
Ž .Computer Networks 31 1999 1835–1872
www.elsevier.comrlocatercomnet

Test development for communication protocols: towards
automation

R. Dssouli a,), K. Saleh b,1, E. Aboulhamid a,2, A. En-Nouaary a,3, C. Bourhfir a,4

a Departement d’Informatique et de Recherche Operationnelle, UniÕersite de Montreal, C.P. 6128, succursale Centre-Õille, Montreal,´ ´ ´ ´ ´
Quebec, P.Q. H3C 3J7, Canada´

b Kuwait UniÕersity, Department of Electrical and Computer Engineering, P.Q. Box 5969, 13060 Safat, Kuwait

Abstract

In this paper we give an introduction to methods and tools for testing communication protocols and distributed systems.
In this context, we try to answer the following questions: Why are we testing? What are we testing? Against what are we

Žtesting?... We present the different approaches of test automation and explain the industrial point of view automatic test
. Ž .execution and the research point of view automatic test generation . The complete automation of the testing process

requires the use of formal methods for providing a model of the required system behavior. We show the importance of
Ž .modelling the aspects to be tested the right model for the right problem! and point out the different aspects of interest

Ž .control, data, time and communication . We present the problem of testing based on models, in the form of finite state
Ž .machines FSMs , extended FSMs, timed FSMs and communicating FSMs, and give an overview of the proposed solutions

and their limitations. Finally, we present our own experience in automatic test generation based on SDL specifications, and
discuss some related work and existing tools. q 1999 Elsevier Science B.V. All rights reserved.

Keywords: Distributed testing; Finite state machine; ISO standard test architectures; Protocol conformance testing; Protocol engineering;
Software testing; Test generation

1. Introduction and motivations

As the data communication technology is pro-
gressing at a rapid pace and becoming more and
more complex, the standardization of communication
protocols and interfaces has been playing a key role
in the development of computer communication sys-
tems.

) Corresponding author. E-mail: dssouli@iro.umontreal.ca
1 E-mail: ksaleh@cairo.eng.kuniv.edu.kw
2 E-mail: aboulham@iro.umontreal.ca
3 E-mail: ennouaar@iro.umontreal.ca
4 E-mail: bourhfir@iro.umontreal.ca

Ž .The Open Systems Interconnection OSI Refer-
ence Model has been useful in placing existing pro-
tocols in an overall communication architecture and
the development of new protocol standards. The term
open systems means that if a system conforms to a
standard, it is open to all other systems conforming
to the same standard for communication.

In order to assure successful communication be-
tween computer systems from different manufactur-
ers, it is not sufficient to develop and standardize
communication protocols. It must also be possible to
ascertain that the implemented protocols really con-
form to these standard protocol specifications. One
way to do this is by testing the protocol implementa-

1389-1286r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S1389-1286 99 00063-8

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721836

tions. This activity is known as protocol confor-
mance testing.

Testing plays a major role in the development of
communication protocols. Protocol incompatibility
between or among two or more systems can have
various causes. First each protocol usually provides a
range of options that may result in mutual incompati-
bility between or among two or more systems. Sec-
ond, different implementations of the same protocol
might result from various interpretations of the pro-
tocol specification. Third, due to the complexity of
protocols, developers may introduce errors. Finally,
incompatibilities may result from incompletely spec-
ified protocols and procedures that cover, for exam-

ple, system administration, system management, or
maintenance of individual systems.

A communication protocol is a set of rules that
govern an orderly exchange of messages among
communicating entities. Communication protocols
are in fact a subset of software; they are character-
ized by complex features such as distribution, com-
munication and synchronization.

The construction of a communication software is
based on a disciplined approach known as protocol
engineering, see Fig. 1. The aim of this approach is
to develop safer, performant and easy to test and
maintain communications software. The key ele-
ments fulfilling this aim reside in promoting and

Fig. 1. Software life cycle activities.

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1837

integrating formal methods in the protocol engineer-
ing cycle, to develop support tools, and to provide

w xprocedures and standards 17 .
Fig. 1 shows different activities of the software

development cycle, and documents delivered in each
w xof them 8 . First, the service concept should be

defined, this is known in software engineering as
requirement engineering phase. In the specification
phase, a complete protocol definition will be pro-
duced for the required service. The specification
must describe what the protocol should do, what it
should not do, and how it should react to external
stimuli. A protocol specification must be verified to
ensure that it is complete, and free of logical and
functional errors, and that it correctly delivers the
intended service. After the development phase, con-
formance testing verifies whether an implementation
of a protocol complies to its specification. The test-
ing activity, for example, starts early in terms of test
cases development. Different test cases have their
origin in the different steps of the system refinement

Ž .cycle: requirements e.g. use cases r scenarios spec-
ification, design, coding.

In addition to conformance testing, other types of
Ž .testing have been proposed including: i inter-oper-

ability testing to determine whether two implementa-
Ž .tions or more will actually inter-operate and if not,
Žwhy, note: inter-operability testing requires N=N

test campaigns between N different implementations
as shown in the Fig. 2; conformance testing against
the protocol specification requires only N cam-

. Ž .paigns ; ii performance testing to measure the per-
formance characteristics of an implementation, such
as its throughput and responsiveness under various

Ž .conditions; iii robustness testing to determine how
well an implementation recovers from various error
conditions and abnormal situations.

Analysis of test results and their diagnostics are
activities that take place in the software life cycle. In

Žthese activities there must be some formal or infor-
.mal reference specification for testing that defines,

for any behavior observed during testing, whether it
w xis correct or not 34,11 ; this is the role of an oracle.

Oracles can be easily built for deterministic specifi-
cations; the difficulty of an oracle is in the case of
nondeterministic specifications. Diagnostics should
pin-point the location and the type of faults intro-

w xduced in the implementation 52,53 .
In the software area, we distinguish between

black-box and white-box testing. In many cases, for
instance, in protocol conformance testing, the inter-
nal structure of the tested software product is not
known; it is tested with respect to a reference speci-
fication, the structure of which is known. Since the
internals of the tested system are not known, this
situation is called ‘‘black-box’’ testing. In this case,

Fig. 2. Interoperability testing.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721838

the reference specification is usually taken as the
basis for test suite selection, coverage criteria, and
test result analysis. The diagnostics may, for in-
stance, indicate which part of the reference specifica-
tion is not correctly implemented.

The situation where the internal structure of the
tested system is known is called ‘‘white-box’’ test-
ing. Also in this case, the tested system is to be
compared with a more abstract reference specifica-
tion. However, both, the knowledge about the tested
system and the reference specification, may be used
for test selection, coverage criteria and test result
analysis. The diagnostics should usually indicate
which part of the tested system is responsible for the
faulty behavior. In-house testing of software is usu-
ally white-box, since the structure of the tested pro-
gram is known. Sometimes the term ‘‘grey-box’’
testing is used to denote the situation where the
modular structure of the tested software product is
known to the testers, but not the details of the
programs within each component.

Ž .Definition 1 Definition of a test case . A test case
Ž . Ž .defines i a finite sequences of input interactions

Ž .to be applied to the implementation under test IUT ,
Ž .and ii a finite sequence of expected output interac-

tions generated by the IUT.

In addition, a test case may include information
Ž .on how to analyse the output interactions received

from the IUT in response to the input; this is the
oracle function, and may also include diagnostics
information and test preambles or preconditions. A
test suite is a finite set of test cases. Each test case
may be applied to the IUT independently from other
test cases. Usually the order of application of the test
cases is arbitrary, although some particular order
may be suggested for some pragmatic considerations.

In the next section we present an overview of the
test automation process and the different activities
that are required. In the rest of the paper, we will
present the state of the art related to each activity
including comments and discussions.

2. The automation of testing activities

The great hope for software developers is to
achieve a complete automation of the testing process
w x47 for many reasons, the cost of testing that consti-

tutes a major part in the overall development cost,
and the ‘‘fault’’ coverage guarantee offered by test
automation is much higher. There exist two different
understanding of the test automation process, see
Fig. 3. For the industrial world, automation starts

Žwhen a test suite is available usually obtained man-
.ually . For the academic world, automation deals

initially with the test suite generation. Actually the
whole process can be automated for simple models,
but for models that take into account the different
aspects listed earlier, there is a long way to go in
research.

2.1. Classification of testing actiÕities

The automation of software engineering activities,
in most cases, requires the formalization of the arti-
facts that are manipulated during these activities,
thus allowing these activities to be automated. In the
context of testing, the relevant artifacts are: the
reference specification, the test cases, and the trace
of observed interactions obtained during test execu-
tion, and in the case of white-box testing, the pro-
gram representing the IUT. In the following, we
concentrate mainly on the activity of test suite devel-
opment for black-box testing, where the reference
specification is of prime importance. We assume
therefore that a formal model of the system specifi-
cation is available, either in the form of an FSM or

Ž .Specification and Description Language SDL .

2.2. The nature of test cases

The typical structure of a test case has been
defined by the OSI conformance testing methodol-

w xogy 56 . This structure assumes that each test case
Ž . Ž .has: i a well defined ‘‘test purpose’’, ii a test

preamble leading the IUT into the state in which the
expected behavior corresponding to the test purpose

Ž .can be observed, iii a test body invoking the behav-
Ž .ior corresponding to the test purpose, iv a checking

part observing the output in order to determine
whether the expected behavior did effectively occur
Žnote: in the case of FSM testing, this is essentially
the state identification part; the expected transition
output is already observed during the execution of

. Ž .the test body , and finally, v a test postamble
Žleading the IUT into a neutral state often the initial

.state from which another test case can be applied .

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1839

Fig. 3. Test automation.

Test case properties can be specified at different
levels of abstraction.

A distinction between abstract test case and exe-
cutable test case is often made. The most important
aspect is the form of the interface through which the
test case interacts with the IUT. An abstract defini-
tion of the interface is part of the system specifica-

Ž .tion the reference for testing . The detailed specifi-
cation of the real interface may also be included in
the reference specification, for example in the form

Ž .of an Application Programming Interface API , usu-
ally given in terms of a set of procedure heading
definitions and associated data types. An executable

Žtest case uses a real interface software API andror
.hardware . The so-called abstract test cases used for

protocol conformance testing are defined in terms of
the abstract service interfaces which are associated
with the protocol.

The behavioral aspects to be specified for a test
case are similar to those of the specification of the
correct system behavior. The specification of a test
case includes the definition of the inputs to be

Žapplied to the IUT possibly in response to particular

.outputs received from the IUT . It may also include
the definition of the expected output interactions and
the constraints on the expected outputs and their
parameter values. If the observed output does not
satisfy these constraints, the verdict of the test execu-
tion is FAIL. However, if the test case does not
specify the expected output, a separate oracle is

Žrequired to analyse the test results trace of applied
.inputs and observed outputs and provides the ver-

dict. The possible values of a verdict include the
following: FAIL indicates that the observed behavior

.is in contradiction with the reference specification ,
and PASS or INCONCLUSIVE indicating that the
observed behavior conforms to the reference specifi-
cation. Moreover, in the case of INCONCLUSIVE,
the test purpose was not covered during the execu-

Žtion of the test, possibly due to an unexpected but
. Žallowed choice of interactions by the IUT e.g. not

accepting a request because of the lack of resources;
some test purposes are difficult to test because of

.possible race conditions .
Usually, the test designer defines a test suite in

such a way that each test case has a particular

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721840

‘‘purpose’’, i.e. a particular set of faults for which
the test case is designed to detect.

w xThe OSI conformance testing methodology 56
gives several examples of test purposes for protocol
testing. Most standardized conformance test suites
for communication protocols consist of a hierarchi-
cally organized set of test cases, each having a
specific test purpose. Often these purposes are re-
lated to a given transition of the protocol specifica-
tion. Moreover, an important subset of the test pur-
poses to be supported by a given test suite are
obtained by considering the state transition table of

Žthe protocol specification a form of FSM model of
.the protocol and defining a test purpose for each

transition that is considered important. In contrast,
certain test derivation methods foresee the concate-
nation of several test cases into a single sequential
test case which combines many purposes. The execu-
tion of such a combined test case is more efficient
that the sequential execution of all the original test
cases that were combined. Such optimisation has the

Ž .following drawbacks: i the intuitive notion of ‘‘test
Ž .purpose’’ is largely lost, and ii the diagnostic power

of the tests is reduced.
One may ask in which language should the test

cases be defined? Many languages might be used to
Ž .define test cases. 1 Programming language, e.g. C

same as implementation language, that is ease of use
for in-house testing. It is at low level of abstraction,
often leads to lengthy programs and it is implementa-
tion-dependent. This type of language is not so

Ž .interesting for standardized conformance tests. 2
Ž .TTCN: standardized by ISO and IUT-T CCITT for

describing protocol conformance tests. It is difficult
to understand by people not familiar with language,

Ž .and there a need for editing and translation tools. 3
SDL: standardized by IUT-T has an intuitive graphi-
cal representation for many aspects also used for
protocol specifications. In this case too, there is a
need for editing and translation tools.

2.3. Test execution

Automated test execution is important, especially
Žfor debugging where the same tests are executed on

.different versions of implementations and for re-
gression testing. In most cases, abstract test cases are
translated into programs which are compiled and
executed, after being linked directly or through some

Žinter-task communication facilities with the IUT test
.engine for example . Various tools exist for the

management of a test campaign. Such tools control
the execution of many test cases in sequence, includ-
ing conditional execution depending on the verdicts
of previous test cases. The test results are usually
automatically recorded in the form of so-called test
traces. No standard exists for the description of these
traces. Certain tools for the automatic analysis of
these traces also exist. Moreover, there are possibili-
ties for partially automating the test result analysis
and diagnostics processes, and obtaining automati-
cally an oracle starting from a given specification. In
the case of a deterministic specification which is
written in an executable specification language, an
execution environment for this language provides the
means for obtaining an oracle, since it is sufficient to
execute the specification with the same inputs as
applied to the IUT: the output obtained from the
specification is the output to be expected from the
IUT. An Oracle for deterministic specifications is
shown in Fig. 4.

In the case of nondeterministic specifications, its
execution will provide only one of all the possible

Ž .outputs or output sequences which are allowed.
Their direct comparison with the outputs obtained
from the IUT is not suitable for determining whether
this output is correct. Simulated execution with
back-tracking has been explored for the automatic
generation of oracles and diagnostics from a given

Žexecutable reference specification e.g. TETRA for
LOTOS specifications, and TANGO for Estelle spec-

.ifications, developed at University of Montreal . Un-
fortunately, in many cases there exist an explosion of
possibilities for unsuccessful backtracking, and these
methods become very inefficient, if not unfeasible,
in these cases. However, in other cases, useful re-
sults have been obtained.

