
Model Checking with CTL

Presented by Jason Simas

Model Checking with CTL

Based Upon:

Logic in Computer Science. Huth and Ryan. 2000. (148-215)

Model Checking. Clarke, Grumberg and Peled. 1999. (1-26)

Content

Context
Model Checking
Models

CTL
Syntax
Semantics
Checking Algorithm

Model Checking

M |= ϕ
M is the model

Requires a description language

ϕ is the property to check
Requires a specification language

|= is the “satisfaction relation”
Algorithm to check whether (M, ϕ) ε |=
Outputs either “yes” or “no” (+ trace)

Models

Fundamentals

Language Definition

Example Model

Fundamentals

Want to prove properties
Model all relevant sub properties
Model abstraction level <= properties
-> Model how properties change

Over time? (sort of)
Over property change? (yes)

Abstract out time

Modeling Property Change

Model = States + Transitions + Labels
States

Possibilities of which properties can be true together +
Possibilities of which properties can follow each other +

Transitions
Possibilities of which states can follow each other

Labels
Possibilities of which properties are true for each state

States need not be unique wrt labels
Use a directed graph

Definition: Model for CTL
M = (S, →, L)

S is a finite set of states {s0, s1, …, sn}
→ is a set of transitions

→ ⊆ SxS and
for every s ε S there is some s’ ε S such that s → s’

L is a labeling function L: S → Ρ (Atoms)
S is the set of states of Μ
Ρ (Atoms) is the power set of Atoms

Atoms is the set of all propositions

Mutual Exclusion (Interleaved)

Mutual Exclusion (Interleaved)
Μ = (S, →, L) where

S = {s0, s1, s2, s3, s4, s5, s6, s7, s9,}
→ =

{(s0, s1), (s1, s2), (s1, s3), (s2, s4), (s3, s4), (s2, s0), (s4, s5),
(s0, s5), (s5, s6), (s5, s9), (s6, s7), (s9, s7), (s6, s0), (s7, s1)}

L =
{(s0, {n1, n2}),
(s1, { t1, n2}), (s2, { c1, n2}), (s3, { t1, t2}), (s4, {c1, t2}),
(s5, { n1, t2}), (s6, { n1, c2}), (s7, {t1, c2}), (s9, { t1, t2})}

Note: s3, s9 are distinct for “turns”

Properties

Remember M |= ϕ
ϕ specifies properties of states/transitions
Need a specification language for ϕ, CTL

CTL: Computation Tree Logic
Specifying properties of “computation trees”
“Logic” = Language + Inference Rules

Inference Rules = Algorithm for check

Computation Trees
A tree such that starting at some state s,

There exists edges to each of its children (s → s’)
Same is true for each child, ad infinitum

Example: “Efficiency”
For each “cycle” (ni→*ni) some process enters its critical section
CTL: AG ((s1 v s5) → AX (A¬(s1 v s5) U (c1 v c2)))

CTL Syntax
φ :=

┴ | ┬ | p |
(¬φ) | (φ ^ φ) | (φ v φ) | (φ → φ) |
AX φ | EX φ | A[φ U φ] | E[φ U φ] | AG φ | EG φ | AF φ | EF φ

Atoms: ┴, ┬, p
p is an arbitrary atomic property either true or false

Example: c1: “process 1 is in its critical section”

Propositional Connectives: ^, v, ¬, →
Temporal Connectives: EG, AG, EX, AX, EF, AF, EU, AU

Note: EU φ1 φ2 same as E [φ1 U φ2]
Binding Precedence:

Unary Connectives: ¬, AX, EX, AG, EG, AF, EF
Binary Connectives: →, AU, EU

┬, c1, c1 ^ c2, AX (c1 ^ c2), A [c1 U c1], E [┬ U (AX (c1 ^ c2))]

CTL Semantics

M,s |= φ where φ is a CTL formula
“is φ true for the model M at state s?”
when s is the initial state: M |= φ
Irrelevant whether φ is true/false at other states

Temporal Connectives:
A,E: range over paths from s
G,X,F,U: range over states on a path from s

