Model Checking with CTL

Presented by Jason Simas

Model Checking with CTL

Based Upon:

Logic in Computer Science. Huth and Ryan. 2000. (148-215)

Model Checking. Clarke, Grumberg and Peled. 1999. (1-26)

Content

Context

- Model Checking
- Models
- CTL
 - Syntax
 - Semantics
 - Checking Algorithm

Model Checking

- M |= φ
 - M is the model
 - Requires a description language
 - $\bullet \ \phi$ is the property to check
 - Requires a specification language
 - |= is the "satisfaction relation"
 - Algorithm to check whether (M, ϕ) ϵ |=
 - Outputs either "yes" or "no" (+ trace)

Fundamentals

Language Definition

Example Model

Fundamentals

- Want to prove properties
- Model all relevant sub properties
- Model abstraction level <= properties</p>
- -> Model how properties change
 - Over time? (sort of)
 - Over property change? (yes)

Abstract out time

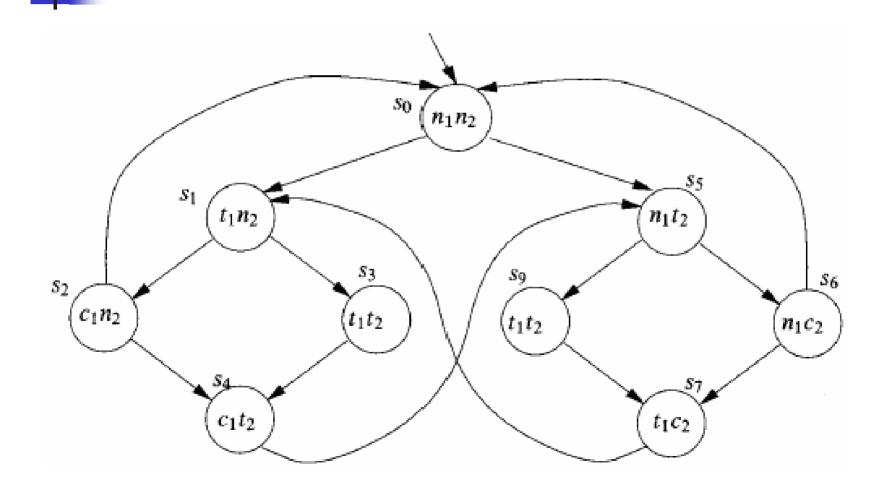
Modeling Property Change

- Model = States + Transitions + Labels
 - States
 - Possibilities of which properties can be true together +
 - Possibilities of which properties can follow each other +
 - Transitions
 - Possibilities of which states can follow each other
 - Labels
 - Possibilities of which properties are true for each state
- States need not be unique wrt labels
- Use a directed graph

Definition: Model for CTL

- M = (S, →, L)
 - S is a finite set of states {s₀, s₁, ..., s_n}
 - \rightarrow is a set of transitions
 - $\rightarrow \subseteq$ SxS and
 - for every s ϵ S there is some s' ϵ S such that s \rightarrow s'
 - L is a labeling function L: $S \rightarrow P$ (Atoms)
 - S is the set of states of M
 - P (Atoms) is the power set of Atoms
 - Atoms is the set of all propositions

Mutual Exclusion (Interleaved)



Mutual Exclusion (Interleaved)

• $M = (S, \rightarrow, L)$ where • $S = \{S_0, S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_9, \}$ \rightarrow = • {(S_0, S_1), (S_1, S_2), (S_1, S_3), (S_2, S_4), (S_3, S_4), (S_2, S_0), (S_4, S_5), • $(S_0, S_5), (S_5, S_6), (S_5, S_9), (S_6, S_7), (S_9, S_7), (S_6, S_0), (S_7, S_1)$ **I I** = • {($s_0, \{n_1, n_2\}$), • $(s_1, \{t_1, n_2\}), (s_2, \{c_1, n_2\}), (s_3, \{t_1, t_2\}), (s_4, \{c_1, t_2\}),$ • $(s_5, \{n_1, t_2\}), (s_6, \{n_1, c_2\}), (s_7, \{t_1, c_2\}), (s_9, \{t_1, t_2\})\}$ Note: s_3 , s_9 are distinct for "turns"

