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1. INTRODUCTION

This article introduces the basics of cli-
ent/server computing and component
technologies and then proposes two
frameworks for client/server computing
using distributed objects. I discuss top-
ics affecting client/server frameworks,
with a focus on the delegation of respon-
sibilities between clients and servers
and the stratification of client/server
systems into levels. The component
technologies I discuss are CORBA, the
Object Management Group’s proposal
for a distributed object framework, and
DCOM, Microsoft’s system for creating
and using objects on remote machines
while maintaining the common para-
digm for interaction among libraries,
applications, and system software pro-
vided by COM [Chappell 1996]. Ac-
tiveXs, components built from COM-
based technologies, are treated as
important examples of DCOM parts in
client/server systems. It should be noted
that JavaBeans is not discussed, since it
is a language-specific technology and
not suitable for use in an environment
when the participating components are
not necessarily all written in Java. The
Java programming language is dis-
cussed in terms of its contributions to
an effective framework for client/server
computing using the distributed object
services of CORBA. Java applications,
which are suitable for downloading to a
local machine from the World Wide
Web, are discussed as Java component
units providing total integration frame-

works for client/server computing while
using distributed objects.

2. WHAT IS CLIENT/SERVER
COMPUTING?

Client/server computing systems are
comprised of two logical parts: a server
that provides services and a client that
requests services of the server. To-
gether, the two form a complete comput-
ing system with a distinct division of
responsibility. More technically, client/
server computing relates two or more
threads of execution using a consumer/
producer relationship. Clients serve as
the consumers in a client/server system.
That is, they make requests to servers
for services or information and then use
the response to carry out their own pur-
pose. The server plays the role of the
producer, filling data or service requests
made by clients.

Client/server computing attempts to
leverage the capabilities of the net-
works used by typical corporations that
are composed of many relatively power-
ful workstations and a limited number
of dedicated servers. Client/server com-
puting has gained popularity in the re-
cent years due to the proliferation of
low-cost hardware and the increasingly
apparent truth of the theory that a
model relying on monolithic applica-
tions fails when the number of users
accessing a system grows too high or
when too many features are integrated
into a single system.

A good example of a client/server sys-
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tem is a simple automated teller ma-
chine (ATM) network. Users typically
use ATMs as clients to interface with a
small sub-server, which collaborates
with a larger server that manages all of
the smaller servers. In this model, the
sub-servers are servers to the ATMs
and clients to the master server. ATMs
provide the user interface and can be
customized as required (e.g. for multi-
lingual support), while the intermediate
servers provide the application logic,
such as checking account balances and
transferring money between accounts.
The sub-servers allow the system to be
scaled since adding servers allows an
increased number of ATMs to be sup-
ported. However, the application logic is
provided only with the help of the cen-
tralized server. The results of the ser-
vices are communicated to the user
through the ATMs. The centralized
server provides additional application
logic, such as ensuring that concurrent
transactions are handled correctly. It
also serves as a central brokerage for all
account information so that users can
access their accounts from any ATM
worldwide.

2.1 Clients

Many clients have a modern graphical
user interface (GUI) that presents each
resource accessible by the user as an
independent object; the GUI is usually
provided with the help of the OS so that
consistency across multiple applications

is maintained. A typical example of a
GUI is the common desktop metaphor
in which each storage device, file, and
printer is depicted as an independent
entity. Clients can also offer services to
other clients. Normal models of client/
server computing place no limit on the
number of servers a client can access
simultaneously.

2.2 Servers

“Traditional” servers are entities that
passively await requests from clients
and then act on them, but recent re-
search in this area encompasses sys-
tems fulfilling the theoretical organiza-
tion of client/server systems in which
servers can actively search out changes
in the state of clients and take appropri-
ate action. Servers typically fill one spe-
cific need and encapsulate the provided
services so that the state of the server is
protected and the means by which the
service is provided are hidden from the
client. In order to accommodate work-
station clients as first-rate network
members, servers must handle peer-to-
peer protocols that are used for “file
sharing” on PCs, handle PC messages,
and service PC resources using native
formats. An important consideration in
determining the granularity of services
offered by a server is the possibility of
having servers act as clients to other
servers. Using this model, a server can
execute a task by dividing it into sub-

Figure 1. A traditional client/server system. Clients request services of the server independently but
use the same interface.

