Model Checking and Testing

e Classical IPC Problem: Dining Philosophers

 Model Checking
— Modeling Language: SMV
— Specification Language: CTL
— Presented by Jason Simas
e Testing
— Implementation Language: Java
— Presented by Evren Sahin

Dining Philosophers

e |[PC Problem

— Asynchronous processes & shared resources

* Philosophers are processes
« Resources are forks) l @
~ e

O O
ded

e Solution: Modern Operating Systems pg. 127
— Freedom from starvation/deadlock
— Exclusive use of resources
— Maximal usage of resources

Solution : Philosopher

#define N 5 /*number of philosophers*/
#define LEFT (1+N-1)%N /*1°s left neighbour*/
#define RIGHT (1+1)%N /*1°s right neighbour*/
#define THINKING O /*philosopher i1s thinking*/
#define HUNGRY 1 /*philosopher i1s trying to get the forks*/
#define EATING 2 /*philosopher i1s eating*/
typedef 1nt semaphore; /*semaphores are special kind of integers*/
int state[N]; /*array to keep track of everyone®s state*/
semaphore mutex; /*mutual exclusion for critical regions (iInit 1)*/
semaphore s[N] ; /*one semaphore per philosopher (init 0)*/
void philosopher(int 1) { /*i1:philosopher number, from O to N-1*/
while (TRUE) { /*repeat forever*/
think(Q); /*philosopher i1s thinking*/
take forks(i); /*acquire two forks or block*/
eat(); /*yum-yum, spaghetti*/
put_ forks(i); /*put both forks back on table*/
+

Solution : Other

void take forks(int 1) { /*i1:philosopher number, from O to N-1*/

down(&mutex) ; /*enter critical region*/
state[i1] = HUNGRY; /*record fact that philosopher i1s hungry*/
test(1); /*try to acquire 2 forks*/
up(&mutex); /*exit critical region*/
down(&s[i]); /*block 1f forks were not acquired*/

+

void put _forks(int 1) { /*1:-philosopher number, from O to N-1*/
down(&mutex) ; /*enter critical region*/
state[i1] = THINKING; /*philosopher has finished eating*/
test (LEFT)); /*see 1T left neighbour can now eat*/
test (RIGHT); /*see 1T right neighbour can now eat*/
up(&mutex); /*exit critical region*/

+

void test (int 1) { /*1:-philosopher number, from O to N-1*/

IT (state[1]==HUNGRY && state[LEFT]!'=EATING && state[RIGHT]I=EATING) {
state[i1] = EATING;
up(&s[il);
+
+

SMV : Overview

o Abstraction Level: pseudo instructions (137 loc)

 Model checked for 5, 4, and 3 philosophers
— Checked both even and odd number of philosophers.

e Checked whether:

— Each philosopher gets to eat infinitely often
e No starvation, no deadlock

— If a philosopher is eating, its neighbors are not eating
« EXxclusive use of resources

— Possibility for non-neighbors to eat simultaneously
« Maximal usage of resources

SMV : Model

MODULE main
VAR

sems,
sems,
sems,
sems,
sems,

Main : 5

states);
states);
states);
states);
states);

ph_O : process philosopher (0, n, mutex,
ph_1 : process philosopher (1, n, mutex,
ph_2 : process philosopher (2, n, mutex,
ph_3 : process philosopher (3, n, mutex,
ph_4 : process philosopher (4, n, mutex,
mutex - boolean;
sems - array O .. 4 of boolean;
states : array 0 .. 4 of {THINKING, HUNGRY, EATING};
ASSIGN
init (mutex) := 1;
DEFINE
n = 5;

SPEC --ppl eat (no starvation)
(AG ((AF ph_O.eating) & (AF ph_1.eating) &

(AF ph_2_eating) & (AF ph_3.eating) &
forks (mutual exclusion)
eating & !ph_ 1.
eating & !ph 2.
eating & 'ph_3
eating & !ph_4.
eating & !ph_O.

