!'_ Model Checking with CTL

Presented by Jason Simas

!'_ Model Checking with CTL

Based Upon:

Logic in Computer Science. Huth and Ryan. 2000. (148-215)

Model Checking. Clarke, Grumberg and Peled. 1999. (1-26)

i Content

s Context
= Model Checking
= Models

s CTL
= Syntax
= Semantics
= Checking Algorithm

i Model Checking

] M ‘= ()
= M is the model
= Requires a description language
= @ IS the property to check
= Requires a specification language

= |= is the "satisfaction relation”
= Algorithm to check whether (M, o) ¢ |=
= Outputs either “yes” or "no” (+ trace)

i Models

= Fundamentals
= Language Definition

= Example Model

i Fundamentals

= Want to prove properties
= Model all relevant sub properties
= Model abstraction level <= properties

= -> Model how properties change
= Over time? (sort of)
« Over property change? (yes)
= Abstract out time

Modeling Property Change

s Model = States + Transitions + Labels

= States
= Possibilities of which properties can be true together +
= Possibilities of which properties can follow each other +

= lransitions
= Possibilities of which states can follow each other

= Labels
= Possibilities of which properties are true for each state

= States need not be unique wrt labels
= Use a directed graph

i Definition: Model for CTL

= M=(S, -, L)
= Sis a finite set of states {s,, s,, ..., S,.}

= — is a set of transitions
= — < SxS and
= for every s ¢ S there is some s’ ¢ S such thats —» &’

« Lis a labeling function L: S — P (Atoms)

=« S is the set of states of M

= P (Atoms) is the power set of Atoms
Atoms is the set of all propositions

‘L Mutual Exclusion (Interleaved)

i Mutual Exclusion (Interleaved)

= M= (S, -, L) where

= S= {SOI S]_I SZI 531 s4/ 551 S6l S7I Sgl}

> =
= {(Sor S1)r (S1s S2)r (S1 S3)s (Syr Sa)s (S34 S4)s (Sar Sg)s (Sar Ss)
= (Sqr Sc), (Sss S)s (Ssi Sg)s (Ser S7)s (Sqr S7)s (Ser So)r (S S1)}

| L -

. {(Sor {n1/ nz})/

. (511 { t1l nz})l (52/ { C]_I nz})l (53/ { t1/ tz})l (54/ {C]_I tz})/

. (551 { n1l tz})l (S6' { n]_l Cz})l (S7I {tll Cz})l (591 { t1/ tz})}

= Note: s;, sq are distinct for “turns”

i Properties

= Remember M |[= ¢

= ¢ Specifies properties of states/transitions
= Need a specification language for ¢, CTL

= CTL: Computation Tree Logic
= Specifying properties of “computation trees”
= 'Logic” = Language + Inference Rules
= Inference Rules = Algorithm for check

Computation Trees

= A tree such that starting at some state s,
= There exists edges to each of its children (s — s)
= Same is true for each child, ad infinitum

s 0

i Example: “Efficiency”

= For each “cycle” (n.—*n.) some process enters its critical section
= CTL: AG ((S;VSs) > AX(A=(s;vs)U(c;ve)))

CTL Syntax

¢ =

= Ll1lp]

= () [(@) [(oVve)]|(0— o)

= AXo |EX@ |AloU o] |E[eU @] |AGp |EGo | AFo | EF @
Atoms: 1, +, p

= p is an arbitrary atomic property either true or false
= Example: c;: "process 1 is in its critical section”

Propositional Connectives: », v, =, —>
Temporal Connectives: EG, AG, EX, AX, EF, AF, EU, AU
= Note: EU @, ¢, same as E [¢, U o,]
Binding Precedence:
= Unary Connectives: =, AX, EX, AG, EG, AF, EF
= Binary Connectives: —, AU, EU
T, C, ¢, N 6, AX(c; M), Alc, U], E[+ U (AX (c; ~)]

i CTL Semantics

= M,s |= ¢ where ¢ is a CTL formula
= IS @ true for the model M at state s?”
= When s is the initial state: M |= ¢
= Irrelevant whether ¢ is true/false at other states