2.4. Automatic FSM diagnostics

Using the FSM fault model of output and transfer
faults, certain methods allow the automatic genera-
tion of diagnostic information when a fault is de-
tected. The diagnostics are based on the knowledge

Ž .of the reference specification an FSM model and
the obtained output from the previous execution of
other test cases. Various algorithms have been devel-
oped for single and multiple fault diagnosis, includ-

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1841

Fig. 4. Oracle.

ing the case of several communicating FSMs. Some
w xof these algorithms have been implemented 53,43

3. Testing models and architectures

One may ask why do we test? A simple answer
might be: for detecting errors in implementations.
But testing is seen as a process for demonstrating the
conformance to a reference specification, e.g. proto-
col conformance testing. One may also consider
testing as a way for the assessment of the correctness
of an implementation.

In fact, testing is a method of software verifica-
tion that deduces from execution results or traces
that the software under test possesses certain ‘‘good’’
properties. The intuitive meaning of test is the fol-
lowing, ‘‘a good test provides convincing evidence

w xthat an implementation is correct’’ 74 . The problem
is how to obtain this ‘‘good test’’.

w xHowden 50 defined a reliable test to be a test
whose success implies the implementation correct-

ness. The problem with achieving the correctness via
testing is that a reliable test is not attainable in
general. To achieve implementation correctness in
protocol testing means to apply exhaustive testing,
which implies in general to apply an infinite input
test suite to the implementation. Thus, it is important
to define clear criteria for the description and the
evaluation of the quality of a test. The notion of fault
coverage should play this role when test is based on
a fault model. Testing is a major concern in the
computer industry; in practice a test campaign is
allowed a limited time and budget. For these reasons,
compromises should be made between the cost of
testing, the feasibility of exhaustive testing and the
‘‘target’’ quality of the end product one would like
to obtain via testing.

Testing is in some sense how to obtain a ‘‘finite
test suite’’ from an infinite behavior.

For most systems, not all their behaviors can be
tested. Examples:
Ø For boolean function of two arguments, only 4

Ž .possible input patterns are possible easy to test .

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721842

Ø For a hardware multiplication unit for fixed-point
integers with a precision of 32 bits, there are

UU U Ž2 32 = 2 32 possible input patterns practi-
.cally impossible to test all .

ŽØ For a sequential machine with two states in its
.specification , the length of input sequences is

unbounded; therefore an infinite number of tests
Ž .are possible impossible to test all

We can show that a finite number of finite test cases
cannot detect all possible faults in the implementa-
tion of a sequential machine, by constructing an
implementation which is correct for any input se-
quence not longer than the given test cases, but
which is wrong for longer sequences.

The correctness via testing is also a problem of
conformance relation verification.

Ž .Definition 2 Conformance relations . What is a
w xcorrect implementation? 61,14 There are many pos-

sible definitions of a conformance relation. Here are
some examples:
Ø For sequential program specified through input

and output assertions: for any input which satis-
fies the input assertion, the output satisfies the
output assertion.

ŽØ For sequential machines with deterministic par-
.tial specification: for any input sequence for

which the specification is defined, the implemen-
tation provides the same output as the specifica-

Ž .tion. This relation is called quasi-equivalence.
Ø The coverage problem and the fault models. There

are usually an infinite number of possible faulty

implementations, not all of them can be detected
by the tests to be applied. How can one character-
ize the types of faults that will be detected
Ž .covered ?

Ø Distinguishing the non-conforming implementa-
Ž .tions. One usually introduces often implicitly a

model of the possible implementations andror of
the possible faults. For instance, in the mutation
testing approach, one considers various ‘‘muta-

Žtions’’ of a correct program or of the reference
.specification and checks whether such mutations

would be detected by the tests to be applied.
The question of test coverage becomes: Among

all the faulty implementations considered within the
Žgiven fault model, which implementations or what

percentage of these implementations, or which single
faults in implementations, or which sets of multiple

.faults will be detected by the tests to be applied?
w xDefinition of complete fault coverage 99 : A test

suite TS has complete fault coverage with respect to
a given fault model if for each implementation con-
sidered by the fault model, it either satisfies the

Ž .conformance relation i.e. it is not faulty or there is
a test case in TS which results in the verdict FAIL

Žwhen executed against the implementation see Fig.
.5 .

3.1. Cost models for the testing process

The cost of the testing phase within the develop-
ment cycle includes the following aspects:
Ø Cost of test development.

Fig. 5. The implementation univers.

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1843

Ø Cost of test execution.
Ø Cost of test result analysis, diagnostics, etc.
Ø Cost of modifying the implementation under test

in order to eliminate the detected faults.
The cost of test execution is often based on the

number of test cases to be executed, or the total
number of inputroutput interactions included in all
test cases. The optimisation methods mentioned
above address this point. In order to determine at

Žwhat point a system has been tested thoroughly a
.question difficult to answer , it is necessary to con-

sider not only the cost required to detect and elimi-
nate the remaining undetected faults in the system
under test, but also the costs which occur if these
undetected faults remain in the system. The latter
cost is difficult to estimate; it is clearly higher for
systems with high reliability requirements.

Optimizing the testing process means organizing
this process in such a manner that the overall cost
Ž .testing cost plus cost of remaining faults is mini-
mized.

3.2. Models and their representation

Most systems are too complicated to be under-
stood in detail and to be tested. Very often, we have
to build simplified models that allow us to reason
about them. In our context, a model is a particular
mathematical model that represents and simplifies
our concept of a system. In general, the use of a
model, makes the study of some complex problems

w xeasier 6,78 . In order to have a complete view, we
have to build a model of a system specification, a

model of a real implementation to be tested and a
model of faults that we try to capture during the
testing process.

Often simplified models of the reference specifi-
cation are built to approximate the precise specifica-
tion. Often one assumes simplified models for the

Žbehavior of the IUT corresponding to the assumed
.fault model in order to justify the method for test

suite development. In Fig. 6, the conformance rela-
tion that may be verified by testing is a conformance
relation that takes place between two abstract mod-
els. The implementation abstract model and the spec-
ification abstract model consider behavior aspects
that are important to test. The temptation to deduce
from this modelling process and testing, is that a
corresponding conformance relation is verified be-
tween an entire real specification and its correspond-
ing entire real implementation is a misunderstanding
of the modelling step. In the case where a modelling
of a specification and its corresponding implementa-
tion is adequate, and assumptions are verified, the
conformance relation that holds between a real speci-
fication and its implementation concerns only the
modeled aspects.

ŽHow is the correct behavior i.e. the reference
.specification specified?

What aspects of behavior are important?
To answer these questions, one may consider the

various aspects of the behaviour to be specified and
to be tested:

Ž .a Temporal ordering of interactions.
Ž . wb Range of possible interaction parameters not

xto be tested .

Fig. 6. The modelling.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721844

Ž .c Rules concerning actual values of parameters.
Ž . Ž .d Coding of interactions PDU’s .
Corresponding specification languages are:
Ž .a : FSMs, Petri nets, grammars, LTS.
Ž .b,c : Abstract data types.
Ž .a,b,c : Programming and specification languages.
Ž . Žb,d : ASN.1 used for defining protocol mes-
.sages .

Formal Description Techniques FDTs developed
Ž .by ISO and ITU CCITT for OSI communication

protocols and services are:
Ž .Ø SDL CCITT : version 1980: interconnected

FSM’s.
Ø version 1988: extended FSM, module intercon-

nections.
Ø version 1992: extended with object-oriented fea-

tures.
Ž .Ø Estelle ISO : extended FSM model, module in-

terconnections.
Ž .Ø LOTOS ISO : process algebra and abstract data

types.
Ž .Certain formal methods used in Europe :

Ž .Ø Z first order predicate calculus q sets .
Ž .Ø VDM similar concepts .

A legitimate question arises,which models are the
most useful? The answer is to use the right model for
the right system! In the following, we list the suit-
able models for each aspect to test:

Ž .Ø Control flow, Finite State Machine FSM .
Ø Data flow, high-level programming language.

ŽØ Data and control aspects, Extended FSM e.g.
.SDL or Estelle .

Ø Communicating Components, Communicating
ŽFSMs, Communicating EFSMs, e.g. SDL or Es-

.telle .

3.3. ISO standards test architectures for protocol
conformance testing

ISO has defined four types of test architectures
for protocol conformance testing. These are the lo-
cal, distributed, coordinated and remote test architec-

w xtures 56,82 . Local test architecture corresponds to
traditional software testing, where PCO and IUT
refer to Points of Control and Observation, and the
implementation under test, respectively. In this archi-
tecture, the two PCOs of the IUT can be viewed as a
single port since the IUT and the tester are located in

the same place. In the distributed test architecture,
the system is divided into so-called upper and lower
testers which access the PCO1 and PCO2 of the IUT,
respectively, as shown in Fig. 7. The lower interface
PCO2 is accessed over distance and indirectly
through the underlying communication service. The
coordinated test architecture is similar to the dis-
tributed test architecture, and the only difference
between the two is that the former has some kind of
coordination between upper and lower testers, estab-
lished using the so-called test coordination protocol

Ž .through a possibly separate communication channel
between upper and lower testers. The remote test
corresponds to the distributed test architecture where
only a lower tester is used, the IUT may include a
stack of several protocol layers above the layer being
tested.

Test architectures differ in their observability and
w xfault detection capabilities 34,35 . For a system that

receives inputs and produces outputs, the observabil-
ity refers to the ease of determining if specified
inputs affect the outputs; fault detectability refers to
the ease of detecting specified faults. Observability
and fault detectability of an IUT vary in different test
architectures. Consider the ISO test architectures: an
IUT has the highest observability and fault de-
tectability in the local test architecture, and has a
lowest observability in the remote test architecture.
The ISO test architectures only deal with an individ-
ual single protocol entity. To test the overall proper-
ties of distributed application and communication
networks, one may face a general distributed test

Ž .architecture where the IUT has several ports PCOs

Fig. 7. The distributed test architecture.

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1845

and corresponding testers cannot communicate and
synchronize with one another unless they communi-
cate through the IUT, and no global clock is avail-

w xable 66 .
In the next section we give an overall view of test

hypothesis and assumptions that are often made to
reduce the set of implementations to consider for
testing.

4. Hypothesis and assumptions

Test hypothesis have been introduced to simplify
testing. Some of these hypothesis were made implic-
itly such as the capability of the programmer or the
testing system is correct. The purposes of the use of
test hypothesis and assumptions, when a specifica-
tion of a system is determined, is the reduction of the
set of implementations to consider for testing. This
can be achieved in the following two possibilities
w x92 :
Ø The use of test purposes which may have the

effect of partially covering a given specification,
or enlarge specification which imply to test less
properties.

Ø The verification of a weaker conformance rela-
tion. It is well known that the verification of
weaker conformance relation between the imple-
mentation and a specification requires less tests

4.1. General test hypothesis

Test hypothesis have been used for a long time in
testing. The explicit definition of test hypothesis

w xconcept was given for the first time in Refs. 7,41 .
They applied the concept to algebraic specifications.

w xTretmans, Phalippou and Charles 92,78,23 based a
large part of their thesis on these concepts. The usual
test hypothesis are the following: the regularity as-
sumption, the uniformity assumption, the indepen-
dency assumption and the fairness assumption.
Ø The regularity assumption: This type of assump-

tion allows to limit testing to a finite set of
behaviors for systems that exhibit an infinite be-

Žhaviors. Examples are programs or specifica-
.tions with loops and integer input and output

parameters, finite state machines, and reactive
systems, in general.

Principle: assume that the implementation has a
‘‘regular’’ behavior, which means that the num-
ber of control states of the implementation is
limited.
If the number of states is not higher than the
corresponding number of states of the specifica-

Ž .tion, then all loops of the specification have to
be tested only once. This corresponds to the idea
behind the FSM fault model where the number of
implementation states is limited to n, or to some
number m)n, where n is the number of states in
the specification and m a number of states in the
implementation. This is also the idea behind cer-
tain approaches for testing program loops and for
testing with respect to specifications in the form
of abstract data types.

Ø The uniformity assumption or congruence: The
origin of this assumption is in Partition Testing
‘‘There exist similar behaviors, if grouped under
an equivalence relation, then it is sufficient to test
one behavior of each equivalence class for con-
formance testing.’’
Principle of partition testing: Apply test for at
least one representative for each partition of the

Žinput domain equivalent actions for EFSM,
.equivalent states for FSM .

Ø The independency assumption: The different sub-
modules of the system under test are independent,
and faults in one module do not affect the possi-
bility of detecting the faults in the other modules.
This means that the testing of a system is equiva-
lent to testing each of its components separately.
This is a controversial assumption: In most com-
plex systems, modules or components are interde-

Ž .pendent. They may share resources e.g. memory ,
and have explicit interactions.
The use of the independency assumption permit
to break down the complexity of testing a large
system. It is largely used and very often misused.
This assumption avoids the consideration of a
class of faults that can be captured by considering
the interleaving of actions between submodules.
Example: The case where several connections
supported by a protocol entity, see Fig. 8. One

Žmay test only one connection in detail it is in
.some sense independent of the others . The others

Žneed not be tested, since they are all equal uni-
.formity assumption, see above . The indepen-

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721846

Fig. 8. Independency assumption.

dency relation is a reasonable assumption in cer-
tain cases.

Ø Fairness assumption with respect to nondetermin-
ism: Many systems have a nondeterministic na-
ture. In particular, the parallelism of distributed
systems introduces many possible interleavings of
individual actions within the different system
components. The assumption is that all the execu-
tion paths effectively realized during testing cover
all paths that are relevant for detecting the possi-
ble implementation faults.
The above defined test hypothesis have shed some

light on the form of the fault models that can be used
for analysing the fault coverage of a given test suite,
or for deriving test suites with a given fault cover-
age. Often fault models are based on a mutation

Ž .approach: Each faulty implementation mutant is
obtained from the specification by introducing a
localized mutation. The fault model is a kind of
add-on to the specification. Examples:
Ø Output and transfer faults in the FSM model.

Often it is useful to introduce additional test cases
to check whether the testing assumptions are sat-
isfied.

Ø Checking the independency assumption for the
implementation of a protocol entity by testing a
large number of connections in parallel. Note: In
the case of overload, independency is often lost;
therefore stress testing is very useful.

Ø Using extreme values in the context of parameter
variation testing is a means of checking whether
the uniformity assumption is satisfied.

Ø Running a very long test case may check the
regularity assumption.

5. The fault model

The large number and the complexity of physical
and software failures dictates that a practical ap-
proach to testing should avoid working directly with
those physical and software failures. In fact, in most
cases, we are mostly concerned with the detection of
the presence or absence of any failure. Many failures
may very well cause the same error for a given test
or set of tests. One method of resolving this problem
is by using a fault model to describe the effects of

Žfailures at some higher level of abstraction logic,
.register transfer, functional blocks, etc. . This im-

plies various tradeoffs between accuracy and ease of
modeling and analysis. If the fault model describes
the faults accurately, then one needs only to derive
tests to detect all the faults in the fault model. This
approach has several possible advantages. A higher
level fault describes many physical and software
faults, thus reducing the number of possibilities to be

w xconsidered in the generation of tests 10 .
In the following, we define a FSM, a fault model

for FSM, software fault model and hierarchical fault
model.