SPEC --ppl eat with
(AG ((ph_0O.eating
(ph_1.eating
(ph_2.eating
(ph_3.eating
(ph_4_eating

SPEC --ppl eat simultaneously

(AG ((EF (ph_oO.
(EF (ph_1.

(EF (ph_2.
(EF (ph_3.
(EF (ph_4.

>
>
>
>
>

('ph_4.
('ph_O.
('ph_1.
('ph_2.
('ph_3.

eating & ph_

eating
eating
eating
eating

& p

& p
& p
& p

h
h
h_
h_

2.
3.
4.
0.
1.

eating)) &
eating)) &
eating)) &
eating)) &

eating))))

(AF ph_4_eating)))

&
&
.eating)) &
&
)

eating)))

SMV : Model : Main : 4

MODULE main
VAR

ph_O : process philosopher (0, n, mutex, sems, states);
ph_1 : process philosopher (1, n, mutex, sems, states);
ph_2 : process philosopher (2, n, mutex, sems, states);
ph_3 : process philosopher (3, n, mutex, sems, states);
mutex : boolean;

sems - array 0 .. 3 of boolean;

states : array 0 .. 3 of {THINKING, HUNGRY, EATING};
ASSIGN

init (mutex) := 1;
DEFINE

n := 4;
SPEC --ppl eat (no starvation)

(AG ((AF ph_O.eating) & (AF ph_1.eating) & (AF ph_2.eating) & (AF
ph_3.eating)))

SPEC --ppl eat with forks (mutual exclusion)

(AG ((ph_O.eating -> (Iph_3.eating & !'ph_l.eating)) &
(ph_1.eating -> (!ph_O.eating & !'ph_2.eating)) &
(ph_2.eating -> (!ph_1.eating & 'ph_3.eating)) &
(ph_3.eating -> (!ph_2.eating & !'ph_0O.eating))))

SPEC --ppl eat simultaneously

(AG ((EF (ph_O.eating & ph_2.eating)) &

(EF (ph_1l1.eating & ph_3.eating))))

SMV : Model : Philosopher : Shell

MODULE philosopher (i, n, mutex, sems, states)
VAR
insns :© {thinking , take forks , eating , put forks };
take forks : {begin, down _mutex, state hungry, 1f, state eating,
up_sem, up_mutex, down_sem, end};
put forks : {begin, down mutex, state thinking, left if,
left state eating, left up sem, right if,
right state eating,right up sem, up mutex, end};

ASSIGN
DEFINE
left = (1 +n - 1) mod n;
right := (1 + 1) mod n;
leftleft = (left + n - 1) mod n;
leftright =
rightleft := 1;
rightright = (right + 1) mod n;
eating = (Insns = eating);
thinking = (insns = thinking);
hungry = (insns = take forks);
FAIRNESS

(AG (AF (running & mutex)))

SMV : Model : Philosopher : Main

next (mutex) := case
take forks = down_mutex & mutex : O;
take forks = up _mutex :© 1;
put forks = down _mutex & mutex : O;
put_forks = up_mutex : 1;
1 : mutex;

esac;
init (states[i]) := THINKING;
next (states[i1]) := case

take forks = state hungry : HUNGRY;
take forks = state eating : EATING;
put _forks = state thinking : THINKING;
1 : states]|i];

esac;
init (sems[i1]) := O;
next (sems[i1]) := case

take forks = up_sem : 1;

take forks = down_sem & sems[i] : O;
1 : sems[i];

esac;

SMV : Model : Philosopher : take forks

init (take forks) := begin;
next (take forks) := case
insns = take forks_ &

take forks = begin : down_mutex;

take forks = down_mutex & mutex : state hungry;
take forks = state hungry : if;

take forks = 1T & (states[i1] = HUNGRY &

states[left] !'= EATING & states[right] != EATING) :
state eating;

take forks = 1f & !(states[i1] = HUNGRY &

states[left] !'= EATING & states[right] != EATING) :
up_mutex;

take forks = state eating : up_sem;
take forks = up_sem : up_mutex;

take forks = up mutex : down_sem;

take forks = down_sem & sems[i1] : end;
take forks = end : begin;