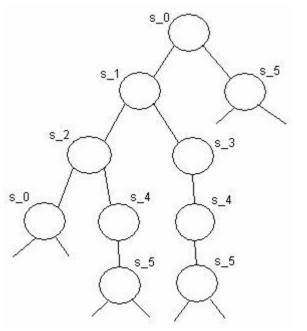
Properties

• Remember M $\mid = \phi$

- ϕ specifies properties of states/transitions
- Need a specification language for ϕ , CTL
- CTL: Computation Tree Logic
 - Specifying properties of "computation trees"
 - "Logic" = Language + Inference Rules
 - Inference Rules = Algorithm for check

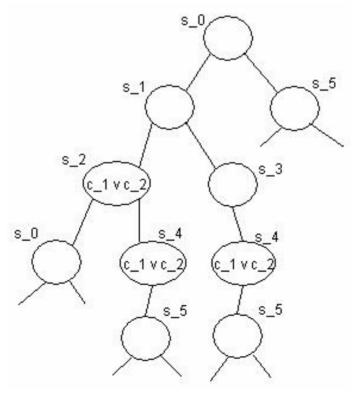
Computation Trees

- A tree such that starting at some state s,
 - There exists edges to each of its children $(s \rightarrow s')$
 - Same is true for each child, ad infinitum



Example: "Efficiency"

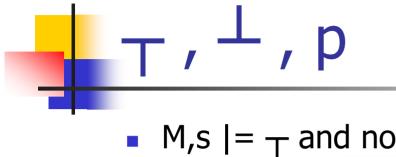
- For each "cycle" $(n_i \rightarrow n_i)$ some process enters its critical section
- CTL: AG (($s_1 v s_5$) \rightarrow AX (A¬($s_1 v s_5$) U ($c_1 v c_2$)))



- φ :=
 - <u>⊥</u>|<u></u>|p|
 - $(\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \rightarrow \phi) \mid$
 - AX φ | EX φ | A[φ U φ] | E[φ U φ] | AG φ | EG φ | AF φ | EF φ
- Atoms: \perp , \top , p
 - p is an arbitrary atomic property either true or false
 - Example: c₁: "process 1 is in its critical section"
- Propositional Connectives: \land , v, \neg , \rightarrow
- Temporal Connectives: EG, AG, EX, AX, EF, AF, EU, AU
 - Note: EU $\phi_1 \phi_2$ same as E $[\phi_1 \cup \phi_2]$
- Binding Precedence:
 - Unary Connectives: ¬, AX, EX, AG, EG, AF, EF
 - Binary Connectives: \rightarrow , AU, EU
- T, C₁, C₁ ^ C₂, AX (C₁ ^ C₂), A [C₁ U C₁], E [T U (AX (C₁ ^ C₂))]

CTL Semantics

- M,s $|= \varphi$ where φ is a CTL formula
 - "is φ true for the model M at state s?"
 - when s is the initial state: $M \mid = \varphi$
 - Irrelevant whether ϕ is true/false at other states
- Temporal Connectives:
 - A,E: range over paths from s
 - G,X,F,U: range over states on a path from s



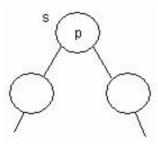
• M,s |= T and not M,s $|= \bot$ for all s ε S

Т

Т

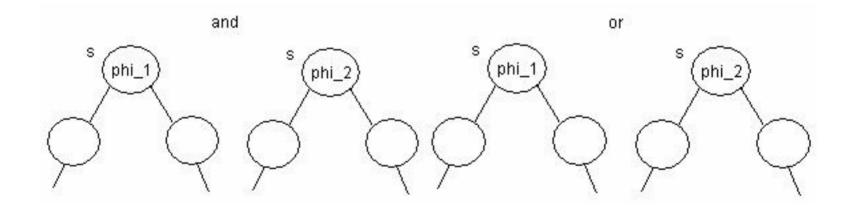
Т

M,s |= p iff p ε L(s)

