experiments still yield, however, useful information on the capacity and speed of bounded model checking.
Further, in Section 6, we describe a methodology that can reduce or eliminate false negatives.

5.4 Experimental Results

As mentioned, we checked 20 safety properties, distributed across 5 design blocks from a single PowerPC micro-
processor. These were allcontrolcircuits, having little or no datapath elements. Their sizes were as follows:

Circuit LatchesPIs Gates

bbc 209 479 4852
ccc 371 336 4529
cdc 278 319 5474
dlc 282 297 2205
sdc 265 199 2544

Circuit SpecLatchesPIs

bbc 1 - 4 150 242
ccc 1 - 2 77 207
cdc 1 - 4 119 190
dlc 1 - 6 119 170
dlc 7 119 153
sdc 1 - 2 113 121
sdc 3 23 15

Table 4.Before and After Classical COI (PI = Primary Inputs)

In table 4, we report the sizes of the circuits before and after classical COI reduction has been applied.
EachAG p specification is given an arbitrary numeric label, on each circuit. These do not relate specifications on
different design blocks, e.g., specification 2 ofdlc is in no way related to specification 2 ofsdc. Many properties
involved much the same cone of circuitry on a design block, as can be seen by the large number of specifications
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having cones of influence with the same number of latches and PIs. However, these reduced circuits were not
identical, from one specification to another, though they shared much circuitry.

Table 5 gives the results of tautology and inductive invariance checking for eachp from eachAG p specifica-
tion. These runs were done with bounded COI enabled. There are columns for tautology checking, for preservation
by the transition relation and for preservation in initial states. The last two conditions must both hold for a Boolean
formula to be an inductive invariant. A“Y” in the leftmost part of a column indicates the condition holding, an
“N” that it does not, When a “Y” is recorded, time and memory usage may appear after it, separated by slashes.
These are recorded only for times≥ 1 second, and memory usage≥ 5 megabytes, otherwise a “-” appears for
insignificant time and memory. As can be seen, tautology and invariance checking can be remarkably inexpensive.
This is an extremely important finding, as these can be quite costly with BDD based methods, and are at the heart
of the verification methodology we propose in Section 6.

We were surprised by the small number of assertions that were combinational tautologies. We had expected
that designers would try to insure safety properties held by relying on combinational, as opposed to sequential
circuitry. However, the real environment may, in fact, constrain inputs to design blocks combinationally such that
these are combinational tautologies. See Section 6 for a discussion of this.

As stated above, many of our examples exhibited false negatives, and they did so at low time bounds. Other
of our examples were found to be inductive invariants. Satisfiability solving went quickly at high values ofk if
counterexamples existed at low values ofk or if the property was an invariant. The more difficult SAT runs are
those for which neither counterexamples nor proofs of correctness were found. Table 6 shows the four examples
which were of this type,bbc specs 1, 3 and 4, andsdcspec 1. All results, again, were obtained using bounded
COI. We also ran these examples using just classical COI, and we observed that the improvement that bounded
COI brings relative to classical COI wears off at higherk values, specifically, at values near to 10. Intuitively, this
is due to the fact that, as we extend further in time, we eventually compute valuations for all the state variables in
the classical cone of influence. However, since we expect bounded model checking to be most effective at finding
short counterexamples, bounded COI is helping augment the system’s strengths.

In table 6, “longk” is the highestk value at which satisfiability solving was accomplished, and “vars” and
“clauses” list the number of literals and clauses in the CNF file at that highestk level. The “time” column gives
CPU time, in seconds, for the run at that highestk value. Regarding memory usage, this usually does not exceed
a few tens of megabytes, and is roughly the storage needed for the CNF formula, itself.

Table 7 lists the circuits and specifications which were either shown to be inductive invariants or for which
counterexamples were found. Under the column “holds”, a “Y” indicates a finding of being an inductive invariant,
a “N” the existence of a counterexample. For the counterexamples, the next column, “failk”, gives the value of
k for which the counterexample was found. Since all counterexamples were found withk values≤ 2, we did not
list time and memory usage, as this was extremely slight. In each case, the satisfiability solving took less than a
second, and memory usage never exceeded more than 5 megabytes.

Lastly, the results of BDD-based model checking are that SMV was given each of the 20 properties separately,
but completed only one of these verifications. The 19 others all timed out at one hour wall clock time. SMV was
run when the Somerset computer network allowed it unimpeded access to the CPU it was running on; and still,
under these circumstances, SMV was only able to complete the verification ofsdc, specification 3. Classical COI
for this specification gave a very small circuit, having only 23 latches and 15 PIs. SMV found the specification
false in the initial state, in approximately 2 minutes. Even this, however, can be contrasted to BMC needing 2
seconds to translate the specification to CNF, and the satisfiability solver needing less than 1 second to check it!