= Temporal Connectives:
« AE: range over paths from s
= G,X,F,U: range over states on a path from s

gt

= Ms|=sandnotM,s |=-LforallseS
= M,ss|=piff pelL(s)

S

‘.E -
= Ms|=-@iff notM,s |[= ¢

rot
5 @

P X

- Sk

= Mss|=9, Mo, IiffM,s |=¢, and M,s |= o,
s Ms|=¢,ve,iff Ms|=¢, orM,s |= o,

FPodeddt

$_>

= M,s |= ¢, — o, iff not M,s |= ¢, or M,s |= o,

Fode

i AX, EX
= AX
= M,s |= AX ¢ iff for all " such that s—s’ we have M,s’ |= ¢
= "For all paths, for the next state, ¢ is true”

= EX

= M,s |= EX ¢ iff for some s’ such that s—s’ we have M,s" |= ¢
= For some path, for the next state, o is true”

R

P QY QP KPR

AG

= M,s |=AG ¢ iff for all paths s, — s, — s; — ... where
s, equals s and for all s, along the path,
we have M,s; |= ¢
= For all paths, for all states along each path, ¢ is true”

S

EG

= M,s |=EG ¢ iff for some paths;, - s, > s5; — ...
where s, equals s and for all s, along the path,
we have M,s; |= ¢
= For some path, for all states along the path, ¢ is true”

5

AF

= M,s |= AF ¢ iff for all paths s, - s, > 5; — ..
where s, is s and for some s. along each path,
we have M,s; |= ¢
= For all paths, for some state along each path, ¢ is true”

=

EF

= M,s |= EF ¢ iff for some paths, - s, > 5, — ...
where s, equals s and for some s; along the path,
we have M,s; |= ¢
= For some path, for some state along each path, ¢ is true”

=

PR R

iAU

= Ms|=Alp,Uao,] iff forall pathss, - s, -»s; — ...

where s, equals s, each path satisfies ¢, U o,
(i.e. there is some s, along the path such that
M;s; |= @, and for each j < i we have M;s; |= ¢,)
= "For all paths, for every state in each path ¢, until ¢,”

(o
s S 35 S8 S5 53 34 S5 S5 37 33 59 Spp
L . - =i L ¥ .

iEU

= M,;s|=E[p,Uq,] iff for some paths;, —» s, — s,
where s, equals s, the path satisfies ¢, U o,
(i.e. there is some s, along the path such that
M;s; |= @, and for each j < i we have M;s; |= ¢,)
= For sc ; @ path ¢, until ¢,”

Zi-lelke

i Inclusion of “s” in Condition

= 'S" is the first state checked
« ForG, F, U
= But not for X

= Examples:
= M |=AF (ny A n,)
« M|=EG—(nh; * n,)
«M|=A[LU(M;~n)

= To exclude “'s”, use X ¢

Mutual Exclusion Properties

= Safety:
= Only one process shall be in its critical section at any time
= AG _I(Cl N C2)

Liveness:

= Whenever any process wants to enter its critical section, it will
eventually be permitted to do so

= AG (t; > AFcl) M AG (t, — AF)
= Non-blocking
= A process can always request to enter its critical section
= AG(n; - EXt) ~AG (n, — EX L)
= No strict sequencing:
= Processes need not enter their critical section in strict sequence

« EF(c; » E[c; U (—c; ME[Ac, U DDV
EF (c, E[c, U (=c, N E[—c; U c,D])

i Checking Algorithm

= Minimal Set of Connectives
= Algorithm

= Correctness

= Complexity

= Implementation

i Minimal Set of Connectives

Two CTL formulas ¢ and y are semantically equivalent
iff any state in any model which satisfies one of them also
satisfies the other
= De Morgan’s Law
« =AF ¢ = EG —¢
« =EF ¢ = AG —¢
= Minimal Set of Connectives: ~, =, 1, AF, EX, EU
« Translate: AG, EG, EF, AX, AU
= For AG: AG ¢ = =EF ¢
« For EG: EG ¢ = -AF =@
= For EF: EF @ = E[+ U ¢]
= For AX: AX @ = -EX =0
= ForAU: A[T+U @] =AF@

i Algorithm

= Input: The model M and the CTL formula ¢
= Output: The set of states of M that satisfy ¢