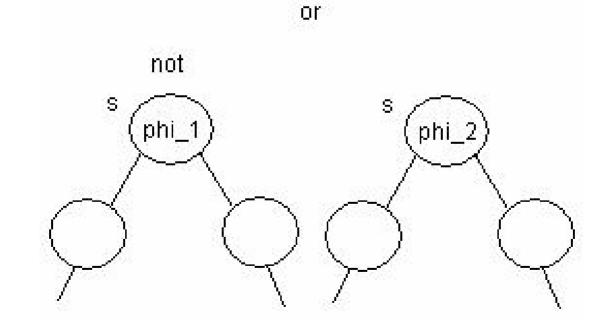


• M,s $|= \neg \phi$ iff not M,s $|= \phi$ not S phi_1

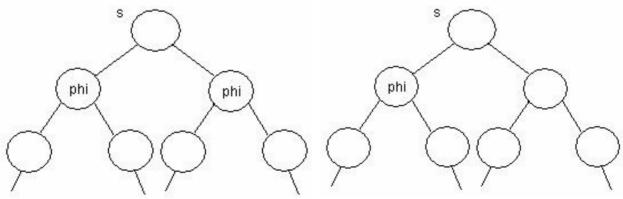
M,s |= φ₁ ^ φ₂ iff M,s |= φ₁ and M,s |= φ₂ M,s |= φ₁ v φ₂ iff M,s |= φ₁ or M,s |= φ₂



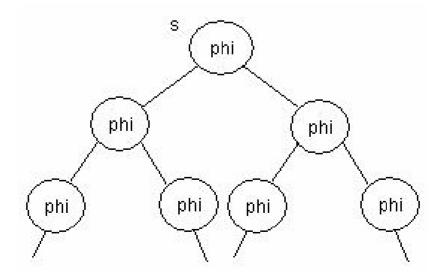
• M,s $|= \phi_1 \rightarrow \phi_2$ iff not M,s $|= \phi_1$ or M,s $|= \phi_2$



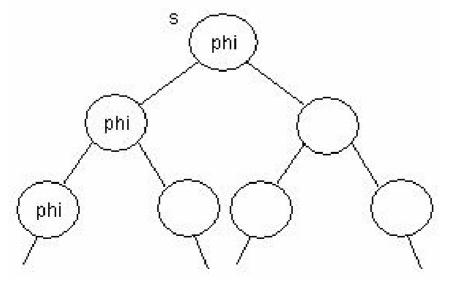
- AX
 - M,s |= AX ϕ iff for all s' such that s \rightarrow s' we have M,s' |= ϕ
 - "For all paths, for the next state, ϕ is true"
- EX
 - M,s |= EX ϕ iff for some s' such that s \rightarrow s' we have M,s' |= ϕ
 - "For some path, for the next state, φ is true"



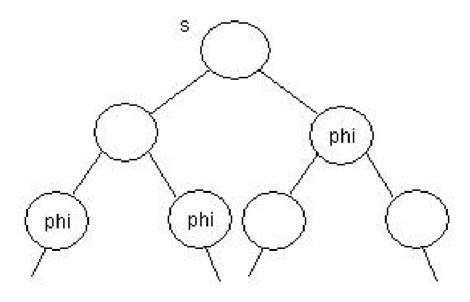
- M,s |= AG ϕ iff for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ...$ where s_1 equals s and for all s_i along the path, we have M,s_i |= ϕ
 - "For all paths, for all states along each path, ϕ is true"



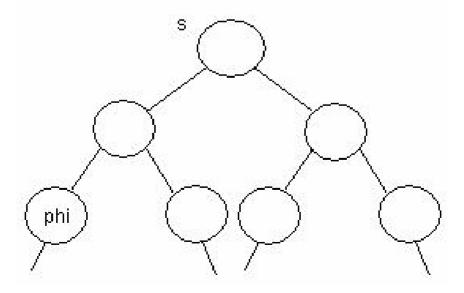
- M,s |= EG φ iff for some path $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ...$ where s_1 equals s and for all s_i along the path, we have M,s_i |= φ
 - "For some path, for all states along the path, ϕ is true"