()5.1. The Finite State Machine FSM model

Ž .Definition 3 Finite State Machine . A Finite
Ž .State Machine FSM M is defined as a tuple

Ž .S,S , X,Y, D ,d ,l , where0 s

Ø S is a finite set of states,
Ø S gS is the initial state,0

Ø X is a finite set of inputs,
Ø Y is a finite set of outputs,
Ø D :S=X is the specification domain,s

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1847

Fig. 9. A partially specified, deterministic and initialized FS.

Ø d :D ™S is the transfer function, ands

Ø l:D ™Y is the output function.s

An example of FSM is depicted in Fig. 9.

5.2. FSM-based fault model

In our FSM model, we assume that the machine is
completely specified, that is, the output and next-state
functions are defined for all state and input values.
The type of faults considered in this model are the
following:
Ø Output fault: We say that a transition has an

output fault if, for the corresponding state and
input received, the machine provides an output
different from the one specified by the output
function. In Fig. 10, transition t2 of the imple-

mentation I has an output fault e, while transition
t2 of the specification S has an output f.

Ø Transfer fault: We say that a transition has a
transfer fault if, for the corresponding state and
input received, the machine enters a different
state than the one specified by the transfer func-
tion. In Fig. 10, transition t1 of the implementa-
tion I has a transfer fault to state s0, while the
next state of transition t1 of the specification S is
s1.

Ø Transfer faults with additional states: In most
cases, one assumes that the number of states of
the system is not increased by the presence of

Žfaults. Note that a smaller number of states could
be explained by normal transfer faults making a

.subset of the states unreachable. Certain types of
errors can only be modelled by additional states,
together with transfer faults which lead to these
additional states. In Fig. 10, transition t6 of the
implementation I has a transfer fault to the new
state s3, while the next state of Transition t6 of
the specification S is state s1.

Ø Additional or missing transitions: In many cases,
it is assumed that the finite state machine is
deterministic and completely specified, that is, for
each pair of present state and input, there is
exactly one specified transition. In the case of
incompletely specified machines, no transition
may be specified for a given pair, while in the
case of non-deterministic machines, more than
one transition may be defined. In these cases, the
fault model could include additional andror miss-
ing transitions.

Fig. 10. Example of FSM’s.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721848

Furthermore, missing or additional spontaneous
Ž .transitions transitions without input may be con-

sidered for non-deterministic machines. In com-
parison to the specification S, Fig. 10 shows
transition t7 of the implementation I as an addi-
tional transition, while t9 is missing from I but
exists in S.

5.3. Software fault model

There is a very large number of different types of
software faults that may be considered. In order to
handle this complexity, a high level abstract fault
model is desirable. The following list identifies the
most important types of software faults. Usually, the

ŽŽ .software faults are classified into process faults a –
Ž . . ŽŽ . Ž . .c below and data faults d – g below . Within
this paper, we also use the classification into se-

ŽŽ . .quencing faults a below , data manipulation faults
ŽŽ . Ž . . ŽŽ . Ž . .b – d below and data flow faults e – g below .
We note that this list does not include the system

w xerrors considered in Ref. 6 .
Ž .a Sequencing faults, such as missing alternative

path, improper nesting of loops, WHILE instead of
REPEAT, wrong logic expression to control a condi-
tional or looping statement, etc.

Ž .b Arithmetic and manipulative errors, such as
Žignoring overflow, wrong operator e.g. GT instead

U .of GE or q instead of , etc.
Ž .c Calling wrong function.
Ž .d Wrong specification of data type andror wrong

format of data representation.
Ž .e Wrong initial values, or wrong number of data

elements.
Ž .f Referencing an undefined variable, or the

wrong variable.
Ž .g Defining a variable without subsequent use.
While in the past, control faults and data flow

faults were usually considered separately, there have
been some recent proposals to combine these two

w xaspects within a single model 85,94 . It is to be
noted that the FSM fault model described in subsec-
tion above is a special case of a control flow model.

5.4. Hierarchical fault models

Often the specification of a system is hierarchi-
cally structured. At the highest level of abstraction,
the system is composed of a certain number of

components. Each component is then described at a
more detailed level possibly again in terms of a
composition of subcomponents, and so on. Some-
times, several different descriptions of the same
component exist, one in terms of the composition of
subcomponents, and one which describes the behav-
ior of the component directly in terms of its interac-
tions with the environment.

Given such a hierarchical system description, the
corresponding fault models may be established using
these different levels of abstraction. In the simplest
case, the following fault model based on the system
decomposition into components may be considered.
Each component may either be faulty or operating
correctly. The interconnection structure specified for
the components within the system determines which
externally visible interactions of the system may
exhibit the erroneous behavior of a given faulty
component. This information may be used for the
selection of test cases covering all components or for

w xfault location 30 .
A more detailed fault model for the specified

system may be obtained by considering the specifica-
tions of each of the components at the next level of
details. If the component is specified in terms of a
composition of subcomponents, the same fault model
Ž .of faulty and correct behavior may be considered at
the level of the interconnected subcomponents. For
instance, the assumption of a single fault of a sub-
component will restrict the type of malfunctions
which would be observable at the component level.
If the behavior of the component is specified directly
in terms of its interaction sequences, one of the fault
models described above may be applicable for the
component and provide a collection of faults which
could be expected to explain a malfunction of the
component.

In the following, we address test based on differ-
ent models.

6. Testing based on finite state models

The research contributions in test derivation and
selection are mostly based on the FSM specification

w xof the control aspects of a protocol 19 . In this
section, we first list some assumptions. Then, we
present some known methods such as, Transition

Ž . w x w xtour TT-Method 75 , W-method 24 , Distinguish-

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1849

Ž . w xing Sequence method DS method 45 , and
Ž . w xUnique-Input-Output method UIO method 83 .

Many variations of these methods are also given.

6.1. Assumptions

Assumptions that should be made for FSM-based
testing can be classified into two classes. The first
class of assumptions is about the desirable properties
of the specification. The second class of assumptions

Žis about the types of faults i.e., the fault model
w x.9,74 that can be present in an implementation.
Without the second class of assumptions, any FSM
can be considered as an implementation of a given
specification, the number of implementation ma-
chines will be infinite. This makes the problem
intractable. Therefore, assumptions of the second
class are introduced to limit the number of imple-

w xmentation machines to be considered 44,59 . An
interesting work has been made by researchers to
define, explain and show the importance of test
hypothesis and assumption for test and coverage

w xestimation, see 42,78,99,23
For the specification machine, assumptions made

are basically about the following structural proper-
ties:
Ø Deterministic or non-deterministic;
Ø Completeness: if a specification is completely or

partially specified;
Ø Connectedness: if a specification is strongly or

initially connected;
Ø Reducibility: if a specification is reduced or non-

reduced.
Assumptions about implementations:

Ø Deterministic or non-deterministic;
Ø Completely defined which means that the imple-

mentation will react to any input;
Ø It has a limited number of extra states;

ŽØ It has a reliable reset that is not necessary in
.some cases .

ŽMany of these assumptions can be avoided see
w x.99 and methods have been developed for partially

Ž .specified and nondeterministic behaviors see below .

6.2. Test deriÕation methods

()6.2.1. Transition tour TT-method
w xThe TT-method 75 generates a test sequence

called ‘‘transition tour’’. For a given FSM, a transi-

tion tour is a sequence which takes the FSM from an
initial state, traverses every transition at least once,
and returns to the initial state.

The T-method allows the detection of all output
errors but there is no guarantee that all transfer errors
can be detected. This method has a limited error
detection power compared to other methods since it
does not consider state checking. However, an ad-
vantage of this method is that the test sequences
obtained are usually shorter than test sequences gen-
erated by the other methods.

To further optimize a Transition Tour, we find the
shortest path through the automaton which covers all

Žtransitions variation of the so-called ‘‘Chinese Post-
.man algorithm’’ .

In the example of Fig. 9, no transition needs to be
traversed twice. A possible transition tour is formed
by the input sequence 1.2.1.2.1.2.2.

Clearly, the final state of the last transition is not
checked. And if the previous transition, t8, leads to
state s2, this fault would not be detected either.

In order to systematically detect transfer faults,
one has to identify the state into which the imple-
mentation goes after the execution of the tested
transition.

6.2.2. The UIO method
w xThe UIO method 83 is quite simple and pro-

duces a variable-length state identification sequence.
This method can be applied if for each state of the
specification, there is an input sequence such that the
output produced by the machine, when it is initially
in the given state, is different than that of all other
states. If a transition is supposed to lead to state s1, it
suffices to apply the UIO input sequence of state s1
and check that the output is as expected.

As an example, an FSM with its UIO sequences is
shown in Fig. 11 and Fig. 12, respectively. Certain
methods propose the concatenation and overlapping
of the sequences belonging to different test cases. If
a given state possess several UIO sequences, one
may choose the one which leads to optimized con-
catenation possibilities. However, fault detection
guarantees are usually lost by such approaches.

The UIO method does not guarantee full fault
Žcoverage with respect to the fault model of imple-

.mentations having at most n states . However, Vuong
w xfound a counter-example 95 .

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721850

Fig. 11. An example of FSM specification.

The reason for such an undetected fault is that the
UIO input sequence leads to unique output for the
specification, but not for the faulty implementation
Žcertain multiple faults compensate themselves

.partly . The solution is to check the uniqueness of
the applied identification sequences on the imple-
mentation, meaning that each identification sequence
must be applied on each state of the implementation
and the outputs are compared with those expected
from the specification.

Checking the identification sequences is realized
by various methods, such as the following: UIOv-
method, DS-method, W-method, Wp-method and
HSI-method.

[]6.2.3. DS-method 45
Ž .A distinguishing sequence DS is used as a state

identification sequence. An input sequence is a DS
for an FSM, if the output sequence produced by the
FSM is different when the input sequence is applied
to each different state. The test sequences obtained
by the DS method guarantee to identify a particular
FSM from all other FSMs. It has a full fault cover-

Ž .age detecting both transfer and output errors . How-
ever, the disadvantage of this method is that a DS

Fig. 12. An UIO sequence for the FSM of Fig. 11.

Fig. 13. An example of FSM specification.

Žmay not be found for a given FSM as one single
.sequence is the UIO for all states . Also applying a

fixed-length sequence may not lead to the shortest
state identification sequence.

As an example, Fig. 13 and Fig. 14 show an FSM
that has a distinguishing sequence DS s a.a and the
test cases generated by the DS-Method, respectively.

[]6.2.4. W-method 24
The W-set is a set of sequences which allows to

distinguish all states. Since all sequences must be
applied to the state to be identified, it is necessary to
execute the same transition to be tested several times,
one for each sequence to be applied. The W-method
involves two sets of input sequences: one is the
W-set, the other is the P-set. The W-set is a charac-
teristic set of the minimal FSM, and consists of input
sequences that can distinguish between the behaviors
of every pair of states. This set is sometimes repre-
sented by W, hence the W-method. A method for
constructing minimal W-sets can be found in Ref.
w x44 . We write P for any set of input sequences
Ž .including the empty sequence such that for each
transition from state A to state B on input x, there
are input sequences p and p.x in P such that p takes
the machine from the initial state into state A. This

Fig. 14. A DS sequence for the FSM of Fig. 13.

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1851

Fig. 15. An example of FSM specification.

Ž .means, the set P or P-set consists of all partial
paths.

The W-method gives a set of test sequences
formed by the concatenation of the W-set and P-set.
Each test sequence starts with the initial state and
returns to it again afterwards. It is also guaranteed to
detect any misbehavior of the machine.

The W-set is constructed using a special method,
and the P-set can be formed from a testing tree,
which shows every transition from state i to state j
on each input.

The W-method applies the W-set, which consists
of a number of input sequences such that the last
output symbols observed by applying the strings in
W in the same order are different for each state of

w xthe FSM 24,87 .
The assumptions about the machine under test are

that the machine is minimal, may start in a fixed
initial state, and is strongly connected. Under these
assumptions a W-set exists, and the W-method gives
a set of sequences that are guaranteed to detect any
misbehavior of the machine. However, the limitation
of using this method is that it is not certain that
every FSM will have a W-set sequence, especially if
it is an incompletely specified machine. Therefore,
before using this method, one should first make sure

that the defined machine has a W-set sequence.
When a machine does not have a W-set sequence, a
procedure can take place to form a completely speci-
fied machine which has a W-set, for example, adding
an ‘error’ state and declaring all unspecified transi-
tions to lead to this state.

Fig. 15 and Fig. 16 show an FSM and the result-
ing test cases generated by the application of W-
Method, respectively.

[]6.2.5. Wp-method 40
This is a generalization of UIOv method which is

always applicable. It is at the same time an optimiza-
tion of the W-method. The main advantage of the
Wp method over the W method is to reduce the
length of the test suite. Indeed, instead of using the
set W to check each reached state S , only a subseti

of W is used in certain cases. This subset W dependsi

on the reached state S and is called an identificationi

set of S . An identification set of a state S is ai i

minimal input sequence W such that for each statei
Ž .S gS with i/ j there exists an input sequence ofj

W for which S and S produce two different outputi i j

sequences. The Wp method consists of two phases
with the following purposes:
Ø The first phase checks that all states defined by

the specification are identifiable in the implemen-
tation. Moreover, the transitions leading from the
initial state to these states are checked for correct
output.

Ø The second phase checks that the remaining tran-
sitions are correctly implemented.
As an example, let us consider again the FSM

given in Fig. 15. The application of the Wp-Method
Ž .to this FSM leads to the sets P, Q and W is0,1,2i

and their corresponding outputs as shown in Fig. 17.
� 4Instead of using the set Ws a,b to check the

reached states S an S , we use only the subsets1 2

Fig. 16. A W-set for the FSM of Fig. 15.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721852

Fig. 17. W and Wi Sets for the FSM of Fig. 15

� 4 � 4W s a and W s b to verify these states. How-1 2
� 4ever, we use the entire set Ws a,b to check the

reached state S . Note that most of these methods0

have been generalized to be able to provide full
coverage guarantee also for a fault model of imple-
mentations with less than m states, where mGn.
However, the length of the required test suite in-

w xcreases strongly as m increases 99 .

6.3. Optimization techniques

This group of testing techniques is based on the
w xUIO sequences 1,86,98,100 . These methods have a

better fault coverage than the TT method. A single
test case generated by such a method will not only

Ž .traverse all the transitions to detect all output faults ,
but also somehow checks the ending state of each

Žtransition and therefore can detect some transfer
.faults . The general principles underlying these

methods are to
1. construct a test subsequence for each transition

specified in the specification. A test subsequence
is formed by the input symbol of the transition
under test followed by the input sequence of the
UIO for the ending state of that transition; and

2. find a single optimal test case which traverses
each of the test subsequences at least once, and if
possible at most once by using the Rural Chinese

Ž .Postman RCP tour algorithm.