= Steps:

= Translate ¢ to ¢’ where ¢’ only has connectives in
the minimal set

= Label the states of M with the sub formulas of ¢
that are satisfied there, starting with the smallest
sub formulas and working outwards towards ¢

s If 55 is an element of the output, then “yes”

e

= L: then no states are labeled with L
= T then all states are labeled with +

iP,ﬂ

= p: then label s with p if p € L(s)
= Y, label s with =y, if s is not already labeled with y,

- Sk

= Y, Ny, label s with y, * y,
if s is already labeled with both y, and y,

= Y, vy, label s with g, vy,
if s is already labeled with g, or y,

iEX

= EX y,: label any state with EX y,
if one of its successors is labeled with y,

Ex phi_T

AF

n AF L|J1:
= If any state s is labeled with y,, label it with AF y;
= Repeat: label any state with AF y, if all successor states

EU

- E['~|J1 U L|J2:|:
= If any state s is labeled with y,, label it with E[y, U y,]

= Repeat: label any state with E[y, U y,] if it is labeled with y, and
at least one of its successors is labeled with E[y, U y,],
until there is no change

E [phi_1 U phi_2]

i Correctness: Termination

= Repeat until no change of AF and EU

= Required since algorithm may add states
and existence of states is part of condition

= Problem: “repeat” may not terminate

= Show that the functions for AF and UE terminate

= Show that
Fo (Fy (. F, (S))) = F, (F, (... F 4 (S))) for some n

i Fixpoints

= Given: Fis a function F: P(S) — P(S)

= Fixpoint Sets
= A subset X of S is called a fixpoint of F if F(X) = X

= If we prove “repeat” has a fixpoint
then we've proved “repeat” terminates

= Known Theorem:
Every monotone function has a fixpoint

« Is “repeat” monotone?

i Monotone Functions

= Monotone Functions:
= F is monotone

iff X< Y implies F(X) < F(Y) for all subsets X and Y of S

= F,c Is monotone

X,Y are the set of states with a label AFo

F. only adds states, thatis Fy- (Z) =Z U {...}

Condition for what is in {...} is dependent on Z

“More states in Z, then more potential for adding states”

Since X is “contained” in Y, then Y has all the potential of X
(i.e. Fae (X) = Fpe (Y))

And if X is smaller than Y, then Y has more potential than X
(i.e. Fpe (X) < Fpe (Y))

So if Xc Y then Fue (X) < Fe (Y)

Fey is similarly monotone

i Complexity

= This Algorithm: O (f * V * (V + E))
= f is the number of connectives in the
formula
= V is the number of states
= E is the number of transitions

= linear in the size of the formula and
quadratic in the size of the model”

= Better Algorithms: O (f * (V + E)

i Complexity: State Explosion

= Problem is size of model, not algorithm

= Size of model (V + E) is exponential
in the number of variables (or properties on them)

= Size of model (V+E) is exponential
in the number of components that can execute in parallel

i Implementations

= SMV
= Model Checker
= Available from CMU
= Created by K. McMillan

x NUSMV
=« Reimplementation

= Cadence SMV
= Reimplementation + Compositional Focus

	Model Checking with CTL
	Model Checking with CTL
	Content
	Model Checking
	Models
	Fundamentals
	Modeling Property Change
	Definition: Model for CTL
	Mutual Exclusion (Interleaved)
	Mutual Exclusion (Interleaved)
	Properties
	Computation Trees
	Example: “Efficiency”
	CTL Syntax
	CTL Semantics
	- , - , p
	¬
	^, v
	?
	AX, EX
	AG
	EG
	AF
	EF
	AU
	EU
	Inclusion of “s” in Condition
	Mutual Exclusion Properties
	Checking Algorithm
	Minimal Set of Connectives
	Algorithm
	-, -
	P, ¬
	^, v
	EX
	AF
	EU
	Correctness: Termination
	Fixpoints
	Monotone Functions
	Complexity
	Complexity: State Explosion
	Implementations