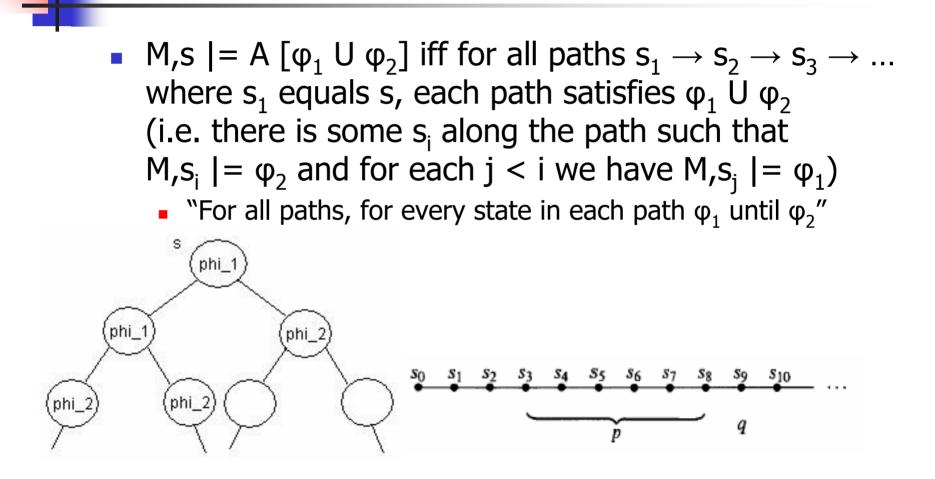


- M,s |= AF ϕ iff for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \dots$ where s_1 is s and for some s_i along each path, we have M, s_i |= ϕ
 - "For all paths, for some state along each path, ϕ is true"

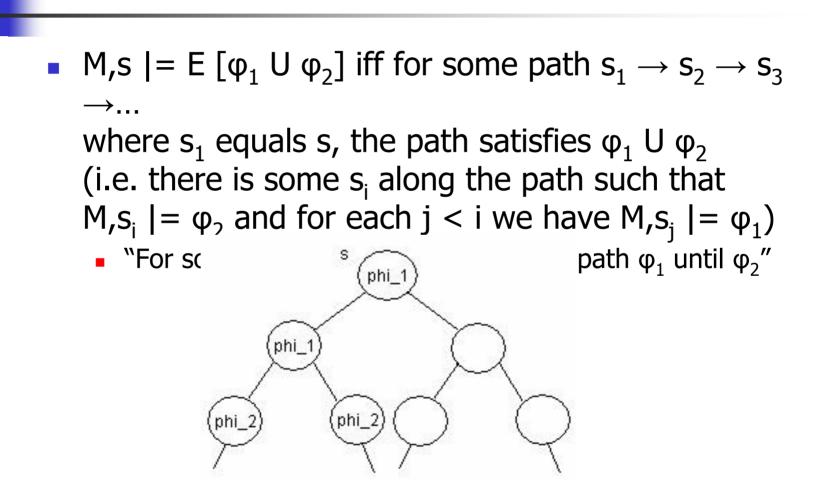


- M,s |= EF φ iff for some path $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ...$ where s_1 equals s and for some s_i along the path, we have M,s_i |= φ
 - "For some path, for some state along each path, ϕ is true"





AU



FU

Inclusion of "s" in Condition

- "s" is the first state checked For G, F, U But not for X Examples: • M |= AF $(n_1 \wedge n_2)$ • M |= EG $\neg (n_1 \land n_2)$ • M |= A [\perp U (n₁ ^ n₂)
 - To exclude "s", use X φ

Mutual Exclusion Properties

- Safety:
 - Only one process shall be in its critical section at any time
 - AG ¬(C₁ ^ C₂)
- Liveness:
 - Whenever any process wants to enter its critical section, it will eventually be permitted to do so
 - AG (t₁ \rightarrow AF c1) ^ AG (t₂ \rightarrow AF c₂)
- Non-blocking
 - A process can always request to enter its critical section
 - AG $(n_1 \rightarrow EX t_1) \wedge AG (n_2 \rightarrow EX t_2)$
- No strict sequencing:
 - Processes need not enter their critical section in strict sequence
 - EF $(c_1 \land E[c_1 \cup (\neg c_1 \land E[\neg c_2 \cup c_1])]) \lor EF (c_2 \land E[c_2 \cup (\neg c_2 \land E[\neg c_1 \cup c_2])])$

Checking Algorithm

- Minimal Set of Connectives
- Algorithm
- Correctness
- Complexity
- Implementation

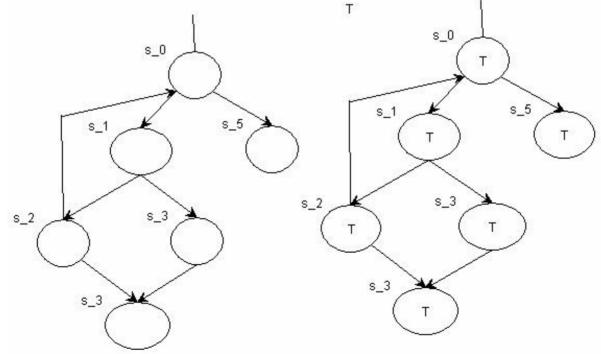
Minimal Set of Connectives

- Two CTL formulas ϕ and ψ are semantically equivalent iff any state in any model which satisfies one of them also satisfies the other
 - De Morgan's Law
 - $\neg AF \phi = EG \neg \phi$
 - $\neg \mathsf{EF} \ \varphi = \mathsf{AG} \ \neg \varphi$
 - Minimal Set of Connectives: \land , \neg , \bot , AF, EX, EU
 - Translate: AG, EG, EF, AX, AU
 - For AG: AG $\phi = \neg EF \neg \phi$
 - For EG: EG $\varphi = \neg AF \neg \varphi$
 - For EF: EF φ = E [$_T U \varphi$]
 - For AX: AX $\phi = \neg EX \neg \phi$
 - For AU: A [$_{T}$ U ϕ] = AF ϕ