This general approach can be enhanced by using
multiple UIOs and overlapping test subsequences
w x86,98,100 to obtain an even shorter test case. How-
ever, these optimization techniques cannot guarantee
complete fault coverage for the implementation class
with n states, i.e., a single test case generated in such
a way can sometimes fail to detect a non-conforming
implementation. As an example, let us consider the
FSM specification given in Fig. 18a. We use the
UIO sequences xr1, xr0.xr1 and yr1.xr1 for the
three states S1, S2 and S3, respectively, to form the
transition test subsequences nt1, nt2, nt3, nt4, nt5
and nt6 given in Fig. 19. By using the above general
approach, we generate a single test case which is
also given in Fig. 19. It is easy to verify that this test
case traverses each of the six transition test subse-
quences once. However, a faulty implementation
modeled by the FSM given in Fig. 18b can still pass

Žthis test case. The same problem also exists for the
.multiple testing approach . The specification FSM in

Fig. 18a and the implementation FSM in Fig. 18b
w xwere used in Ref. 95 to show that the UIO-method

.cannot guarantee complete fault coverage.
The reason that this sort of problems may happen

is that a UIO sequence derived from a given specifi-
cation may no longer be a UIO sequence in a faulty

w ximplementation 95 . As in the above example, the
UIO ‘‘yr1.xr1’’ for state S3 in Fig. 18a is no
longer a UIO sequence for the corresponding state I3

Ž . Ž .Fig. 18. a FSM specification, b an implementation of the FSM.

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1853

Fig. 19. Optimized test case.

in Fig. 18b, since both states I1 and I3 possess this
IrO sequence. Note that the integer in a pair of
square brackets in an input sequence indicates a state

w x w x w xnumber. For instance, 1 x 2 x 1 means that the
input sequence starts from state S1, passes state S2
and ends at state S1. Individual test cases may be
concatenated into a single, large test case, thus re-
ducing the total number of test inputs required. Such
approaches are often called optimization techniques.

7. Test development for extended FSM specifica-
()tions e.g. SDL

7.1. The Extended FSM model

Ž .The basic Extended FSM EFSM model de-
Ž .scribes a module process as a basic FSM extended

by the following:
Ø Interactions have certain parameters, which are

typed.
Ø The module has a certain number of local vari-

ables, which are typed.
Ø Each transition is associated with an enabling

predicate, which depends on the effective parame-
ters of the received input and the current values
of the local variable, with an action, which is

Ž .executed when and if the transition is fired and
which may update the local variables, and for
each output generated, there is an expression for
each associated parameter which determines the
parameter value as a function of the local vari-
ables and the input parameters.
Formally, an EFSM is described by a tuple Ms

Ž .S,s , I,O,T ,V where0

Ø S is an nonempty set of states the process can be
in,

Ž .Ø s is the initial state s gS ,0 0

Ø I is an nonempty set of input interactions,
Ø O is an nonempty set of output interactions,
Ø T is an nonempty set of transitions,

Ž .Ø d :S= IjO ™S is a transition relation.
Ž .Each element of T is a tuple ts s ,s ,i, p,b .i j

Here, s and s are the states of S representing thei j

starting state and the tail state of t, respectively. i is
either an input interaction from I or empty. p is a
predicate expressed in terms of the variables in V,
the parameters of the input interaction and some
constants. b is a set of assignment and output state-
ments.

This basic model underlies many specification
languages, including SDL, Estelle, StateCharts, and
many state-oriented notations for describing the be-
havior of object-oriented systems.

The basic problem that the test generation encoun-
ters for this model is the executability problem. This
is equivalent to finding a path for which all transi-
tions are executable, meaning that all predicates are
satisfied along the path. This problem is known to be
undecidable in general.

Since the EFSM specification model combines the
FSM and programming language approaches to spec-
ification, the corresponding testing methods can be
combined for testing with respect to EFSM reference
specifications. Typically, one of the FSM methods is
combined with data flow criteria and parameter vari-
ation methods. Sometimes, the control flow of the
action associated with a transition is ‘‘normalized’’
in order to be closer to the FSM flow control model.

The main problems are that the control flow is not
independent of the data. The question of what input
sequence to apply for leading the IUT to the execu-

Žtion of a given transition is undecidable that is, it is

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721854

impossible to find an algorithm which returns such
an input sequence or returns the message ‘‘this

.transition is not executable’’ . Therefore, heuristics
Žare needed. Note: The same problem is true for

.software testing, in general .

7.2. Data flow analysis

This technique originated from attempts for
checking the effects of testing data objects in soft-
ware engineering. It is usually based on a data flow
graph which is a directed graph whose nodes repre-
senting the functional units of a program and the
edges representing the flow of data objects. The
functional unit could be a statement, a transition, a
procedure or a program. In the context of EFSM
modeled communications protocols, data flow analy-
sis analyzes the data part of the EFSM in order to
find data dependencies among the transitions. It usu-
ally uses a data-flow graph where the vertices repre-
sent transitions and the edges represent data and
control dependencies. The objective is to test the
dependencies between each definition of a variable

Ž .and its subsequent use s .

Definition 4.
A transition T has an assignment-use or A-Use of

variable x if x appears at the left-hand side of an
assignment statement in T. When a variable x ap-
pears in the input list of T , T is said to have an
input-use or I-Use of variable x. If a variable x
appears in the predicate expression of T , T has a
predicate-use or P-Use of variable x. T is said to
have a computational-use or C-Use of variable x if
x occurs in an output primitive or an assignment

Ž .statement at the right-hand side . A variable x has a
Ž .definition-use referred to as def-use if x has an

A-Use or I-Use.

We now define some sets needed for the construc-
tion of the path selection criteria.

Definition 5.
Ž .def i is the set of variables for which node i

Ž .contains a definition, C-Use i is the set of variables
Ž .for which node i contains a C-use and P-Use i, j is

Ž .the set of variables for which edge i, j contains a
Ž .P-use. A path t ,t , . . . , t ,t is a def-clear-path1 2 k n
Ž .with respect to w.r.t. a variable x if the path

t , . . . , t do not contain definitions of x. A path2 k
Ž .t , . . . , t is a du-path w.r.t. a variable x if and1 k

Ž .either or, and t , . . . , t is a def-clear path w.r.t. x1 k

from t to t .1 k

Obviously, when selecting a criterion, there is a
trade-off. The stronger the selected criterion, the
more closely the program is scrutinized in an attempt
to detect program faults. However, a weaker crite-
rion can be fulfilled, in general, using fewer test
cases. As the strongest criterion all-paths can be very
costly, we will use the second strongest criterion
all-du-paths. P satisfies the all-du-paths criterion if
for every node i and every x, P includes every
du-path w.r.t x. For a complete list of the selection

w xcriteria, refer to 96 .
The main difference between the ‘‘all definition-

use’’ or ‘‘all du’’ criterion and a fault model such as
the FSM fault model is the following: in the case of
the ‘‘all du’’, the objective is to satisfy the criterion
by generating test cases that exercise the paths corre-
sponding to it. Exercising the paths does not guaran-
tee the detection of existing faults because of vari-
able values that should be selected. If the right
values are selected then certain ‘‘du’’ criteria are
comparable to fault models.

7.3. Handling the executability of the test cases

The executability problem is in general undecid-
able. However, in most cases, it can be solved.

7.3.1. Control and data flow testing
In the EFSM model, the traditional methods for

testing FSMs such as UIO sequences, distinguishing
Ž .sequences DS , or W-Method are no longer ade-

quate. The extended data portion has to be tested
also to determine the behaviors of the implementa-
tion. Recently, there has been some work on data

w xflow testing of protocols 85,94,97 . However, they
have focused on data flow analysis and control flow
has been ignored or considered separately, and they
don’t consider the executability problems. As to
control flow test, applying the FSM-based test gener-

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1855

ation methods to EFSM-based protocols may result
in non-executable test sequences. The main reason is
the existence of predicates and conditional state-
ments.

w xIn Ref. 94 , the authors presented a method for
the automated selection of test sequences for testing
both control flow and data flow aspects of a proto-
col. As mentioned before, the selection of test se-
quences is based on the identification and subsequent
coverage of every association between an output and
those input that influence that output. The method
requires that each such association is examined at
least once during testing. The authors stated that the
application of the IO-df-Chain criterion results in a
test sequence which covers every transition at least
once. However, we tried this method on an EFSM,
and the results showed that one transition was not
covered. The problems of building test sequences
which cover the IO-df-Chains and checking their
executability are left to the user.

w xIn Ref. 54 , the authors presented an executable
data flow and control flow protocol test sequence
generation techniques for EFSM-specified protocols.
In the data flow part, the transition paths that contain
definition uses and output uses of variables in the
protocol specifications are detected and tested. An

Ž .executable test sequence ETS contains three parts:
Ž . Ž1 the executable switching sequence EDSS or

.ECSS which can reach DO-paths, is generated by
Ž .expanding Transition Executability Analysis TEA

trees rooted from the EFSM’s initial state configura-
Ž . Ž .tion, 2 the executable DO-path EDO-path or the

Ž .executable control path EC-path which is generated
by expanding TEA trees rooted from the state con-

Ž .figurations of the tail states of EDSSs, and 3 the
Ž .executable back path EBP-path which is derived by

expanding a TEA tree rooted from the tail state of
the EDO path. The DO-path is a definition-output

Ž w x. Ž .path the same as in Ref. 94 , the EDSS or ECSS
is the preamble and the EBP-path is the postamble.
In this technique, all derived sequences are exe-
cutable, but this technique is a kind of reachability
analysis for EFSMs and hence has the same disad-

Ž .vantages i.e., state explosion . Also, to derive the
executable test sequences, one must instantiate the
input parameters. The generated test sequences vary
according to the values given to the input parame-
ters.

w xRef. 80 presented a unified test case generation
method for EFSM-specified protocols using the con-
text independent unique sequences. This method
considers the feasibility of the test cases while they
are being generated. A new type of state identifica-
tion sequence, namely, the context independent

Ž .unique sequence CIUS is defined. The trans-CIUS-
set criterion used in the control flow test case genera-
tion is superior to the existing control flow coverage
criteria for EFSMs. In order to provide observability,
the ‘‘all-uses’’ data flow coverage criterion is ex-
tended to what is called the ‘‘def-use-ob’’ criterion.
Finally, a two-phase breadth-first algorithm is de-
signed for generating a set of executable test tours
for covering the selected criteria. An interesting

w xmethod, described in Ref. 21 , uses data flow analy-
Žw x.sis techniques, all ‘‘definition-use’’ paths 96 , to

find data and control dependencies among the transi-
tions of the EFSM. The testing task is then to test
these dependencies. For the purpose of data flow
testing, it suffices to determine and test the relations
among the variables in the protocol specification.
The algorithm presented generates all control and
data dependencies between transitions, the corre-
sponding def-clear paths and the linking variables.

ŽThen, subsequences which cover all du-paths defini-
. Ž .tion-use and all transitions and states are gener-

ated.

7.3.2. Test data selection approaches
One may observe that in EFSM test sequence

generation, some subsequences may not be exe-
cutable because the transition enabling predicates
Ž .also called constraints along the path cannot be
satisfied for any inputs. Test data selection is the
critical step in testing. Test data sets must contain
not only input to exercise the implementation, but
also provide the corresponding correct output re-
sponses to the test data inputs. Thus the development
of test data sets involves two aspects: the selection of
data input and the determination of the expected
response. Often the second aspect is most difficult.

To our knowledge, the two techniques that are
Žused for test data selection are CLP techniques which

.use symbolic evaluation and mutation analysis. But
first, lets define symbolic execution because it is the
technique used to generate the constraints along paths
to be tested.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721856

7.3.2.1. Symbolic execution. Symbolic execution
w x27,51,58 is a program analysis method that repre-
sents a program’s computations and domain by sym-
bolic expressions. It derives an algebraic representa-
tion over the input values of the computations and
their applicable domain. Thus symbolic evaluation
describes the relationship between the input data and
the resulting values, whereas normal execution com-
putes numeric values but loses information about the
way in which these numeric values were derived.
There are three basic methods of symbolic evalua-
tion which differ primarily in their techniques for
selecting the paths to be analyzed: path-dependent
evaluation, dynamic symbolic evaluation, and global
symbolic evaluation.

Symbolically executing a program is closely re-
lated to the normal notion of program execution. It
offers the advantage that one symbolic execution
may present a large, usually infinite, class of normal
executions. Formal verification methods use sym-
bolic evaluation techniques to formulate the verifica-
tion conditions that must be proven. Typically, input,
output, and loop invariant assertions are supplied.
Verification conditions are then created by symboli-
cally evaluating the code between two adjacent as-
sertions.

Support of the path selection process is a natural
Žapplication of symbolic evaluation data flow tech-

.niques . The symbolic representation created by
symbolic evaluation can be quite useful in determin-
ing what test data should be selected in order to have
confidence in a path’s reliability. Symbolic evalua-
tion can also be used in program debugging, program

Žoptimization and software development program re-
quirements can be expressed in terms of symbolic

.representations .

7.3.2.2. Constraint satisfaction problem and con-
straint logic programming. Techniques for solving

Ž . w xthe constraint satisfaction problems CSP 31 have
been an active research area in the AI community for
many years. Its application has extended to many
other areas such as operations research and hardware
design. A CSP involves a set of n variables
X , . . . , X , each represented by its domain values1 n

R , . . . , R and a set of constraints. A constraint1 n
Ž .C X , . . . , X is a subset of the Cartesian producti i1 i j

R = PPP =R which specifies which values of thei1 i j

variables are compatible with each other. A solution
is an assignment of values to all the variables which
satisfy all the constraints and the task is to find one
or all solutions. CSPs are in general NP-complete
problems. However, by exploiting domain knowl-
edge and manipulating constraints cleverly, re-

w xsearchers 39,73,68 have shown that CSPs can be
solved efficiently.

ŽCSPs can be solved using CLPs Constraint Logic
. w xProgramming 79 . As the name suggests, CLP is a

descendent of logic programming, which was famous
for the Prolog language as a consequence of the
Japanese ‘‘5th Generation’’ project and the expert
systems boom of the mid-80’s. Now CLP languages
make logic programs execute very efficiently by
focussing on a particular problem domain.

In a CLP language, the purely abstract logical
framework is supplemented by objects that have
meaning in an application domain – for example the
integers or the real numbers, along with their associ-

Žated algebraic operations e.g. addition and multipli-
. Ž .cation and predicates e.g. s , - , and) . Hence

there isn’t a single CLP language, but a whole family
of them defined for different application domains. A
CLP programmer introduces arithmetic expressions

Ž .called ‘‘constraints’’ e.g. X)0 or YqZ-15 into
programs, which have to be satisfied for successful
execution of the program.