5.5 Comparison to BDD Based Model Checking

It is useful to reflect on what the experiments on PowerPC microprocessor circuits show and what they do not.
First, the experiments should not be interpreted as evidence that BDD based model checkers cannot handle circuits
of the size given. There are approximation techniques, for instance where certain portions of a circuit are deleted
or approximated with simpler Boolean functions that still yield true positives for invariance checking, and these
could have been employed. Some of the verifications may have gone through under these circumstances. However,
the experiments, as run, do give a measure of the size limits of BDD based and SAT based model checking.

Without input constraints it proved easy to reach states that violated the purported invariants. It has been
noted, empirically, by many users of BDD based tools, that it is much harder to build BDDs for incorrect designs
than it is for correct designs. There is no theoretical explanation of why this is so, but it may very well be that
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Circuit SpecTautologyTran Rel’n Init State

bbc 1 N - - N - - Y - -
bbc 2 N - - Y - - N - -
bbc 3 N - - N - - Y - -
bbc 4 N - - N - - Y - -
ccc 1 N - - N - - Y - -
ccc 2 N - - N - - Y - -
cdc 1 N - - N - - Y - -
cdc 2 Y - - Y - - Y - -
cdc 3 Y - - Y - - Y - -
cdc 4 Y - - Y - - Y - -
dlc 1 N - - N - - Y - -
dlc 2 N - - N - - Y - -
dlc 3 N - - N - - Y - -
dlc 4 N - - N - - Y - -
dlc 5 N - - N - - Y - -
dlc 6 N - - N - - Y - -
dlc 7 N - - N - - Y - -
sdc 1 N - - Y / 15 / 5 Y - -
sdc 2 N - - N / 60 / 6.5 Y - -
sdc 3 N - - N 15 - N - -

Table 5.Tautology and Invariance Checking Results

circuit speclong k vars clausestime

bbc 1 4 7873 30174 35.4
bbc 3 10 16814 63300 58
bbc 4 5 9487 35658 18
sdc 1 4 5554 20893 72

Table 6.Size Measures for Difficult Examples

circuit specholdsfail k

bbc 2 N 0
ccc 1 N 1
ccc 2 N 1
cdc 1 N 2
cdc 2 Y -
cdc 3 Y -
cdc 4 Y -
dlc 1 N 2
dlc 2 N 2
dlc 3 N 2
dlc 4 N 1
dlc 5 N 2
dlc 6 N 2
dlc 7 N 0
sdc 2 Y -
sdc 3 N 0

Table 7. Invariants and Counterexamples
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SMV, or another BDD based model checker, could have successfully completed many of the property checks on
versions of these designs having accurate input constraints. However, in a way this is to the credit of bounded
model checking, in that it seems able to handle problem instances which are difficult for BDDs.

Now, another observation is that when a design has a large number of errors, random, digital simulation can
find counterexamples quickly. Many commercial formal verification tools first run random digital simulations
on a design, to see if property violations can be detected easily. While we did not do this in our experiments,
we feel it is likely this, too, would have found quick counterexamples. However, this only shows that bounded
model checking is at least as powerful as this method, on buggy designs—yet, bounded model checking has the
additional capability of conducting exhaustive searches, within certain limits.

As to those limits, a big question with bounded model checking is whether it can, or will, find long coun-
terexamples. Clearly, it is to the advantage of BDD based model checking that if the BDDs can be built and
manipulated, all infinite computation paths, i.e., all loops through the state graph, can be examined. But, all too
often, as mentioned, the BDDs cannot be built or manipulated. In those cases, even if bounded model checking
cannot be run over many time steps, it does give exhaustive verification at each time step, and certainly is worth
running. Most of our experiments did not produce information that would answer the question as to the expected
length of counterexamples, but a few did. Out of the verifications attempted, 4 yielded neither counterexamples
nor proofs of correctness, and simply timed out. This means for the property being checked, these designs were
not buggy, up to the depth checked. Of these four,bbcspecs 1, 3 and 4,sdcspec 1, BMC was able to go out to
4, 10, 5 and 4 time steps, respectively (see table 6). Thus, we expect that with current technology, we might be
limited to between 5 and 10 time steps on large designs. Of course, we could have let the SAT tools run longer,
and undoubtedly we would have extended some of these numbers. But, that was not the goal of our experiment.
We tried to see what one could expect running large numbers of designs through a verifier, where not much time
could be spent on any individual verification, as we felt this would replicate conditions that would occur in indus-
try. Still even if we end up limited, in the end, to explorations within 5 to 10 time steps of initial states, if such
explorations can be done quickly and are exhaustive, it is certain they will aid in finding design errors in industry.
And, of course, we hope to extend these limits by further research.

Lastly, the results for invariance checking speak for themselves. We believe the performance would only
improve given accurate input constraints. There is no logical reason to believe otherwise. Yet, it is hard to improve
on the existing performance, since nearly every invariance check completed in under 1 second!