Algorithm

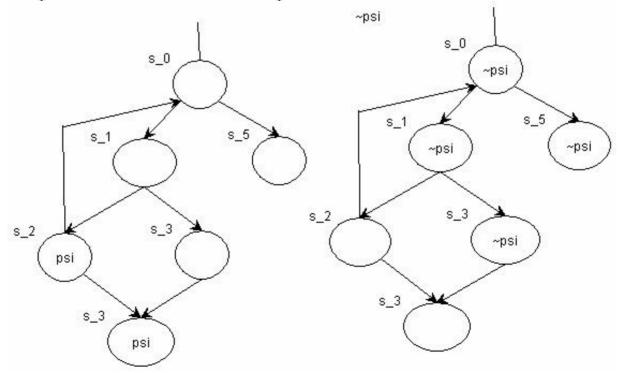
- Input: The model M and the CTL formula $\boldsymbol{\phi}$
- Output: The set of states of M that satisfy ϕ
- Steps:
 - Translate ϕ to ϕ' where ϕ' only has connectives in the minimal set
 - Label the states of M with the sub formulas of φ that are satisfied there, starting with the smallest sub formulas and working outwards towards φ
- If s₀ is an element of the output, then "yes"

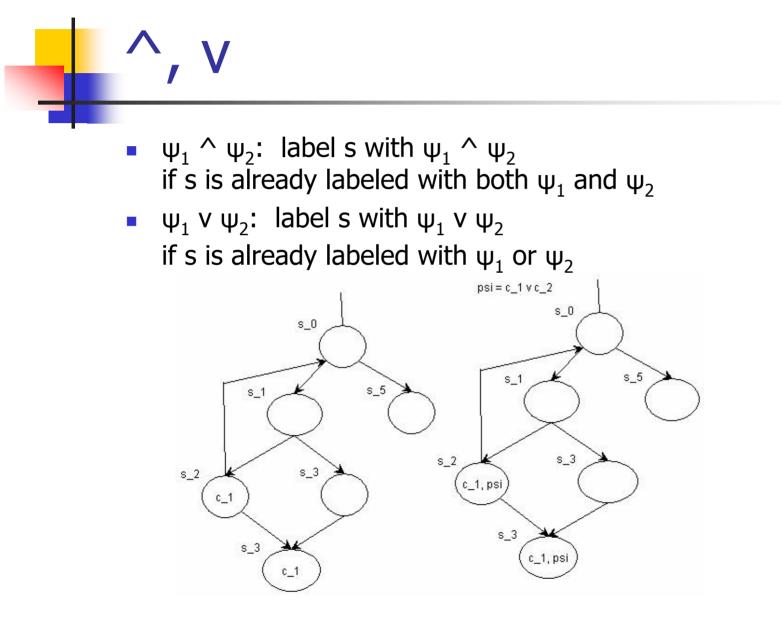
• T: then all states are labeled with T



P, ¬

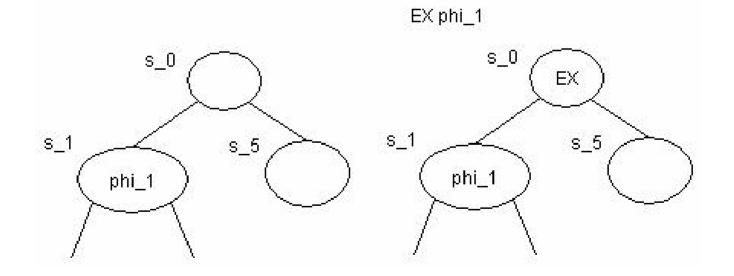
- p: then label s with p if $p \in L(s)$
- $\neg \psi_1$: label s with $\neg \psi_1$ if s is not already labeled with ψ_1