CLP does mathematics with uninstantiated vari-
ables, so that in the absence of complete information
the answer might be a symbolic expression like
10yX, or even a constraint like X)23. A CLP
program still needs to search a database of facts, but
it can use constraints to rule out many possible

Žoutcomes i.e. to prune away large parts of the
.search tree resulting in enormously improved effi-

ciency, comparable to custom solutions written in C.
The founding work on the CLP scheme was done

at Monash university in Melbourne, Australia, by
w x Ž .Jaffar and Lassez 57 . They created CLP R system

which works on the domain of real linear arithmetic.
In Europe, a language called CHIP was developed at

Žthe ECRC European Computer-Industry Research
.Centre . CHIP provides constraint solvers over finite

arithmetic, linear rational, and boolean domains. In
1990, Alain Colmerauer created Prolog III, a CLP
language over the domains of linear rational arith-
metic, booleans, and finite strings or lists. Interesting

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1857

non-Prolog-based CLP languages include ‘‘Trilogy’’,
from the Vancouver-based Complete Logic Systems,
and ‘‘Oz’’, an object-oriented concurrent CLP being

Ždeveloped at DFKI German Research Center for
.Artificial Intelligence in Kaiserlautern.

w x7.3.2.3. Mutation analysis. Mutation analysis 32,70
is a fault-based method that measures the adequacy
of a set of externally created test cases. In practice, a
tester interacts with an automated mutation system to
determine and improve the adequacy of a test data
set. This is done by forcing the tester to test for
specific types of faults. These faults are represented
as simple syntactic changes to the test program that
produces mutant programs. The goal of the tester
during mutation analysis is to create test cases that
differentiate each mutant program from the original
program by causing the mutant to produce different
output. In other words, the tester attempts to select
inputs that cause each mutant to fail. When the
output of a mutant program differs from the original
program on some input, that mutant is considered
dead and is not executed against subsequent test
cases. A test case that kills all mutants is adequate
relative to those mutants.

After all mutants have been executed, the tester is
left with two kinds of information. The proportion of
the mutants that die indicates how well the program
has been tested. The live mutants indicate inadequa-

Žcies in the current test and potential faults in the
.program . The tester must add additional test cases to

kill the remaining live mutants.
It is generally impossible to kill all mutants of a

program because some changes have no effect on the
functional behavior of the program.

7.3.3. Test data selection methods
w xRef. 94 addressed the test data selection prob-

lem, but didn’t completely solve it. The authors
stated that a particular selection of values for param-
eter fields of input interactions in a given test subse-
quence is subject to two major constraints requiring
human intervention. The first constraint is that only
some representative values from a relatively large
ranges of values for interaction parameter fields
should be selected. The second constraint for a par-
ticular selection of values for parameter fields of
input interactions in a given test subsequence is that

the values must satisfy the predicates associated with
the state transitions covered by the test sequence.

w xIn Ref. 48 , only integer and boolean parameter
types are considered and operators are restricted to
‘‘q’’ and ‘‘-’’. Hence, integer linear programming
techniques are employed to find solutions for the
constraints.

w xRef. 25 used CLP techniques to solve the exe-
cutability problem. To generate only executable test
cases, a sequence of transitions, such as UIO as in
FSM-based techniques, should be constructed while
keeping conditions satisfiable. However, since the
test case generation is based on the specification, not
on the implementation, the concrete values of a
context cannot be determined during test case gener-
ation. Symbolic evaluation of each variable in a
specification is used instead of the concrete value. In
this case, the condition cannot be checked against
current values of variables. Thus, the constraint con-
cept is introduced. A constraint is a set of relations
which define valid ranges of arguments of input
interactions. Initially, the constraint is true. As a
transition is selected and appended to a sequence
being generated, a constraint dependent on the transi-
tion is added.

To generate only executable sequences, the CSP
under a given context and arguments must be solved.
With finite domains, checking the feasibility of a

w xsequence can be solved by using CLP 57 . Although
the problem is NP-complete, it can be used in the
context of communication protocols due to their
simplicity.

ŽA tool for generating test cases from TOF Test
.Oriented Form , an intermediate form whose model-

ing power lies between that of a pure FSM and that
of Estelle, has been implemented.

w xIn Ref. 70 , after test sequences are generated,
test data for each sequence is chosen using a weak
mutation technique to guarantee detection of specific
kinds of faults in the data flow. Weak mutation
technique was adopted because of its advantages
regarding the choice of a test data set. Also, in this
method, as mentioned previously, all possible def-ob
Ž .definition-observation paths and conditional paths
are traversed, which guarantees a better fault cover-
age than traversing a subset of such paths. This
approach generates an executable test sequence and
also guarantees a high degree of fault coverage.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721858

w xRef. 32 presents a technique for automatically
generating test data. The technique is based on muta-
tion analysis and creates test data that approximates
relative adequacy. The technique is a fault-based
technique that uses algebraic constraints to describe
test cases designed to find particular types of faults.
A set of tools, collectively called Godzilla, has been
implemented to automatically generate constraints
and solves them to create test cases for unit and
module testing. This set of tools has been used as an
effective way to generate test data that kill program
mutants.

w x Žw x.Ref. 21 used transition loop analysis 27 for
influencing self-loops and the CSP method to solve
the executability problem. Test data selection is not

w xmentioned. However, in Ref. 22 , an automatic pro-
tocol test case generator that generates both test
sequence and test data is presented. First, test se-
quences are generated using the method described in

w xRef. 21 . A set of path conditions associated with
each test sequence is obtained using symbolic execu-
tion techniques. By solving the path conditions as a

Ž .group of constraints input constraints , test data are
then automatically generated.

A heuristic to find a solution for a constraint
system is proposed. The procedure repeatedly as-
signs values, randomly chosen from the variable’s
domain, to each variable until a solution is found.

ŽWhen a dead-end is encountered i.e., a given value
of the variable x cannot be used to satisfy all

.occurrences of x , other values are tried. This proce-
dure is repeated until all constraints are satisfied or a
maximum number of trials is performed. In that case,
the constraint system is assumed to be unsolvable.

w xRef. 81 used the same technique for test data
w xselection as the one described in Ref. 22 to generate

test data for Fortran programs.

8. Testing real-time properties

8.1. Introduction and formal model

The last two decades have witnessed a lot of
research activity in the area of untimed black box
conformance testing for communication protocols.
However, nowadays, protocol communications are
increasingly involved in safety-critical and real-time

systems, such as patient monitoring systems, plant
control systems, air traffic control systems, etc.
Moreover, we witness the rapid development and
deployment of new time dependent applications such
as multimedia communications. All these systems
are commonly specified with time constraints to
control their behaviors. Since the functional misbe-
havior of these systems is usually due to the unsatis-
fiability of time constraints, testing such systems
becomes an unavoidable issue.

There are two types of real-time properties:
Ø Hard real-time properties, which state that certain

actions must occur within certain time bounds;
usually, there is a minimum and maximum delay
associated with the action, and

Ø Performance properties, which usually state prop-
erties of a statistical nature, such as average and
standard deviation of the response time of the
system or maximum throughput obtainable.
The performance properties are usually not diffi-

cult to test, except for high-performance systems for
which the testing equipment must also support such
high performances. We do not consider these issues
here.

For the systematic testing of hard real-time prop-
erties, one has to select an appropriate fault model
which would typically be associated with the specifi-
cation formalism used to define the real-time proper-
ties.

There are different specification formalisms in
use:
Ø Introducing a real-time variable, sometimes called

NOW, the value of which always represents the
real time.

Ø Timers: these are independent processes which
may be started and stopped, and which generate a
timeout interaction after a given time has elapsed

Ž w xafter being started. SDL 20 combines the NOW
.variable with timers.

Ø Various versions of timed automata and Petri nets
exists, where minimum and maximum times may
be associated with states andror transitions.

Ø Extension of classical temporal logic to incorpo-
w xrate timing aspects 69 .

In the following, we focus only on timed automata
model since it is very suitable for describing real-time
systems, and therefore is very popular among re-
searchers for testing and verifying timed systems.

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1859

The timed automata model gives rise to different
models depending on the domain of time variables,
the semantic of time, and the form of time con-
straints. If we try to make a distinction based only on
the time domain, the time models can be grouped

w xinto three major categories 33 , discrete time model,
fictitious clock model, and continuous time model.

In the discrete time model, time is isomorphic to
natural numbers. This model has the advantage of
being easily transformable onto an FSM model by
extending the alphabet with a silent event, Next
Time, to indicate the passage of time from t to tq1.
So, we can apply all existing FSM’s techniques to
this model. However, for asynchronous systems, we
have to choose an adequate time quantum to avoid
any error.

In the fictitious clock model, the time is continu-
ous, but timing assertions are made by comparing
with a fictitious global clock that ticks at some
known, fixed rate. The limitation of this model is
that the timing information is not exact.

The continuous time model is more general than
the above ones in the sense that it can describe any
timed system that can not be specified in the other
models. In this model, time is dense with no restric-
tion. The density of time gives rise to an infinite
state space and, as a consequence, testing such model
becomes very difficult.

In the following, we address the issue of testing
real-time systems described in a continuous time
model. First, we begin by defining the Timed Input

Ž .Output Automata TIOA for short model. Secondly,
we introduce the fault model in the timed setting.
Thirdly, we present the timed test cases generation
methods.

Ž .Definition 6 Timed Input Output Automata . A
Ž .Timed Input Output Automaton TIOA A is defined

Ž 0 .as a tuple S , L ,l ,C ,T , whereA A A A A

Ø S is a finite alphabet composed of input actionsA

beginning with ‘‘?’’ and denoted by I , and out-A

put actions beginning with ‘‘!’’ and denoted by
O ,A

Ø L is a finite set of locations,A

Ø l 0 gL is the initial location,A A

Ø C is a finite set of clocks all initialized to zero inA

l 0 ,A

CA Ž .Ø T :L =L =S =2 =F C is the set ofA A A A A

transitions.

Ž X � 4 .A tuple l,l , ?,! a,l,G gT , denoted in the restA

of paper with l™ �?, !4a,l,G lX, represents a transitionA
X � 4from location l to location l on action ?,! a. The

subset l:C gives the clocks to be reset with thisA
Ž . Žtransition, and GgF C is a clock guard timeA

.constraint for the execution of the transition. The
Ž .term F C denotes the set of all guards over C ,A A

built using boolean conjunction over atomic formu-
las of the form x-m, x)m, xsm, and xFm,
where xgC and mgN. The operator F is partic-A

ularly used in output action constraints. The choice
of naturals as bounds in constraints helps us, later, to
discretize the set of reals into integer intervals reduc-
ing thereby the state space of timed systems.

As an example, we consider the 1-clock Timed
Input Output Automaton given in Fig. 20. The au-
tomaton has two locations named l and l , one0 1

clock, x, and two transitions. The transition from l1

to l has Off as an output action, and a guard0

condition xF1, while the transition from l to l0 1

can execute on input On at any time, and resets to
zero clock x.

Informally, the system starts at location l with0

its clock initialized to zero. The value of the clock
increases continuously and measures the amount of
time elapsed since its last initialization or reset. At
any time, the automaton can change its current loca-

X Ž X .tion l to l by making a transition l,l ,a,l,G
provided the current value of the clock satisfies G.

To give the semantic of a TIOA, we define a state
Ž .of a TIOA as a pair l,Õ consisting of a location

lgL and a configuration of the clock values Õ thatA
Ž .assigns to each clock x a real value Õ x G0. The

set of all states is denoted by S . Furthermore, weA

Fig. 20. An example of TIOA.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721860

distinguish between two types of transitions in a
TIOA:
Ø Elapse of time: being in a state, when time pro-

gresses, the automaton changes automatically its
state. These transitions are referred to as delay
transitions.

Ø Explicit transitions: starting from a state, as time
progresses, the automaton makes many transitions
of the first type, and when it reaches a state where
the guard condition of an outgoing transition is
satisfied, the automaton may execute the transi-
tion.
The semantic model of a TIOA A is given by a

Ž .timed labeled transition system S A that consists oft

the state set S , the label set RG 0 jS , bothA A

inputroutput actions and time increments, and the
transition relation ™ a, for agRG 0 jS .A

Ž .Since the timed labeled transition system S A ist

infinite, due to the infinity delay transitions, we can
not deal with it to generate test cases. The challenge
is therefore to reduce the number of states in the
system. To achieve this, an equivalence relation is
defined on the set S in order to cluster equivalentt

states into equivalent classes. The resulting timed
w xlabeled transition system is called region graph 4,5 .

For example, the TIOA of Fig. 20 gives rise to the
region graph shown in Fig. 21.

In addition to the TIOA model presented above
w xthere are many like models ...refs... that are used as

basis for timed test cases generation methods and
that differ from the TIOA on the semantic of time
and the form of time constraints.

Once the basic timed models are presented, we
point out now the fault model in the case of timed
systems.

8.2. Fault model for timed systems

The faults that may arise in an implementation of
timed systems can be classified into two categories:
Ø Timing faults: these faults are due to the non

respect of the time constraints under which the
timed system must make its transitions.

Ø InputrOutput action faults: this category con-
cerns the faults related to both input and output
actions, and is similar to the well known fault

Žmodel of the FSM and LTS models see Section
.5 .

Under the timing faults fall the restriction and the
enlargement of the time interval in which an input
Ž .respectively an output action must be performed.
This leads to the modification of the interval bounds.
With the enlargement of the time interval, we mean

Žthat the specification says that an input respectively
. Žan output action must occur respectively, be pro-

.duced after time B and before time B , with B FB ,i j i j
Žand the implementation accepts the input respec-

.tively answers with the output action outside the
Žspecified bounds i.e. before the time B or after thei

.time B . In such situation, the implementation isj

considered as a faulty implementation. As an exam-
ple, let us consider again the specification given in
Fig. 20. So, any implementation of this specification
that produces the output action Off more than 1 unit

Fig. 21. The region graph of TIOA.

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1861

Fig. 22. The timer FSM.

of time after it received an input action On is
considered faulty.

On the other hand, the restriction means that the
Žspecification requires that an input respectively, an

. Ž .output action must occur respectively be produced
after time B and before time B , with B FB , andi j i j

Žthe implementation accepts the input respectively
.answers with the output action not in all the points

Žbetween B and B i.e. after a time B and before ai j k
Ž .time B , with B FB , B FB , B FB , and B , Bl i k l j k l i j

Ž ../ B , B . In this case, we distinguish betweenk l

input and output actions. While the restriction is
considered as a fault for input action, it is not
considered so for output actions, but it is seen as a
valid reduction. For example, any implementation of
the specification given in Fig. 20 that produces the
output action Off no more than 1r2 unit of time
after it received an input action On is considered a
valid reduction and is therefore a correct implemen-
tation. But, any implementation that accepts the in-
put action On only before 2 units of time after it was
in its initial location is considered faulty.

8.3. Timed test cases generation methods

In the following, we present a survey of the
existing timed test cases generation methods.