┬ , ┴ , p
M,s |= ┬ and not M,s |= ┴ for all s ε S

M,s |= p iff p ε L(s)

¬

M,s |= ¬φ iff not M,s |= φ

^, v

M,s |= φ1 ^ φ2 iff M,s |= φ1 and M,s |= φ2

M,s |= φ1 v φ2 iff M,s |= φ1 or M,s |= φ2

→
M,s |= φ1 → φ2 iff not M,s |= φ1 or M,s |= φ2

AX, EX
AX

M,s |= AX φ iff for all s’ such that s→s’ we have M,s’ |= φ
“For all paths, for the next state, φ is true”

EX
M,s |= EX φ iff for some s’ such that s→s’ we have M,s’ |= φ
“For some path, for the next state, φ is true”

AG
M,s |= AG φ iff for all paths s1 → s2 → s3 → … where
s1 equals s and for all si along the path,
we have M,si |= φ

“For all paths, for all states along each path, φ is true”

EG
M,s |= EG φ iff for some path s1 → s2 → s3 → …
where s1 equals s and for all si along the path,
we have M,si |= φ

“For some path, for all states along the path, φ is true”

AF
M,s |= AF φ iff for all paths s1 → s2 → s3 → …
where s1 is s and for some si along each path,
we have M,si |= φ

“For all paths, for some state along each path, φ is true”

EF
M,s |= EF φ iff for some path s1 → s2 → s3 → …
where s1 equals s and for some si along the path,
we have M,si |= φ

“For some path, for some state along each path, φ is true”

AU
M,s |= A [φ1 U φ2] iff for all paths s1 → s2 → s3 → …
where s1 equals s, each path satisfies φ1 U φ2
(i.e. there is some si along the path such that
M,si |= φ2 and for each j < i we have M,sj |= φ1)

“For all paths, for every state in each path φ1 until φ2”

EU
M,s |= E [φ1 U φ2] iff for some path s1 → s2 → s3
→…
where s1 equals s, the path satisfies φ1 U φ2
(i.e. there is some si along the path such that
M,si |= φ2 and for each j < i we have M,sj |= φ1)

“For some path, for every state in the path φ1 until φ2”

Inclusion of “s” in Condition

“s” is the first state checked
For G, F, U
But not for X

Examples:
M |= AF (n1 ^ n2)
M |= EG ¬(n1 ^ n2)
M |= A [┴ U (n1 ^ n2)

To exclude “s”, use X ϕ

Mutual Exclusion Properties
Safety:

Only one process shall be in its critical section at any time
AG ¬(c1 ^ c2)

Liveness:
Whenever any process wants to enter its critical section, it will
eventually be permitted to do so
AG (t1 → AF c1) ^ AG (t2 → AF c2)

Non-blocking
A process can always request to enter its critical section
AG (n1 → EX t1) ^ AG (n2 → EX t2)

No strict sequencing:
Processes need not enter their critical section in strict sequence
EF (c1 ^ E[c1 U (¬c1 ^ E[¬c2 U c1])]) v
EF (c2 ^ E[c2 U (¬c2 ^ E[¬c1 U c2])])

Checking Algorithm

Minimal Set of Connectives
Algorithm
Correctness
Complexity
Implementation

Minimal Set of Connectives
Two CTL formulas φ and ψ are semantically equivalent
iff any state in any model which satisfies one of them also
satisfies the other

De Morgan’s Law
¬AF φ = EG ¬φ
¬EF φ = AG ¬φ

Minimal Set of Connectives: ^, ¬, ┴, AF, EX, EU
Translate: AG, EG, EF, AX, AU
For AG: AG φ = ¬EF ¬φ
For EG: EG φ = ¬AF ¬φ
For EF: EF φ = E [┬ U φ]
For AX: AX φ = ¬EX ¬φ
For AU: A [┬ U φ] = AF φ

Algorithm

Input: The model M and the CTL formula φ
Output: The set of states of M that satisfy φ
Steps:

Translate φ to φ’ where φ’ only has connectives in
the minimal set
Label the states of M with the sub formulas of φ
that are satisfied there, starting with the smallest
sub formulas and working outwards towards φ

If s0 is an element of the output, then “yes”

┬, ┴
┴: then no states are labeled with ┴
┬: then all states are labeled with ┬

P, ¬
p: then label s with p if p ε L(s)
¬ψ1: label s with ¬ψ1 if s is not already labeled with ψ1

^, v
ψ1 ^ ψ2: label s with ψ1 ^ ψ2
if s is already labeled with both ψ1 and ψ2

ψ1 v ψ2: label s with ψ1 v ψ2

if s is already labeled with ψ1 or ψ2

EX

EX ψ1: label any state with EX ψ1
if one of its successors is labeled with ψ1

AF
AF ψ1:

If any state s is labeled with ψ1, label it with AF ψ1

Repeat: label any state with AF ψ1 if all successor states
are labeled with AF ψ1, until there is no change

EU
E[ψ1 U ψ2]:

If any state s is labeled with ψ2, label it with E[ψ1 U ψ2]
Repeat: label any state with E[ψ1 U ψ2] if it is labeled with ψ1 and
at least one of its successors is labeled with E[ψ1 U ψ2],
until there is no change

Correctness: Termination
Repeat until no change of AF and EU

Required since algorithm may add states
and existence of states is part of condition

Problem: “repeat” may not terminate
Show that the functions for AF and UE terminate

Show that
F0 (F1 (… Fn (S))) = F0 (F1 (… Fn+1 (S))) for some n

Fixpoints

Given: F is a function F: P(S) → P(S)
Fixpoint Sets

A subset X of S is called a fixpoint of F if F(X) = X
If we prove “repeat” has a fixpoint
then we’ve proved “repeat” terminates

Known Theorem:
Every monotone function has a fixpoint

Is “repeat” monotone?

Monotone Functions
Monotone Functions:

F is monotone
iff X⊆ Y implies F(X) ⊆ F(Y) for all subsets X and Y of S

FAF is monotone
X,Y are the set of states with a label AFϕ
FAF only adds states, that is FAF (Z) = Z ∪ {…}
Condition for what is in {…} is dependent on Z
“More states in Z, then more potential for adding states”
Since X is “contained” in Y, then Y has all the potential of X
(i.e. FAF (X) = FAF (Y))
And if X is smaller than Y, then Y has more potential than X
(i.e. FAF (X) ⊆ FAF (Y))
So if X⊆ Y then FAF (X) ⊆ FAF (Y)

FEU is similarly monotone

Complexity

This Algorithm: O (f * V * (V + E))
f is the number of connectives in the
formula
V is the number of states
E is the number of transitions
“linear in the size of the formula and
quadratic in the size of the model”

Better Algorithms: O (f * (V + E)

Complexity: State Explosion
Problem is size of model, not algorithm

Size of model (V + E) is exponential
in the number of variables (or properties on them)
Size of model (V+E) is exponential
in the number of components that can execute in parallel

Implementations

SMV
Model Checker
Available from CMU
Created by K. McMillan

NuSMV
Reimplementation

Cadence SMV
Reimplementation + Compositional Focus

	Model Checking with CTL
	Model Checking with CTL
	Content
	Model Checking
	Models
	Fundamentals
	Modeling Property Change
	Definition: Model for CTL
	Mutual Exclusion (Interleaved)
	Mutual Exclusion (Interleaved)
	Properties
	Computation Trees
	Example: “Efficiency”
	CTL Syntax
	CTL Semantics
	- , - , p
	¬
	^, v
	?
	AX, EX
	AG
	EG
	AF
	EF
	AU
	EU
	Inclusion of “s” in Condition
	Mutual Exclusion Properties
	Checking Algorithm
	Minimal Set of Connectives
	Algorithm
	-, -
	P, ¬
	^, v
	EX
	AF
	EU
	Correctness: Termination
	Fixpoints
	Monotone Functions
	Complexity
	Complexity: State Explosion
	Implementations

