
Model Checking and Testing

• Classical IPC Problem: Dining Philosophers
• Model Checking

– Modeling Language: SMV
– Specification Language: CTL
– Presented by Jason Simas

• Testing
– Implementation Language: Java
– Presented by Evren Sahin

Dining Philosophers

• IPC Problem
– Asynchronous processes & shared resources

• Philosophers are processes
• Resources are forks

• Solution: Modern Operating Systems pg. 127
– Freedom from starvation/deadlock
– Exclusive use of resources
– Maximal usage of resources

Solution : Philosopher
#define N 5 /*number of philosophers*/
#define LEFT (i+N-1)%N /*i's left neighbour*/
#define RIGHT (i+1)%N /*i's right neighbour*/
#define THINKING 0 /*philosopher is thinking*/
#define HUNGRY 1 /*philosopher is trying to get the forks*/
#define EATING 2 /*philosopher is eating*/
typedef int semaphore; /*semaphores are special kind of integers*/
int state[N]; /*array to keep track of everyone's state*/
semaphore mutex; /*mutual exclusion for critical regions (init 1)*/
semaphore s[N] ; /*one semaphore per philosopher (init 0)*/
void philosopher(int i) { /*i:philosopher number, from 0 to N-1*/

while (TRUE) { /*repeat forever*/
think(); /*philosopher is thinking*/
take_forks(i); /*acquire two forks or block*/
eat(); /*yum-yum, spaghetti*/
put_forks(i); /*put both forks back on table*/

}
}

Solution : Other
void take_forks(int i) { /*i:philosopher number, from 0 to N-1*/

down(&mutex); /*enter critical region*/
state[i] = HUNGRY; /*record fact that philosopher is hungry*/
test(i); /*try to acquire 2 forks*/
up(&mutex); /*exit critical region*/
down(&s[i]); /*block if forks were not acquired*/

}
void put_forks(int i) { /*i:philosopher number, from 0 to N-1*/

down(&mutex); /*enter critical region*/
state[i] = THINKING; /*philosopher has finished eating*/
test (LEFT)); /*see if left neighbour can now eat*/
test (RIGHT); /*see if right neighbour can now eat*/
up(&mutex); /*exit critical region*/

}
void test (int i) { /*i:philosopher number, from 0 to N-1*/

if (state[i]==HUNGRY && state[LEFT]!=EATING && state[RIGHT]!=EATING) {
state[i] = EATING;
up(&s[i]);

}
}

SMV : Overview

• Abstraction Level: pseudo instructions (137 loc)
• Model checked for 5, 4, and 3 philosophers

– Checked both even and odd number of philosophers.
• Checked whether:

– Each philosopher gets to eat infinitely often
• No starvation, no deadlock

– If a philosopher is eating, its neighbors are not eating
• Exclusive use of resources

– Possibility for non-neighbors to eat simultaneously
• Maximal usage of resources

SMV : Model : Main : 5
MODULE main
VAR
ph_0 : process philosopher (0, n, mutex, sems, states);
ph_1 : process philosopher (1, n, mutex, sems, states);
ph_2 : process philosopher (2, n, mutex, sems, states);
ph_3 : process philosopher (3, n, mutex, sems, states);
ph_4 : process philosopher (4, n, mutex, sems, states);
mutex : boolean;
sems : array 0 .. 4 of boolean;
states : array 0 .. 4 of {THINKING, HUNGRY, EATING};

ASSIGN
init (mutex) := 1;

DEFINE
n := 5;

SPEC --ppl eat (no starvation)
(AG ((AF ph_0.eating) & (AF ph_1.eating) &

(AF ph_2.eating) & (AF ph_3.eating) & (AF ph_4.eating)))
SPEC --ppl eat with forks (mutual exclusion)
(AG ((ph_0.eating -> (!ph_4.eating & !ph_1.eating)) &