8.3.1. Test cases generation for FSM with timers and
counters

w xIn this work 64 , the author adapted the Wp-
Ž .method see Section 6.2.5 to generate test cases

from a specification given as an FSM with timers
and counters. For this purpose, he first draws the
FSMs to represent the behavior of the timer and the
counter. Then, the three FSMs are combined to
obtain the FSM product. Finally the Wp-method is
applied on the resulting FSM. Despite the good
coverage of the Wp-method, this approach does not
deal with a general case of timed specifications.

As an example, let us consider the INRES proto-
w xcol 49 . The Timer and Counter FSMs are given in

Fig. 22 and Fig. 23 respectively. The timer’s FSM
{ } {has two states actiÕe, inactiÕe , three inputs start,

} { } Žstop, Dt , and two outputs null, timeout null
.means no output is produced . A timer is actiÕe if it

is running; otherwise it is inactiÕe. Dt is an external
event used to represent a time interval of Dt time

Ž .units, during it no input start or stop occurs. When
Ž .the timer is set the input event start , it enters the

state actiÕe and waits an interval Dt for an input
event start or stop. If any of these two events does
not occur in the interval Dt, the timer expires and
produces the output timeout. At any time, a timer
can be switched off by the input event stop. As
consequence, the timer goes to the state inactiÕe.

The counter’s FSM has Nq1 states representing
the values 0F iFN of the counter; N is the greatest
integer the counter is compared to. Initially, the
counter takes the value 0. Then, it is either incre-

Ž . Ž .mented by 1 C:sCq1 or reset to zero C:s0 .
Thus, the set of inputs consists of two input events
C:sCq1 and C:s0. However, the set of outputs
consists of two output events C-N and CGN to
indicate whether or not the value of the counter is
less than N. From a state i and on input C:sCq1
Ž .respectively C:s0 , the counter goes to the state
Ž .iq1 and produces either the output C-N, or

Fig. 23. The counter FSM.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721862

ŽCGN respectively goes to the state 0 and produces
.the output C-N .

8.3.2. Test cases generation for TIOA
As we early mentioned, the TIOA is the most

suitable model to describe real-time systems. It rep-
resents an extension of the w-automata with clock
variables and time constraints to control the execu-
tion of the transitions. From a testing viewpoint, the
TIOA can be seen as an Extended Finite State

Ž .Machine EFSM for short model in which the vari-
ables are clocks. In the EFSM model, the variables
are manipulated by the user. Howeever, in the TIOA
model, the only operation that a user can make on
clocks is the reset to zero; otherwise, the clocks
change continuously when time progresses. More-
over, since the TIOA remains an abstract model,
testing such model assumes that the well known path
executability problem of the EFSM model is solved.
For this reason, we must consider the relation be-
tween clocks by using the region graph as a semantic
model of TIOA.

Based on the region graph, many systematic test-
w xing methods are developed 36,88,37,38 . They are

the adapted versions of the FSM’s based techniques
w x88 . constitutes the first theoretical framework that
has been published in this domain. In fact, the

Ž .authors use the W-method see Section 6.2.4 and
w xthe bisimulation relation 71,72 to derive timed test

cases with a complete test coverage. However, the
model used, as basis for this work, is not general.
Indeed, in order to control the responses of the IUT,
the outputs are assumed to occur only on the integer
values of clocks. Moreover, the number of timed test
cases generated by this approach is very large even
for a simple example of specification. All subsequent
work has to derive practical testers or test cases with
less fault coverage guarantee but acceptable fault
coverage.

w xIn Ref. 36 , we applied the TT-method on the
entire region graph. We identified a state only by one
empirical value for each clock and we have shown
how to execute the obtained timed test cases by

w xusing a specific test architecture. In Ref. 38 , we
w xre-used the test architecture of 36 and we used the

LTS technique to generate timed test cases based on
w xthe conformance relation ioconf 93 . We first mini-

mize the region graph using the algorithm presented

w xin Ref. 3 . Then, we translate the resulting minimal
region graph into an LTS in which the label of each

Ž .transition consists of a couple l, z , where l is an
action of the initial TIOA and z is a clock zone.

w xFinally, we applied Tretmans’ method 93 to gener-
ate test cases from the resulting LTS.

w xIn Ref. 37 , we presented a method to generate
timed test cases from a TIOA with a good fault
coverage. This method is based on the state charac-
terization technique and constitutes an extension of
the Wp-Method to the timed setting. Thus, many
transformations are required. First, the region graph
is sampled with a particular granularity to cover all
clock regions of the TIOA. For a n-clock TIOA, we

Ž .use a granularity of 1r nq2 if the number of
clocks is greater or equal to 2; otherwise, we use a

Ž w xgranularity of 1r2 see 60 for more details on
.sampling . The sampling operation leads to an ex-

Ž .plicit extension of the TIOA’s alphabet actions
with the granularity delay action; the resulting au-
tomata is called a Grid Automata. This grid automata
is then transformed into a Nondeterministic Timed

Ž .Finite State Machine NTFSM . Finally, an adapted
w xversion of the Generalized Wp-Method 65 is ap-

plied to the resulting NTFSM.
As an example, let us consider again the TIOA of

Fig. 20. The corresponding Grid automata is shown
in Fig. 24. Since the TIOA of Fig. 20 has one clock,
we use a granularity of 1r2 to sample the region

Ž .graph. So, each state l ,Õ , in the grid automata, hasi

an outgoing delay transition labelled with 1r2 and
Ž .whose target state is l ,Õq1r2 . For example, thei

Ž .set of states reachable from the initial state l ,0 by0
�Ž . Ž .consecutive 1r2-delay actions is l ,1r2 , l ,1 ,0 0

Ž .4l ,` . Notice that the time constraint of the transi-0

tion l ™?O n,ll is empty. Therefore, from any of0 1
�Ž . Ž . Ž . Ž .4the states l ,0 , l ,1r2 , l ,1 , l ,` , there is an0 0 0 0

outgoing transition labelled with the input action
Ž .?On and whose target state is l ,0 . For a complete1

description of the sampling algorithm, we refer the
w xreader to 37 .

The NTFSM resulting from the transformation of
the Grid automata of Fig. 24 is shown in Fig. 26. In
this Figure, the reset to zero of clock x is repre-
sented explicitly by a signal Resetx following the

w xtimed test model of 36,38 . Furthermore, an output
Ž .possibly Null is associated to each input to indicate
what will be the response of the IUT on this input.

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1863

Fig. 24. A grid automata of the TIOA of Fig. 20.

The translation of the grid automata into the NTFSM
is made according to the two basic schemes of Fig.
25.

8.3.3. Other timed test cases generation methods
In addition to the timed test cases generation

methods presented above, there exists other ap-
w xproaches 26,69 that are based on other formal

w xmodels. In Ref. 26 , the authors present an approach
to generate timed test cases from a Constraint Graph
() Ž .CG . A CG is a directed acyclic graph G V, E ,
where V is the set of nodes representing input and
output actions, and E is the set of edges modelling

in some sense the transitions of the system. Each
edge in the graph is labelled with a time interval that
represents the time constraint between the occur-
rence of the edge’s source action and that of the
edge’s destination action. The test cases are gener-
ated based on the satisfaction of some criteria on the

w xset of actions and time constraints. In Ref. 69 , an
extension to the classical temporal logic is presented
to deal with timing aspects, and timed test cases are
generated from formulas written in that logic. In this
study, the time domain is discretized into integer
values and timed test cases are generated on the
basis of what is called Histories.

Fig. 25. The basic transformation schemes.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721864

Fig. 26. The NTFSM of the grid automata of Fig. 24.

However, the formal models used as a basis to
these results have limitations with respect to their
description of real-time systems. In this sense, the
CG model is restricted to only describing minimum
and maximum allowable delays between inputrout-
put events in the execution of a system following

w xTaylor’s and Dassarathy’s 89,29 classification of
timing requirements. The extended temporal logic of
w x69 allows only simple formulas with one clock.

9. Testing complex systems

9.1. Introduction

So far, we have only surveyed and assessed test-
ing methods for sequential programs, typically as-
suming that a single program module would be
tested in isolation. Moreover, testing methods based
on finite state models, which are particularly suitable
for reactive systems for which inputs and outputs,
present themselves as sequences of interlaced inter-
actions with the environment. In the following, we
will address issues related to testing complex sys-
tems, usually having composite structures. The fol-
lowing are the main issues in testing such systems:
Ø Composite structure of the system under test.
Ø Modeling techniques combining different behav-

ior aspects and related testing methods, for exam-
ple so-called extended FSM models combining

ŽFSM models and data in terms of state variables,

interaction parameters, data types, etc., usually
modeled using high-level programming lan-

.guages , or real-time properties.
Ø Methodological issues related to the assumptions

about the structure of implementations and asso-
ciated fault models, and about coverage criteria
and the cost of testing.

9.2. Problems of distributed testing

Several software programs calling one another
Ž .e.g. several related objects, or frameworks , several
communicating FSM or EFSM modules. The follow-
ing is a list of issues related to distributed testing of
communications software:
Ø Composition issue.
Ø Testability in terms of observability and control-

lability.
Ø Synchronization of different testers.

The testing approaches can be classified accord-
ing to whether they assume that the possible faults in
one given module and their detection is independent

Žof the possible faults in the other modules indepen-
.dence assumption . With the independency assump-

tion, coverage criteria for each module may be sim-
ply combined. Here are examples for the case of
FSM testing: If the transition tour coverage is used
for each given module, then the desired global test
suite should simply cover all transitions of all mod-
ules. If the ‘‘complete fault coverage for output and

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1865

Ž .transfer faults’’ see Section 5 is used for each
module, then the desired global test suite should
satisfy the corresponding sufficient conditions for
each given module, assuming that the other modules

Žhave no faults. Note: In practice, these conditions
are not so easy to satisfy in general, because certain
wrong outputs of an internal module may not be

.directly visible by the testing environment. Without
this assumption, one may consider the reachability

Žgraph of the system of composed modules i.e. con-
sider all possible interactions among the modules for

.all possible input sequences and apply some test
derivation method based on this graph. However,
this graph represents a kind of product of the indi-
vidual modules and is thus much more complex that
the ‘‘sum’’ of the modules, accordingly, the derived
tests would be very complex in general.

9.3. Testing module with multiple interfaces

A general distributed test architecture where the
Ž .IUT implementation under test contains several

distributed ports has been studied for testing dis-
tributed systems. It is based on the Open Distributing

Ž . Ž .Processing ODP Basic Reference Model BRM ,
see Fig. 27. In this architecture, the IUT contains
several distributed interfaces, called ports or PCOs
Ž .i.e., Points of Control and Observation . Also, the

testers cannot communicate and synchronize with
one another unless they communicate through IUT,
and no global clock is available in the system. This
could be a test architecture of a communication
network with n accessing nodes, where the testers
reside in these nodes. When ns2, this general
distributed test architecture is reduced to the ISO

w xdistributed test architecture 55 for communication
protocol testing.

Usually, in the so-called local test architecture
developed by ISO, the specifications of communica-
tion protocols are first abstracted into state machines
w x62 , then test cases are generated from the resulting
machines. A number of methods have been devel-
oped to generate test cases for finite state machines
Ž . w xFSMs 40,76,24,83,75 or for nondeterministic

w xFSMs 67 , however, they are not directly applicable
to the distributed test architecture, because of the
synchronization problem between distributed testers.
In distributed test architectures, testing is relatively
difficult because certain problems of synchronization
between the testers may arise during the application
of test sequences. To solve this problem, with re-
spect to the ISO distributed test architecture where
there are only two ports, an approach for test genera-

w xtion has been developed in Ref. 84 by modifying
the existing test generation methods for FSMs such

w x w xas the transition tour 75 , the DS-method 59 , and

Fig. 27. Distributed test architecture.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721866

w xthe W-method 24 such that the resulting sequences
are so-called synchronizable test sequences.

9.4. Testing embedded components

Testing an isolated component is usually less
complex than testing the same component in its
environment. The relationship of the component to
be tested with others components in the environment
should be taken into account for test cases genera-
tion. For this purpose, the structure of the environ-
ment has to be known. This type of testing is known

was embedded testing or testing in context 56,77,
x63,13 . An example of the application of such type

of testing is the testing of telecommunication ser-
vices in the switching systems. Let us consider a
general case of a system with two components
‘‘IUT’’ and ‘‘Test Context’’. The ‘‘IUT’’ and ‘‘Test
Context’’ communicate with each other through hid-
den interfaces, and the ‘‘Test Context’’ component
communicates with the environment using PCOs in
an observable way. Testing embedded ‘‘IUT’’ com-
ponent raises the following problems, – partial con-
trollability and observability of the component under
test. The solution should foresee in order to deter-
mine the partial product of system components that
provide the maximum controllability and observabil-
ity of the component under test. In most cases and
depending on the behavior of the environment, the
partial product will offer less fault detection possibil-

Fig. 28. Embedded system.

Ž .ity less control and observability compared to the
Ž .testing of the component in isolation see Fig. 28 .

10. A chain of tools for test development from
formal specification

10.1. Tools for test suite deÕelopment

We mention specifically a tool for derivation of
tests from deterministic, partially defined FSM mod-
els which was developed at the University of Mon-

w xtreal 12 . Testgen which was developed at INT Evry
Tools for test suite development from SDL or Estelle
specifications. Since SDL specifications have an un-

Žderlying FSM model which is a simplification of the
. w xSDL specification 16,18 , one can apply the FSM

test derivation methods to this simplified model. The
tests derived by such an approach could check for
output and transfer faults. The obtained FSM test
cases must be augmented manually to include the
necessary processing of interaction parameters.
ŽNote: The outputs could be checked not only for the
correct output primitive, but also for the correct

.output parameter values.
Different approaches to the automation of test

development from EFSM models have been pursued:
Ž .i combination of FSM testing methods and data

Žflow criteria e.g. Sarikaya, Tripathy at Concordia
. Ž .Univ., Kim at UBC , ii automated test case genera-

tion for user-guided test selection based on test
purposes given in terms of interaction scenarios
Ž . Ž .Hogrefe’s group at Bern , iii partial unfolding

Žapproach the FEX tool developed at the University
. Ž .of Montreal , iv a pragmatic approach developed at

Ž .CNET, France: The tool TVEDA, finally, v com-
Ž .mercial test tool TestMaster Paradyne Inc. which

uses an ad-hoc EFSM model and automatic exhaus-
tive test development which can be constrained by
the user. Various tools exist to support the Tree and

Ž .Tabular Combined Notation TTCN test definition
language, such as table-oriented editors, compilers,

Žand partial translators from SDL to TTCN. Note:
many of the test generation tools mentioned above

.support TTCN as a possible output language.

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1867

10.2. An example of a chain of tools

Fig. 29 shows a set of automated tools that has
been developed at the University of Montreal. A
complete description of this chain tool is given in

w xRef. 12 . The methodology followed in this work is
based on partial unfolding of SDl specification of a
given system to be tested. The test derivation relies
on FSM-based techniques. To derive test suite from
SDL specification, we have to extract automatically

Žthe FSM form specification. The FEX tool FSM
.Extraction functions are:

Ø Permit to obtains FSM model from a given SDL
specification.