1 : take forks;
esac;

SMV : Model : Philosopher : put_forks

init (put _forks) := begin;
next (put_forks) := case
insns = put forks &
put_ forks begin : down_mutex;

put forks = down mutex & mutex : state thinking;
put forks = state thinking : left if;
put forks = left if & (states[left] = HUNGRY &

states[leftleft] !'= EATING & states[leftright] != EATING) :
left state eating;

put forks = left 1T & !(states[left] = HUNGRY &
states[leftleft] !'= EATING & states[leftright] != EATING) :

right_if;
put forks = left state eating : left up _sem;
put forks = left up sem : right if;
put forks = right 1f & (states|[right] = HUNGRY &

states[rightleft] !'= EATING & states[rightright] '= EATING) :
right _state eating;

put forks = right 1f & !(states|[right] = HUNGRY &
states[rightleft] !'= EATING & states[rightright] '= EATING) :

up_mutex;
put _forks = right state eating : right up sem;
put forks = right up_sem : up mutex;
put forks = up mutex : end;
put forks = end : begin;

1 : put forks;
esac;

SMV : Model : Philosopher

next (states[left]) := case
put forks = left _state eating : EATING;
1 : states[left];
esac;
next (states[right]) := case
put forks = right state eating : EATING;
1 : states[right];
esac;
next (sems[left]) := case
put _forks = left up _sem : 1;
1 : sems[left];
esac;
next (sems[right]) := case
put _forks = right _up sem :© 1;
1 : sems[right];
esac;

. left, right

SMV : Model : Philosopher : test

init (insns) := thinking_;
next (Insns) := case

insns = thinking_ : take forks ;

insns = take forks & take forks = end : eating_;
Insns = eating_ : put forks_;

insns = put_forks & put forks = end : thinking_;
1 - Insns;

esacC,

SMV : Checking : 5

-- specification AG (AF ph_O.eating & AF ph_1.eating & AF... 1s true
-- specification AG ((ph_O.eating -> Iph 4_eating & !'ph_1... is true
-- specification AG (EF (ph_O.eating & ph_2.eating) & EF ... 1Is true

resources used:

user time: 44.68 s, system time: 0.38 s

BDD nodes allocated: 268703

Bytes allocated: 5439488

BDD nodes representing transition relation: 45646 + 52

reachable states: 149494 (27°17.1897) out of 1.51447e+17 (2"57.0716)

SMV : Checking : 4

-- specification AG (AF ph_O.eating & AF ph_1.eating & AF... 1s true
-- specification AG ((ph_O.eating -> Iph 3.eating & !'ph_1... iIs true
-- specification AG (EF (ph_O.eating & ph_2.eating) & EF ... 1Is true

resources used:

user time: 2.98 s, system time: 0.01 s

BDD nodes allocated: 127874

Bytes allocated: 3211264

BDD nodes representing transition relation: 29363 + 42

reachable states: 16450 (2714.0058) out of 6.37405e+13 (2°45.8573)

Java : Overview

 Implemented the pseudocode
— 4 classes, 100 LOC

— Used semaphore class from
o http://www.dcs.napier.ac.uk/~shaun/rtse/labs/lab04.html

« Tested with 5, 10, and 100 philosophers for 10K cycles

— When a philosopher was eating, its neighbors weren't
» EXclusive use of resources

Java : Shared Variables Class : 5

/**

* Shared class so don"t have to pass arguments to Philosopher
objects.