(ph_1.eating -> (!ph_0.eating & !ph_2.eating)) &
(ph_2.eating -> (!ph_1.eating & !ph_3.eating)) &
(ph_3.eating -> (!ph_2.eating & !ph_4.eating)) &
(ph_4.eating -> (!ph_3.eating & !ph_0.eating))))

SPEC --ppl eat simultaneously
(AG ((EF (ph_0.eating & ph_2.eating)) &

(EF (ph_1.eating & ph_3.eating)) &
(EF (ph_2.eating & ph_4.eating)) &
(EF (ph_3.eating & ph_0.eating)) &
(EF (ph_4.eating & ph_1.eating))))

SMV : Model : Main : 4
MODULE main
VAR

ph_0 : process philosopher (0, n, mutex, sems, states);
ph_1 : process philosopher (1, n, mutex, sems, states);
ph_2 : process philosopher (2, n, mutex, sems, states);
ph_3 : process philosopher (3, n, mutex, sems, states);
mutex : boolean;
sems : array 0 .. 3 of boolean;
states : array 0 .. 3 of {THINKING, HUNGRY, EATING};

ASSIGN
init (mutex) := 1;

DEFINE
n := 4;

SPEC --ppl eat (no starvation)
(AG ((AF ph_0.eating) & (AF ph_1.eating) & (AF ph_2.eating) & (AF
ph_3.eating)))

SPEC --ppl eat with forks (mutual exclusion)
(AG ((ph_0.eating -> (!ph_3.eating & !ph_1.eating)) &

(ph_1.eating -> (!ph_0.eating & !ph_2.eating)) &
(ph_2.eating -> (!ph_1.eating & !ph_3.eating)) &
(ph_3.eating -> (!ph_2.eating & !ph_0.eating))))

SPEC --ppl eat simultaneously
(AG ((EF (ph_0.eating & ph_2.eating)) &

(EF (ph_1.eating & ph_3.eating))))

SMV : Model : Philosopher : Shell
MODULE philosopher (i, n, mutex, sems, states)
VAR
insns : {thinking_, take_forks_, eating_, put_forks_};
take_forks : {begin, down_mutex, state_hungry, if, state_eating,

up_sem, up_mutex, down_sem, end};
put_forks : {begin, down_mutex, state_thinking, left_if,

left_state_eating, left_up_sem, right_if,
right_state_eating,right_up_sem, up_mutex, end};

ASSIGN
...

DEFINE
left := (i + n - 1) mod n;
right := (i + 1) mod n;
leftleft := (left + n - 1) mod n;
leftright := i;
rightleft := i;
rightright := (right + 1) mod n;
eating := (insns = eating_);
thinking := (insns = thinking_);
hungry := (insns = take_forks_);

FAIRNESS
(AG (AF (running & mutex)))

SMV : Model : Philosopher : Main
next (mutex) := case

take_forks = down_mutex & mutex : 0;
take_forks = up_mutex : 1;
put_forks = down_mutex & mutex : 0;
put_forks = up_mutex : 1;
1 : mutex;
esac;

init (states[i]) := THINKING;
next (states[i]) := case

take_forks = state_hungry : HUNGRY;
take_forks = state_eating : EATING;
put_forks = state_thinking : THINKING;
1 : states[i];
esac;

init (sems[i]) := 0;
next (sems[i]) := case

take_forks = up_sem : 1;
take_forks = down_sem & sems[i] : 0;
1 : sems[i];
esac;

SMV : Model : Philosopher : take_forks

init (take_forks) := begin;
next (take_forks) := case

insns = take_forks_ &
take_forks = begin : down_mutex;
take_forks = down_mutex & mutex : state_hungry;
take_forks = state_hungry : if;
take_forks = if & (states[i] = HUNGRY &

states[left] != EATING & states[right] != EATING) :
state_eating;
take_forks = if & !(states[i] = HUNGRY &

states[left] != EATING & states[right] != EATING) :
up_mutex;
take_forks = state_eating : up_sem;
take_forks = up_sem : up_mutex;
take_forks = up_mutex : down_sem;
take_forks = down_sem & sems[i] : end;
take_forks = end : begin;
1 : take_forks;
esac;