Ø It uses partial unfolding branch coverage of SDL
Žspecification similar to normal form transitions

.for Estelle .
Ø Preserves constraints on the values of input pa-

rameters.
Ø Creates separate files to be integrated in the test

cases generated by the TAG tool.
Ø The test cases generated by TAG must be com-

pleted by hand provide values for output parame-
ters: check input signal parameters in some situa-

tions, add iteration on some behavior to make test
case executable.
A TAG tool for test suite derivation from partial

ŽFSM Specifications has been developed by Tan PhD
.student, UdeM . it implements transition identifica-

tion approach, that is similar to the approach used in
TVEDA. TAG provides the following functions:
Ø Compiles an FSM specification and provides re-

lated information: nondeterminism, state distin-
guishability, etc;

Ø Displays the FSM state table and intermediate
results: preambles, state identifiers and postam-
bles;

Ø Generates a test suite with complete fault cover-
age;

Ø Derives test case for a given test purpose;
Ø A simple and flexible input format facilitates the

definition of states, inputroutput events and tran-
sitions;

Ø The generated tests are presented in the form of
readable IrO sequences, or as SDL or TTCN
skeletons.

A branch of commercial tools can be used for
validation and translation to implementation lan-

Fig. 29. An example of test automation.

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721868

guages. This cahin of tools has been used for the
development of test suite for the ATM PNNI sig-
nalling protocol.

11. Some test generation tools from SDL specifi-
cations

Over the past ten years, tools have become avail-
able that seek to automate the software testing pro-
cess. These tools can help to improve the efficiency
of the test execution process by replacing personnel
with test scripts that playback application behavior.
However, it is the up-front process of deciding what
to test and how to test it that has the dominant
impact on product quality. Likewise, the cost and
time to develop tests is an order of magnitude greater
than that required for test execution. Today, manual
methods are still the primary tools for this critical
stage, however, tools exist which automate some
parts of the testing process. In the following, some
existing tools for test case generation or tools that
help the test suite developer in the test generation
process are presented.

w xTESDL 15 is a prototype tool for the automatic
generation of test cases from SDL specifications in
the context of the OSI Conformance Testing
Methodology and Framework. TESDL implements a
heuristic algorithm to derive the global behavior of a
protocol as a tree, called Asynchronous Communica-

Ž .tion Tree ACT , which is based on a restricted set of
ŽSDL diagrams one process per block, no two pro-

cesses are able to receive the same kind of signal,
.etc. . The ACT is the global system description as

obtained by reachability analysis by perturbation. In
the ACT, the nodes represent global states. A global
state contains information about the states of all
processes in the specification. Tests are derived from
the ACT of a specification by a software tool, called
TESDL. Input for the tool is a SDL specification
Ž .SDL-PR , the output are the test cases in TTCN-No-
tation.

Ž . w xTTCN Link LINK for short 90 is an environ-
ment for efficient development of TTCN test suites

Žbased on SDL specifications in SDT3.0 SDL De-
. w xscription Tool 91 . LINK assures consistency be-

tween the SDL specification and the TTCN test
suite. It increases the productivity in the develop-

ment by automatic generation of the static parts of
the test suite and specification-based support for the
test case design. The intended user of the LINK tool
is a TTCN test suite developer. His inputs are an
SDL specification and a test suite structure with test
purposes and his task is to develop an abstract TTCN
test suite, based on this input. This tool is semi-auto-
matic.

w xSAMSTAG 46 is developed within the research
and development project ‘‘Conformance Testing a
Tool for the Generation of Test Cases’’ which is
funded by the Swiss PTT. The allowed behavior of
the protocol which should be tested is defined by an
SDL specification and the purpose of a test case is
given by an MSC which is a widespread mean for
the graphical visualization of selected system runs of
communication systems. The SaMsTaG method for-
malizes test purposes and defines the relation be-
tween test purposes, protocol specifications and test
cases. Furthermore, it includes the algorithms for the
test case generation.

w x Ž .TOPIC V2 2 prototype of TTC GEN works by
co-simulating the SDL specification and an observer
representing the test purpose. This co-simulation en-
ables to explore a constrained graph, i.e., a part of
the reachability graph of the specification, which
enables to use this method for infinite graphs. The
observer is described in a language called GOAL
Ž .Geode Observation Automata Language . In order
to facilitate the use of TOPIC, it is possible to
generate the observers from MSC’s. From the con-
strained graph, some procedures are executed in
order to generate the TTCN test.

w xTveda V3 28 is a tool for automatic test case
generation which incorporates several features: A
modular architecture, that makes it possible to choose

Ž .between the specification languages Estelle or SDL ,
Ž .test description languages TTCN or Menuet and

Žtest selection strategy single transition, extended
.transition tour, etc. A semantic module, which can

be called from the strategy modules to compute
feasible paths. Functional extensions, such as hyper-
text links between tests and specification, test cover-
age analysis, etc. To compute execution paths, two
techniques can be used, symbolic computation tech-
niques or reachability analysis. Symbolic computa-
tion techniques put strong restrictions on which con-
structs are accepted and the path computation re-

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1869

quires an exponential computation with respect to
the length of the path to be computed. On the
contrary, reachability analysis puts almost no restric-
tion on the Estelle or SDL constructs which are
accepted, and it is implemented by interfacing Tveda
with a powerful commercial tool for reachability
analysis, Veda.´

12. Conclusion

From all this, we draw the following remarks:
FSM based testing methods are well developed

for deterministic and completely defined specifica-
tions.

A huge amount of work has been completed on
w x ŽLTS 14 testing based on LTS is not given in this
.paper .

All this work constitutes for industry a little step
towards a complete test automation. Realistic imple-
mentation such as Switches, multimedia applications
and emerging protocols are of composed type sys-
tems with multiple test interfaces and m to n com-
munication model. Further work on test suite devel-
opment is required for

non-deterministic specifications,
embedded testing,
testing based on extended FSM models, such as

SDL,
real-time testing.
Furthermore, practical testing tools require simple

interfaces with the IUT and flexible test architec-
Žtures, easily usable test script language SDL, TTCN,

.C , and better integration with specification and im-
plementation languages.

Acknowledgements

This paper has been partially based on a tutorial
which was prepared in collaboration with G. v.
Bochmann for the SDL Forum 1997. The authors
would like to acknowledge the contributions from
other members of the research group at the Univer-
sity of Montreal, in particular Gregor v. Bochmann,
Omar Bellal, Daniel Ouimet, Alexandre Petrenko
and Mingyu Yao, Gang Luo, Aziz Saleh. Many
examples and ideas in this tutorial have been taken
from their work. This work was partly supported by

the Hewlett-Packard - NSERC - CITI Industrial Re-
search Chair on Communication protocols, NSERC
Individual Grant and an NSERC Strategic Grant.

References

w x1 A. Aho et al., An optimization technique for protocol
conformance test generation based on uio sequences and
rural chinese postman tours, in: S. Aggarwal, K.K. Sabnani
Ž .Eds. , Protocol Specification, Testing and Verification VIII,
North-Holland, Amsterdam, 1988.

w x2 B. Algayres, Y. Lejeune, F. Hugonnet, GOAL: observing
SDL behaviors with object code, in: Proc. 7th SDL Forum,
Oslo, Norway, September 1995.

w x3 R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, H. Wong-
Toi, Minimization of timed transition systems, in: Third
International Conference on Concurrency Theory, 1992, pp.
340–354.

w x4 R. Alur, D. Dill, Automata for modeling real-time systems,
Žin: 17th ICALP International Colloquium on Automata,

.Languages, and Programming , 1990, pp. 322–335.
w x5 R. Alur, D. Dill, A theory of timed automata, Theoretical

Ž .Computer Science 126 1994 183–235.
w x6 B. Beizer, Software Testing Techniques, Van Nostrand

Reinhold ElectricalrComputer Science and Engineering Se-
ries, 1983.

w x7 G. Bernot, M.C. Gaudel, B. Marre, Software testing based
on formal specifications: a theory and a tool, Software

Ž .Engineering Journal 1991 387–405.
w x8 G. v. Bochmann, Protocol specification for OSL, Computer

Ž .Networks and ISDN Systems 18 1989 167–184.
w x9 G. v. Bochmann et al., Fault model in testing, in: R.J.

Ž .Heijink, J. Kroon, E. Brinksma Eds. , IFIP Transactions,
ŽProtocol Test Systems, IV Proc. IFIP TC6 4th International

.Workshop on Protocol Test Systems, 1991 North-Holland,
Amsterdam, 1992, pp. 17–30.

w x10 G. v. Bochmann, A. Das, R. Dssouli, M. Dubuc, A.
Ghedamsi, G. Luo, Fault model in testing, in: Proc. Interna-

Ž .tional Workshop on Protocol Test System IWPTS’91 ,
Leidschendam, the Netherlands, 1991.

w x11 G. v. Bochmann, R. Dssouli, J.R. Zhao, Trace analysis for
conformance and arbitration testing, IEEE Transactions on

Ž .Software Engineering SE-15 1989 1347–1356.
w x12 G. v. Bochmann, A. Petrenko, O. Bellal, S. Maguiraga,

Automating the process of test derivation from SDL specifi-
cations, in: Proc. Eighth SDL Forum, Evry, France,
September 1997.

w x13 C. Bourhfir, R. Dssouli, El M. Aboulhamid, N. Rico, A
guided incremental test case generation procedure for con-
formance testing CEFSM specified protocols, in: A. Pe-

Ž .trenko, N. Yevtushenko Eds. , IFIP International Work-
shop on Testing Communicating Systems 98, Chapman and
Hall, London, 1998.

w x14 E. Brinksma, A theory of the derivation of tests, in: S.
Ž .Aggarwal, K.K. Sabnani Eds. , Protocol Specification,

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721870

Testing and Verification VIII, North-Holland, Amsterdam,
1988, pp. 63–74.

w x15 L. Bromstrup, D. Hogrefe, TESDL: Experience with gener-
ating test cases from SDL specifications, in: Proc. 4th SDL
Forum, 1989.

w x16 A. Cavalli, B.M. Chin, K. Chon, Testing methods for SDL
Ž .systems, Computer Networks and ISDN Systems 28 1996

1669–1683.
w x17 A. Cavalli, J-P. Favreau, M. Falippou, Standardization of

formal methods in conformance testing of communication
Ž .protocols, Computer Networks and ISDN Systems 29 1996

3–14.
w x18 A. Cavalli, B. Lee, T. Macavei, Test generation for the

SSCOP-ATM network protocol, in: Proc. SDL FORUM’97,
Evry, France, Elsevier, 1997.

w x19 A.R. Cavalli, R. Anido, Verification and testing techniques
based on finite state machine model, Research Report 97-
09-02 INT, France, 1997.

w x Ž .20 CCITT, Specification and Description Language SDL ,
Recommendation Z.100, International Standard Z.100,
CCITT, Geneve, 1993.`

w x21 S.T. Chanson, J. Zhu, A unified approach to protocol test
sequence generation, in: IEEE INFOCOM, San Francisco,
CA, 1993.

w x22 S.T. Chanson, J. Zhu, Automatic protocol test suite deriva-
tion, in: IEEE, 1994.

w x23 O. Charles, Application des hypothes de test a une defini-` ` ´
tion de la couverture, PhD thesis, Universite Henri´
Poincare-Nancy 1, 1997.´

w x24 T.S. Chow, Testing software design modeled by finite-state
machines, IEEE Transactions on Software Engineering SE-4
Ž .1978 178–187.

w x25 W. Chun, P.D. Amer, Test case generation for protocols
specified in ESTELLE, in: FORTE’90, Madrid, Spain, 1990.

w x26 D. Clarke, I. Lee, Automatic generation of tests for timing
constraints from requirements, in: Proc. Third International
Workshop on Object-Oriented Real-Time Dependable Sys-
tems, Newport Beach, CA, February 1997.

w x27 L.A. Clarke, D.J. Richardson, Applications of symbolic
Ž .evaluation, Journal of Systems and Software 5 1985 15–

35.
w x28 M. Clatin, R. Groz, M. Phalippou, R. Thummel, Two

approaches linking a test generation tool with verification
techniques, in: Proc. International Workshop on Protocol
Test System IFIP, North-Holland, Amsterdam, September
1995.

w x29 B. Dasarathy, Timing constraints of real-time systems: con-
structs for expressing them, IEEE Transactions on Software

Ž .Engineering 11 1985 80–86.
w x30 J. De Kleer, B.C. Williams, Diagnosing multiple faults,

Ž .Artificial Intelligence 32 1984 97–130.
w x31 R. Dechter, J. Pearl, Tree clustering for constraint networks,

Ž .Artificial Intelligence 38 1989 353–366.
w x32 R.A. DeMillo, J. Offutt, Constraint-based automatic test

data generation, IEEE Transactions on Software Engineer-
Ž .ing SE-17 1991 .

w x33 D. Dill, Timing assumptions and verification of finite-state

Žconcurrent systems, in: 1st CAV Conference on
.Computer-Aided Verification 1989, pp. 197–212.

w x34 R. Dssouli, Etude des methodes de test pour les implanta-´
tions de protocoles de communication basees sur les specifi-´ ´
cations formelles, PhD thesis, Universite de Montreal, 1986.´ ´

w x35 R. Dssouli, Les facteurs influancant l’observation de fautes
Ž .dans les logiciels de communication. in: O. Rafiq Ed. ,

Actes du Colloque Francophone pour l’Ingenierie des Proto-´
Ž .coles CFIP’91 Pau, France , Paris, September 1991.

w x36 A. En-Nouaary, R. Dssouli, A. Elqortobi, Generation de´ ´
tests temporises, in: Proc. 6th Colloque Francophone de´
l’Ingenierie des Protocoles, 1997.´

w x37 A. En-Nouaary, R. Dssouli, F. Khendek, A. Elqortobi,
Timed test cases generation based on state characterisation
technique, in: 19th IEEE Real-Time Systems Symposium
Ž .RTSS’98 , Madrid, Spain, December 1998.

w x38 A. En-Nouaary, H. Fouchal, A. Elqortobi, R. Dssouli, E.
Petitjean, Timed testing using clock zone vertices, Techni-
cal Report, 1998.

w x39 R.E. Fikes, A system for solving problems stated as proce-
Ž .dures, Artificial Intelligence 1 1970 27–120.

w x40 S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, A.
Ghedamsi, Test selection based on finite state models, IEEE

Ž .Transactions on Communications 17 1991 591–603.
w x41 M.C. Gaudel, Testing can be formal, too, TAPSOFT, 1995.
w x42 M.C. Gaudel, Test selection based on ADT specifications,

in: Proc. 5th International Workshop on Protocol Test Sys-
Ž .tems IWPTS’92 , Montreal, Canada, 1998.

w x43 A. Ghedamsi, G. v. Bochmann, R. Dssouli, Diagnosing
distributed systems modeled by CFSMs, Journal Reseaux et´
Informatique Repartie, France, 1993.´

w x44 A. Gill, Introduction to the Theory of Finite State Machines,
McGraw-Hill, New York, 1962.

w x45 G. Gonenc, A method for the design of fault detection
Ž .experiments, IEEE Transactions on Computers C-19 1970

551–558.
w x46 J. Grabowski, D. Hogrefe, R. Nahm, A method for the

generation of test cases based on SDL and MSC, Technical
Report Institut fur Informatik, Universitat Bern, April 1993.¨ ¨

w x47 R. Groz, M. Phalippou, La generation automatique de tests´ ´
Ž .est-elle possible, in: C. Jard, P. Rolin Eds. , Colloque

Francophone sur l’Ingenierie des Protocols CFIP’95, 1995.
w x48 T. Higashino, G. v. Bochmann, X. Li, K. Yasumoto, K.