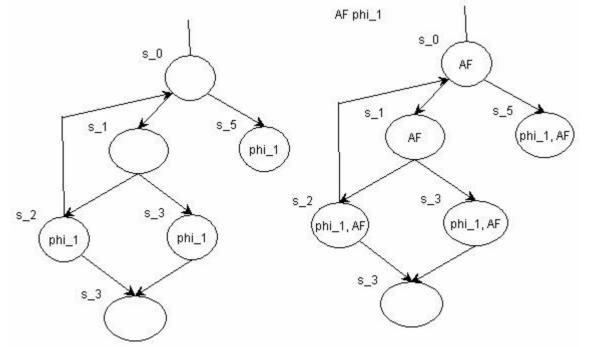


EX ψ₁: label any state with EX ψ₁ if one of its successors is labeled with ψ₁

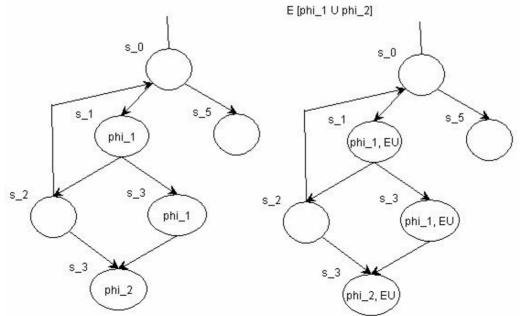
EX



- AF ψ₁:
 - If any state s is labeled with ψ_1 , label it with AF ψ_1
 - Repeat: label any state with AF ψ_1 if all successor states



- E[ψ₁ U ψ₂]:
 - If any state s is labeled with ψ_2 , label it with E[$\psi_1 \cup \psi_2$]
 - Repeat: label any state with E[ψ₁ U ψ₂] if it is labeled with ψ₁ and at least one of its successors is labeled with E[ψ₁ U ψ₂], until there is no change



Correctness: Termination

- Repeat until no change of AF and EU
 - Required since algorithm may add states and existence of states is part of condition
- Problem: "repeat" may not terminate
- Show that the functions for AF and UE terminate

Show that

 $F_0 (F_1 (... F_n (S))) = F_0 (F_1 (... F_{n+1} (S)))$ for some n

Fixpoints

- Given: F is a function F: $P(S) \rightarrow P(S)$
- Fixpoint Sets
 - A subset X of S is called a fixpoint of F if F(X) = X
 - If we prove "repeat" has a fixpoint then we've proved "repeat" terminates
- Known Theorem:
 - Every monotone function has a fixpoint
 - Is "repeat" monotone?

Monotone Functions

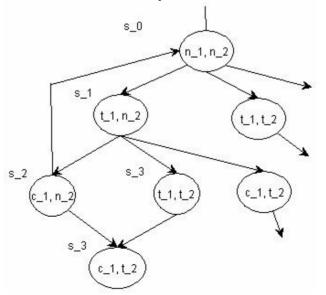
- Monotone Functions:
 - F is monotone iff $X \subseteq Y$ implies $F(X) \subseteq F(Y)$ for all subsets X and Y of S
- F_{AF} is monotone
 - $\bullet\,$ X,Y are the set of states with a label AF $\!\phi$
 - F_{AF} only adds states, that is F_{AF} (Z) = Z \cup {...}
 - Condition for what is in {...} is dependent on Z
 - "More states in Z, then more potential for adding states"
 - Since X is "contained" in Y, then Y has all the potential of X (i.e. F_{AF} (X) = F_{AF} (Y))
 - And if X is smaller than Y, then Y has more potential than X (i.e. $F_{AF}(X) \subseteq F_{AF}(Y)$)
 - So if $X \subseteq Y$ then $F_{AF}(X) \subseteq F_{AF}(Y)$
- F_{EU} is similarly monotone

Complexity

- This Algorithm: O (f * V * (V + E))
 - f is the number of connectives in the formula
 - V is the number of states
 - E is the number of transitions
 - "linear in the size of the formula and quadratic in the size of the model"
- Better Algorithms: O (f * (V + E)

Complexity: State Explosion

- Problem is size of model, not algorithm
 - Size of model (V + E) is exponential in the number of variables (or properties on them)
 - Size of model (V+E) is exponential in the number of components that can execute in parallel



Implementations

- SMV
 - Model Checker
 - Available from CMU
 - Created by K. McMillan
- NuSMV
 - Reimplementation
- Cadence SMV
 - Reimplementation + Compositional Focus