SMV : Model : Philosopher : put_forks
init (put_forks) := begin;
next (put_forks) := case
insns = put_forks_ &
put_forks = begin : down_mutex;
put_forks = down_mutex & mutex : state_thinking;
put_forks = state_thinking : left_if;
put_forks = left_if & (states[left] = HUNGRY &

states[leftleft] != EATING & states[leftright] != EATING) :
left_state_eating;

put_forks = left_if & !(states[left] = HUNGRY &
states[leftleft] != EATING & states[leftright] != EATING) :
right_if;

put_forks = left_state_eating : left_up_sem;
put_forks = left_up_sem : right_if;
put_forks = right_if & (states[right] = HUNGRY &
states[rightleft] != EATING & states[rightright] != EATING) :
right_state_eating;

put_forks = right_if & !(states[right] = HUNGRY &
states[rightleft] != EATING & states[rightright] != EATING) :
up_mutex;

put_forks = right_state_eating : right_up_sem;
put_forks = right_up_sem : up_mutex;
put_forks = up_mutex : end;
put_forks = end : begin;
1 : put_forks;
esac;

SMV : Model : Philosopher : left, right

next (states[left]) := case
put_forks = left_state_eating : EATING;
1 : states[left];
esac;

next (states[right]) := case
put_forks = right_state_eating : EATING;
1 : states[right];
esac;

next (sems[left]) := case
put_forks = left_up_sem : 1;
1 : sems[left];
esac;

next (sems[right]) := case
put_forks = right_up_sem : 1;
1 : sems[right];
esac;

SMV : Model : Philosopher : test

init (insns) := thinking_;
next (insns) := case

insns = thinking_ : take_forks_;
insns = take_forks_ & take_forks = end : eating_;
insns = eating_ : put_forks_;
insns = put_forks_ & put_forks = end : thinking_;
1 : insns;
esac;

SMV : Checking : 5
-- specification AG (AF ph_0.eating & AF ph_1.eating & AF... is true
-- specification AG ((ph_0.eating -> !ph_4.eating & !ph_1... is true
-- specification AG (EF (ph_0.eating & ph_2.eating) & EF ... is true

resources used:
user time: 44.68 s, system time: 0.38 s
BDD nodes allocated: 268703
Bytes allocated: 5439488
BDD nodes representing transition relation: 45646 + 52
reachable states: 149494 (2^17.1897) out of 1.51447e+17 (2^57.0716)

SMV : Checking : 4
-- specification AG (AF ph_0.eating & AF ph_1.eating & AF... is true
-- specification AG ((ph_0.eating -> !ph_3.eating & !ph_1... is true
-- specification AG (EF (ph_0.eating & ph_2.eating) & EF ... is true

resources used:
user time: 2.98 s, system time: 0.01 s
BDD nodes allocated: 127874
Bytes allocated: 3211264
BDD nodes representing transition relation: 29363 + 42
reachable states: 16450 (2^14.0058) out of 6.37405e+13 (2^45.8573)

Java : Overview

• Implemented the pseudocode
– 4 classes, 100 LOC
– Used semaphore class from

• http://www.dcs.napier.ac.uk/~shaun/rtse/labs/lab04.html

• Tested with 5, 10, and 100 philosophers for 10K cycles
– When a philosopher was eating, its neighbors weren’t

• Exclusive use of resources

Java : Shared Variables Class : 5
/**
* Shared class so don't have to pass arguments to Philosopher
objects.