Taniguchi, Test system for a restricted class of LOTOS
expressions with data parameters, in: Proc. Fifth IFIP Inter-

Ž .national Workshop On Protocol Test Systems IWPTS’92 ,
North-Holland, Amsterdam, 1992, pp. 205–216.

w x49 D. Hogrefe, MUTEST: OSI Formal Specification Case
Study: The INRES Protocol and Service, Internal Report,
1992.

w x50 W.E. Howden, Reliability of the path analysis testing strat-
Ž .egy, IEEE Transactions on Software Engineering SE-2 3

Ž .1976 .
w x51 W.E. Howden, An evaluation of the effectiveness of sym-

Ž .bolic testing, Software Practice and Experience 8 1978
381–397.

w x52 E. Htite, R. Dssouli, G. v. Bochmann, Selection des tests a´ `

()R. Dssouli et al.rComputer Networks 31 1999 1835–1872 1871

partir de specifications orientees objets, in: Proc. Third´ ´
Maghrebian Conf. on Software Eng. and Art. Intelligence,
Rabat, Maroc, April 1994.

w x53 S. Htite, R. Dssouli, A. Ghedamsi, Diagnostique automatic
avec l’outil MFDT, in: Proc. 6th bi-Annual Colloque Fran-
cophone de l’ingenierie des Protocoles, Lieges, Belgique,´ `
1997.

w x54 C.M. Huang, Y.C. Lin, M.Y. Jang, Executable data flow
and control flow protocol test sequence generation for
EFSM-specified protocol, in: International Workshop on

Ž .Protocol Test Systems IWPTS , Evry, France, 1995.
w x55 ISO, Information Processing Systems – Open Systems In-

terconnection – LOTOS – A Formal Description Technique
Based on the Temporal Ordering of Observational Be-
haviour, ISOrTC97rSC21rN DIS8807, 1987.

w x56 ISO9646, International Standard 9646, International Organi-
zation for Standardization — Information Technology —
Open Systems Interconnection, Geneve 1991.`

w x57 J. Jaffar, J.L. Lassez, Constraint logic programming system,
in: Proc. 14th ACM POPL Conference, Munich, Germany,
1987.

w x58 J.C. King, T.J. Watson, Symbolic execution and program
Ž . Ž .testing, Communications of the ACM 19 7 1976 .

w x59 Z. Kohavi, Switching and Finite Automata Theory, Mc-
Graw-Hill Computer Science Series, New York, 1978.

w x60 K.G. Larsen, W. Yi, Time abstracted bisimulation: implicit
specifications and decidability, in: Proc. Mathematical

Ž .Foundations of Programming Semantics MFPS 9 , Lecture
Notes in Computer Science, vol. 802, Springer, Berlin,
1993.

w x61 G. Leduc, On the role of implementation relations in the
design of distributed system, PhD thesis, Publications de la
Faculte des Sciences Appliquees de l’Universite de Liege,´ ´ ´ `
vol. 130, Liege 1991.`

w x62 D.Y. Lee, J.Y. Lee, A well-defined ESTELLE specification
for automatic test generation, IEEE Transactions on Com-

Ž .munications 40 1991 526–542.
w x63 L.P. Lima, A. Cavalli, A pragmatic approach to generating

test sequences for embedded systems, in: Proc. IWTCS’97,
Cheju Islands, Korea, 1997.

w x64 F. Liu, Test generation based on an FSM model with timers
and counters, Master thesis, Departement d’Informatique et´
de Recherche Operationnelle, Universite de Montreal, 1993.´ ´ ´

w x65 G. Luo, G. v. Bochmann, A. Petrenko, Test selection based
on communicating nondeterministic finite state machines
using a generalised WP-method, IEEE Transactions on

Ž . Ž .Software Engineering SE-20 2 1994 .
w x66 G. Luo, R. Dssouli, G. v. Bochmann, P. Vankataram, A.

Ghedamsi, Test generation with respect to distributed inter-
Ž .faces, Computer Standards and Interfaces 16 1994 119–

132.
w x67 G. Luo, A. Petrenko, G. v. Bochmann, Selecting test se-

quences for communicating partially-specified nondetermin-
istic finite state machines, Technical report TR-864 IRO,
Universite de Montreal, 1993.´ ´

w x68 A.K. Mackworth, Consistency of network relations, Artifi-
Ž .cial Intelligence 8 1977 99–118.

w x69 D. Mandrioli, S. Morasca, A. Morzenti, Generating test

cases for real-time systems from logic specifications, ACM
Ž .Transactions on Computer Systems 13 1995 365–398.

w x70 R.E. Miller, S. Paul, Generating conformance test se-
quences for combined control and data flow of communica-
tion protocols, in: Proc. Protocol Specification, Testing, and

Ž .Verification PSTV’92 , Florida, USA, 1992.
w x71 R. Milner, A Calculus of Communicating Systems, Lecture

Notes in Computer Science, vol. 92, Springer, Berlin, 1980.
w x72 R. Milner, Communication and Concurrency, Prentice-Hall

International, Englewood Cliffs, NJ, 1989.
w x73 U. Montanari, Networks of constraints: fundamental proper-

ties and applications to picture processing, Information
Ž .Science 7 1974 95–132.

w x74 L.J. Morell, A theory of fault-based testing, IEEE Transac-
Ž . Ž .tions on Software Engineering SE-16 8 1990 .

w x75 S. Naito, M. Tsunoyama, Fault detection for sequential
machines by transition tours, in: Proc. Fault Tolerant Com-
puter Systems, 1981, pp. 238–243.

w x76 A. Petrenko, Checking experiments with protocol machines,
Ž .in: J. Kroon, R. Heijink, E. Brinksma Eds. , IFIP Interna-

tional Workshop on Protocol Test Systems IV, North-Hol-
land, Amsterdam, 1991.

w x77 A. Petrenko, N. Yevtushenko, G. v. Bochmann, R. Dssouli,
Testing in context: A framework and test derivation, Special
Issue on Protocol Engineering of Computer Communica-
tion, 1997.

w x78 M. Phalippou, Relation d’implantation et hypotheses de test`
sur des automates a entrees et sorties, PhD thesis, Univer-` ´
site de Bordeaux I, 1994.´

w x79 D. Pountain, Constraint logic programming, Byte Magazine,
February 1995.

w x80 T. Ramalingom, A. Das, K. Thulasiraman, A unified test
case generation method for the EFSM model using context
independent unique sequences, in: Proc. International

Ž .Workshop on Protocol Test System IWPTS’95 , Evry,
France, 1995.

w x81 C.V. Ramamoorthy, S.B.F. Ho, W.T. Chan, On the auto-
mated generation of program test data, IEEE Transactions

Ž . Ž .on Software Engineering SE-2 4 1976 .
w x82 D. Rayner, OSI conformance testing, Computer Networks

Ž .and ISDN Systems 14 1987 79–98.
w x83 K. Sabnani, A.T. Dahbura, A protocol testing procedure,

Ž .Computer Networks and ISDN Systems 15 1988 285–297.
w x84 B. Sarikaya, G. v. Bochmann, Synchronization and specifi-

cation issues in protocol testing, IEEE Transaction on Com-
Ž .munications 32 1984 389–395.

w x85 B. Sarikaya, G. v. Bochmann, E. Cerny, A test methodol-
ogy for protocol testing, IEEE Transactions on Software

Ž .Engineering SE-13 1987 518–531.
w x86 Y.N. Shen et al., Protocol conformance testing using multi-

ple UIO sequences, in: Protocol Specification, Testing and
Verification IX, Twente, Netherlands, 1989.

w x87 D.P. Sidhu, T.K. Leung, Formal methods for protocol test-
ing: a detailed study, IEEE Transactions on Software Engi-

Ž . Ž .neering SE-15 4 1989 .
w x88 J. Springintveld, F. Vaandrager, P.R. d’Argenio, Testing

timed automata, invited talk at TAPSOFT’97, 1997,
http:rrwww.cs.kun.nlrfvaanrpublications.html

()R. Dssouli et al.rComputer Networks 31 1999 1835–18721872

w x89 B. Taylor, Introducing real-time constraints into require-
ments and high level design of operating systems, in: Proc.
1980 Nat. Telecommunications Conference, Houston, TX,
1980, vol. 1, pp. 18.5.1–18.5.5.

w x90 Telelogic, ITEX User Manual, 1995.
w x91 Telelogic, SDT User Manual, 1995.
w x92 J. Tretmans, A formal approach to conformance testing, in:

Proc. 6th International Workshop on Protocol Test Systems
Ž .IWPTS’93 , Pau, France, 1993.

w x93 J. Tretmans, Testing labelled transition systems with inputs
and outputs, Technical report 95-26, University of Twente,
August 1995.

w x94 H. Ural, B. Yang, A test sequence selection method for
protocol testing, IEEE Transactions on Communication 39
Ž . Ž .4 1991 .

w x95 S.T. Vuong, W.W.L. Chan, M.R. Ito, The UIOV method
for protocol test sequence generation, in: Proc. 2nd Interna-
tional Workshop on Protocol Test Systems, Berlin, Ger-
many, 1989.

w x96 E.J. Weyuker, S. Rapps, Selecting software test data using
data flow information, IEEE Transactions on Software En-

Ž . Ž .gineering SE-11 4 1985 .
w x97 J.P. Wu, S.T. Chanson, Test sequence derivation based on

external behavior expression, in: Proc. 2nd International
Workshop on Protocol Test Systems, 1989.

w x98 B. Yang, H. Ural, Protocol conformance test generation
ising multiple UIO sequences with overlapping, Computer

Ž .Communication Review 4 1997 118–125.
w x99 M. Yao, On the development of conformance test suites in

view of their fault coverage, PhD thesis, Universite de´
Montreal, Departement IRO, 1995.´ ´

w x100 L.D. Zhang et al., A further optimization technique for
conformance testing based on multiple UIO sequences, in:

Ž .G. v. Bochmann, R. Dssouli, A. Das Eds. , Protocol Test
Ž .Systems V Montreal 1992 , North-Holland, Amsterdam,

1993.

Rachida Dssouli is professor in the Departement d’Informatique´
Ž .et de Recherche Operationnelle DIRO , Universite de Montreal.´ ´ ´

She received the Doctorat d’universite degree in computer science´
from the Universite Paul Sabatier of Toulouse, France, in 1981,´
and the Ph.D. degree in computer science in 1987, from the
University of Montreal, Canada. She has been a professor at the´
Universite Mohamed 1er, Oujda, Morroco, from 1981 to 1989,´
and assistant professor at the Universite de Sherbrooke, from 1989´

Ž .to 1991. She spent a sabbatical year at NORTEL 1995–1996 , Ile
des Soeurs. Her research area is in Communication protocol
engineering, Requirements engineering and Multimedia applica-
tions. Ongoing projects include incremental specification and
analysis of reactive systems based on scenario language, multime-
dia applications, conformance testing, design for testability, con-
formance testing based on FSMrEFSM and Timed automata. She
served very often as a member of committee program of many

Žworkshops and conferences IWPTS, IWTCS, FORTE, CFIP,
.MMNS, MMM, FIW, NOTERE . She organized or coorganized

Žseveral international workshops and conferences IWPT’93,
.CFIP’93, FORTE’95, CFIP’96, NOTERE’98, 9th SDL Forum .

Kassem Saleh obtained his B.Sc., M.Sc. and Ph.D. from the
University of Ottawa in Canada in 1985, 1986 and 1991, respec-
tively. He worked for Bell Canada from 1985 to 1991 and at
Concordia University for one year before joining Kuwait Univer-
sity in 1992. He is currently an Associate Professor in the
Department of Electrical and Computer Engineering, College of
Engineering and Petroleum at Kuwait University. Dr. Saleh was
placed in 8th position among the top scholars in the Field of
Systems and Software Engineering in an annual assessment pub-
lished by the Journal of Systems and Software in October 1997
and October 1998. He was awarded the IBM telecommunications
Software Scholarship in 1988, the George Franklin Prize for the
best student paper in 1990 from the Canadian Interest Group on

Ž .Open Systems CIGOS , the distinguished young researcher prize
in 1994 and the distinguished teacher prize in 1996 both from the
College of Engineering and Petroleum at Kuwait University. His
current research and teaching activities include software engineer-
ing, communications software, distributed systems and internet
programming. Dr. Saleh has presented many tutorials at interna-
tional conferences and universities worldwide.

El Mostpha Aboulhamid got his Engineering degree in Com-
Žputer Science and Mathematics form ENSIMAG Institut Poly-

.technique de Grenoble in 1974. He obtained his Ph.D. and M.Sc.
degrees from Universite de Montreal in 1985 and 1979, respec-´ ´
tively. He has been active in testing, modeling and specifications
of both hardware and Software. He gave different short courses to
the industry in the domain of synthesis, testing and modeling
using VHDL. He has some collaborative work with NORTEL,
and CAD houses like Mentor Graphics. He has also collaborative
links with Concordia University and Ecole Polytechnique de
Montreal. Currently his the director of GRIAO Groupe de´
Recherche Interuniversitaire en Architecture des Ordinateurs et

.VLSI . GRIAO regroups more than 20 researchers form 7 Quebec
Žinstitutions. He is also member of Micronet Canadian Centre of

.excellence . He has over 60 publications in journals and interna-
tional conferences.

Abdeslam En-Nouaary received the Engineering degree in Com-
Žputer Science from ENSIAS Ecole Nationale Superieure d’Infor-´

.matique et d’Analyse des Systemes , Rabat, Morocco, in 1996. He`
is currently pursuing the Ph.D degree in Computer Science at

ŽDIRO Departement d’Informatique et de Recherche Operation-´ ´
.nelle , Universite de Montreal. His research interests include´ ´

specification, implementation and test of real-time systems.

Chourouk Bourhfir is a Ph.D. student in the Departement d’In-´
Ž .formatique et de Recherche Operationnelle DIRO , Universite de´ ´

Montreal. She received the M.Sc. degree in Computer Science in´
Universite Laval, Canada in June 1994. Her research interests´
include modeling and automatic test generation of embedded
systems.