4

class Shared {

final
final
final

final

final
final
final
final

final
final
final

static
static
static

static

static
static
static
static

static
static
static

int THINKING = O;
int HUNGRY = 1;
int EATING = 2;
int NUM_PS = 5;

Semaphore mutex new Semaphore (1);
Philosopher p[] new Philosopher[NUM_PS];
Semaphore[] sems = new Semaphore[NUM _PS];
int[] state = new INnt[NUM_PS];

int NUM_CYCLES = 10000; //TESTING
boolean[] i1skEating = new boolean[NUM PS]; //TEST
Thread[] threads = new Thread[NUM PS]; //TEST

Java : Dining Philosophers “Main” Class

/**
* Initialize all shared variables. Start Philosopher threads.
4

public class DiningPhilosophers extends Shared {

public static void main(String[] argv) {

for (int 1 = 0; 1 < NUM_PS; 1++) {
sems[1] = new Semaphore (0);
state[i1] = THINKING;
p[i] = new Philosopher (i);

¥

for (int 1 = 0; 1 < NUM_PS; i1++) (threads[i1] = new Thread
}(p[i]))-Start();
+

Java : Source : Philosopher “Thread” Class : Overview

/**
* Philosopher thread.
*/
class Philosopher extends Shared implements Runnable {

private int id;

Philosopher (int i) {

id = i;
s
/**
* Executed when thread i1s started.
o4

public void run() {
for (int 1 = 0; 1 < NUM_CYCLES; ++1) {
think(Q);
take forks();
eat();
put_forks();
+

System.out.println ('Philosopher " + i1d + " done."); //TEST
+

Java : Source : Philosopher “Thread” Class : * forks()

private void take forks() {
mutex.down();
state[i1d] = HUNGRY;
test(id);
mutex.up(Q;
sems[id].down();

}

private void put forks() {
mutex.down();
state[1d] = THINKING;
test (LEFT(1d));
test (RIGHT(1d));
mutex.up(Q;

}

Java : Source : Philosopher “Thread” Class : Other

private void thinkQ {3

private void eat() {

//TEST: Everything below is for testing only

iIsEating[i1d] = true;

threads[i1d] .yield(); //yield so other threads try to enter, good test

1T (iseEating[LEFT(1d)] || 1skEating[RIGHT(1d)]) { //exit if error
System.out.println (“Error, neighbors should not eat right now! " +

LEFT(id) + ™ ™ + id + "™ " + RIGHT(id));

System.exit(0);

¥

i

}

skEating[1d] = false;

private void test (int 1) {

iIT (state[1]==HUNGRY && state[LEFT(1)]!'=EATING &&
state[RIGHT(1)]1=EATING) {

state[i1] = EATING;
sems[i1]-upQ;
}
+

private int LEFT (int 1) {return (& + NUM_ PS - 1) % NUM _PS;}

private int RIGHT (int 1) {return (1 + 1) % NUM _PS;}

Java : Source . Semaphore Class

/**

* Semaphore class.

* Taken from http://www.dcs.napier.ac.uk/~shaun/rtse/labs/1ab04_html
4

class Semaphore {

private int count;

Semaphore (int n) {
this.count = n;

}

synchronized void down() {
while(count == 0) {
try {wait();} //sleeps until notify() i1s called
catch (InterruptedException e) {}

+
count--;
+
synchronized void up() {
count++;
notifty(); //wakeup Tirst thread that is blocking

}
}

Java: Test: 5

Philosopher
Philosopher
Philosopher
Philosopher
Philosopher

Java: Test : 10

Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher

Wk, hA~DNO

©CoOO”OA~NNOOTWEO

done.
done.
done.
done.
done.

done.
done.
done.
done.
done.
done.
done.
done.
done.
done.

Java : Test: 5, 10, 100

Java: Test : 100

Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher

Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher

73
75
77
79
71
67

done.
done.
done.
done.
done.
done.

O done.
2 done.

65

80
82
84
86
88
90
92
94
96
98

done.

done.
done.
done.
done.
done.
done.
done.
done.
done.
done.