*/
class Shared {

final static int THINKING = 0;
final static int HUNGRY = 1;
final static int EATING = 2;

final static int NUM_PS = 5;

final static Semaphore mutex = new Semaphore (1);
final static Philosopher p[] = new Philosopher[NUM_PS];
final static Semaphore[] sems = new Semaphore[NUM_PS];
final static int[] state = new int[NUM_PS];

final static int NUM_CYCLES = 10000; //TESTING
final static boolean[] isEating = new boolean[NUM_PS]; //TEST
final static Thread[] threads = new Thread[NUM_PS]; //TEST

}

Java : Dining Philosophers “Main” Class

/**
* Initialize all shared variables. Start Philosopher threads.
*/
public class DiningPhilosophers extends Shared {

public static void main(String[] argv) {

for (int i = 0; i < NUM_PS; i++) {
sems[i] = new Semaphore (0);
state[i] = THINKING;
p[i] = new Philosopher (i);

}

for (int i = 0; i < NUM_PS; i++) (threads[i] = new Thread
(p[i])).start();
}

}

Java : Source : Philosopher “Thread” Class : Overview

/**
* Philosopher thread.
*/

class Philosopher extends Shared implements Runnable {

private int id;

Philosopher (int i) {
id = i;

}

/**
* Executed when thread is started.
*/
public void run() {

for (int i = 0; i < NUM_CYCLES; ++i) {
think();
take_forks();
eat();
put_forks();

}
System.out.println ("Philosopher " + id + " done."); //TEST

}
...

}

Java : Source : Philosopher “Thread” Class : *_forks()

private void take_forks() {
mutex.down();
state[id] = HUNGRY;
test(id);
mutex.up();
sems[id].down();

}

private void put_forks() {
mutex.down();
state[id] = THINKING;
test (LEFT(id));
test (RIGHT(id));
mutex.up();

}

Java : Source : Philosopher “Thread” Class : Other

private void think() {}

private void eat() {
//TEST: Everything below is for testing only
isEating[id] = true;
threads[id].yield(); //yield so other threads try to enter, good test
if (isEating[LEFT(id)] || isEating[RIGHT(id)]) { //exit if error
System.out.println ("Error, neighbors should not eat right now! " +
LEFT(id) + " " + id + " " + RIGHT(id));

System.exit(0);
}
isEating[id] = false;

}

private void test (int i) {
if (state[i]==HUNGRY && state[LEFT(i)]!=EATING &&
state[RIGHT(i)]!=EATING) {

state[i] = EATING;
sems[i].up();

}
}

private int LEFT (int i) {return (i + NUM_PS - 1) % NUM_PS;}

private int RIGHT (int i) {return (i + 1) % NUM_PS;}

Java : Source : Semaphore Class

/**
* Semaphore class.
* Taken from http://www.dcs.napier.ac.uk/~shaun/rtse/labs/lab04.html
*/

class Semaphore {

private int count;

Semaphore (int n) {
this.count = n;

}

synchronized void down() {
while(count == 0) {
try {wait();} //sleeps until notify() is called
catch (InterruptedException e) {}

}
count--;

}

synchronized void up() {
count++;
notify(); //wakeup first thread that is blocking

}
}

Java : Test : 5, 10, 100

Java : Test : 5

Philosopher 0 done.
Philosopher 2 done.
Philosopher 4 done.
Philosopher 1 done.
Philosopher 3 done.

Java : Test : 10

Philosopher 0 done.
Philosopher 1 done.
Philosopher 3 done.
Philosopher 5 done.
Philosopher 7 done.
Philosopher 2 done.
Philosopher 4 done.
Philosopher 6 done.
Philosopher 8 done.
Philosopher 9 done.

Java : Test : 100

Philosopher 73 done.
Philosopher 75 done.
Philosopher 77 done.
Philosopher 79 done.
Philosopher 71 done.
Philosopher 67 done.
Philosopher 0 done.
Philosopher 2 done.
Philosopher 65 done.
…
Philosopher 80 done.
Philosopher 82 done.
Philosopher 84 done.
Philosopher 86 done.
Philosopher 88 done.
Philosopher 90 done.
Philosopher 92 done.
Philosopher 94 done.
Philosopher 96 done.
Philosopher 98 done.