6 A Verification Methodology

Our experimental results lead us to propose an automated methodology for checking safety properties on industrial
designs. In what follows, we assume a design divided up into separate blocks, as is the norm with hierarchical
VLSI designs. Our methodology is as follows:

1. Annotate each design block with Boolean formulae required to hold at all time points. Call these the block’s
inner assertions.

2. Annotate each design block with Boolean formulae describing constraints on that block’s inputs. Call these
the block’sinput constraints.

3. Use the procedure outlined in Section 6.2 to check each block’s inner assertions under its input constraints,
using bounded model checking with satisfiability solving.

This methodology could be extended to includemonitors for satisfaction of sequential constraints, in the
manner described in [21], where input constraints were considered in the context of BDD based model checking.

6.1 Incorporating Constraints

Let us consider propositional input constraints with which the valuations of circuit inputs must always be consis-
tent.

We discussed Kripke structures in Section 2, and how these can be used to model digital hardware systems.
We defined the unrolled transition relation of a Kripke structure in formula 1, of Section 3.1. We can incorporate
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input constraints into the unrolled transition relation as shown below, where we assume the input constraints are
given by a propositional formula,c, over state variables representing inputs.

[[ M ]]k := I(s̄0)∧c(s̄0)∧T(s̄0, s̄1)∧c(s̄1)∧·· ·∧T(s̄k−1, s̄k)∧c(s̄k) (2)

Below, when we speak of checking invariants under input constraints, we mean using formula 2 in place of
formula 1 for the unrolled transition relation,[[ M ]]k,

6.2 Safety Property Checking Procedure

The steps for checking whether a block’s inner assertion,p, is an invariant under input constraints,c, are:

1. Check whetherp is a combinational tautology in the unconstrainedK, using formula 1. If it is, exit.
2. Check whetherp is an inductive invariant for the unconstrainedK, using formula 1. If it is, exit.
3. Check whetherp is a combinational tautology in the presence of input constraints, using formula 2. If it is,

go to step 6.
4. Check whetherp is an inductive invariant in the presence of input constraints, using formula 2. It it is, go to

step 6.
5. Check if a bounded length counterexample exists toAG p in the presence of input constraints, using formula 2.

If one is found, there is no need to examinec, since the counterexample would exist without input constraints5.
If a counterexample is not found, go to step 6. The input constraints may need to be reformulated and this
procedure repeated from step 3.

6. Check the input constraints,c, on pertinent design blocks, as explained below.

Inputs that are constrained in one design block,A, will, in general, be outputs of another design block,B. To check
A’s input constraints, we turn them into inner assertions forB, and check them with the above procedure. One must
take precautions against circular reasoning while doing this. Circular reasoning can be detected automatically,
however, and should not, therefore, be a barrier to this methodology.

The ease with which we carried out tautology and invariance checking indicates the above is entirely feasible.
Searching for a counterexample, step 5, may become costly at highk values; however, this can be arbitrarily
limited. It is expected that design teams would set limits for formal verification and would complement its use
with simulation, for the remainder of available resources.

7 Conclusions

We can summarize the advantages of bounded model checking as follows. Bounded model checking entails only
slight memory and CPU usage, especially if the user is willing to not push the time bound,k, to its limit. But there
are some encouraging results for larger values ofk as well [32]. The technique is extremely fast for invariance
checking. Counterexamples and witnesses are of minimal length, which make them easy to understand. The
technique lends itself well to automation, since it needs little by-hand intervention. The disadvantages of bounded
model checking are that, at present, the implementations are limited as to the types of properties that can be
checked, and there is no clear evidence the technique will consistently find long counterexample or witnesses.

From this discussion it follows that at the current stage of development bounded model checking alone can not
replace traditional symbolic model checking techniques based on BDDs entirely. However in combination with
traditional techniques bounded model checking is able to handle more verifications tasks consistently. Particularly
for larger designs where BDDs explode, bounded model checking is often still able to find design errors or as in
our experiments violations of certain environment assumptions.

Since bounded model checking is a rather recent technique there are a lot of directions for future research:

1. The use of domain knowledge to guide search in SAT procedures.
2. New techniques for approaching completeness, especially in safety property checking, where it may be the

most possible.
3. Combining bounded model checking with other reduction techniques.
5 This is implied by the theorems in [13, 18], mentioned in Section 5.2
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4. Lastly, combining bounded model checking with a partial BDD approach.

The reader may also refer to [32], which presents successful heuristics for choosing decision variables for SAT
procedures in the context of bounded model checking of industrial designs. In [37] early results on combining
BDDs with bounded model checking are reported. See also [1] for a related approach.

While our efforts will continue in these directions, we expect the technique to be successful in the industrial
arena as presently constituted, and this, we feel, will prompt increased interest in it as a research area. This is all
to the good, as it will impel us faster, towards valuable solutions.
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