4 • Scott M. Lewandowski

ACM Computing Surveys, Vol. 30, No. 1, March 1998



tasks and then having other servers
complete the subtasks.

2.3 Middleware

The distributed software required to fa-
cilitate client/server interaction is re-
ferred to as middleware. Transparent
access to non-local services and re-
sources distributed across a network is
usually provided through middleware,
which serves as a framework for com-
munication between the client and
server portions of a system. Middleware
can be thought of as the networking
between the components of a client/
server system; it is what allows the
various components to communicate in
a structured manner. Middleware is de-
fined to include the APIs used by clients
to request a service from a server, the
physical transmission of the request to
the network (or the communication of
the service request to a local server),
and the resulting transmission of data
for the client back to the network.
Middleware is run on both the client
and server ends of a transaction.

Middleware is where most of the com-
mercial competition and development in
client/server computing has occurred.
Examples of the proliferation of compet-
ing domain-specific standards include
database middleware such as ODBC,
SQL, and Oracle Glue; groupware
middleware such as Microsoft Exchange
and Lotus Notes; Internet middleware
such as HTTP and Secure Socket Layer
(SSL); and object middleware such as
CORBA and DCOM. “Generic” or “fun-
damental” middleware forms the basis
of client/server systems; the domain-
specific middleware serves to harness
the capabilities of the fundamental
middleware for a more specialized pur-
pose. Network authentication services,
queues (such as those for peripherals
or tasks), network procedure calls, dis-
tributed file systems, and network time
services are all considered part of the
fundamental middleware. The most com-
mon network communication protocol
used by middleware is TCP/IP, although

IPX is also popular for some applica-
tions.1 Fundamental middleware is be-
coming a standard part of modern op-
erating systems such as WindowsNT,
reducing the importance of systems
such as Novell’s NetWare; this should
help to standardize the availability of
middleware.

2.4 Fat Servers vs. Fat Clients

Although clients and servers both play
important roles in a successful client/
server system, most systems are flexible
with regard to the distribution of au-
thority, responsibility, and intelligence.
Information systems specialists dub a
part of a system with a disproportionate
amount of functionality “fat”; a “thin”
portion of a system is a part with less
responsibility delegated to it [Orfali et
al. 1996a]. The server portion of a cli-
ent/server system almost always holds
the data, and the client is nearly always
responsible for the user interface; the
shifting of application logic constitutes
the distinction between fat clients and
fat servers. Fat server systems, such as
groupware systems and Web servers,
delegate more responsibility for the ap-
plication logic to the server, whereas fat
client systems, such as most database
systems, place more responsibility on
the client. Distributed object models of
client/server computing are unique in
that either the client or the server can
be fat while still maintaining approxi-
mately the same degree of flexibility
and power. However, shifting intelli-
gence from the client to the server or
vice versa shifts the capabilities and
strengths of the system. For example, if
a fat server is being used, it usually is
easy to update application logic since a
new client does not need to be distrib-
uted. However, if fat clients are being

1 Most domain-specific middleware is designed for
use with TCP/IP, and TCP/IP is supported by
nearly all operating systems. Since Windows95
and the MacOS support TCP/IP, almost all desk-
top computer users have access to TCP/IP ser-
vices.
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used, the server need not be touched
and system stability is not jeopardized.

Although systems relying on fat serv-
ers have comprised the majority of cli-
ent/server systems in the past, many
programmers now favor fat-client sys-
tems because they are generally easier
to program. Fat clients let users create
applications and modify complex front-
ends to systems easily, but this comes
at the price of reduced data encapsula-
tion; as more responsibility is placed on
a client, the client requires a more inti-
mate knowledge regarding the organiza-
tion of data on the serving end. How-
ever, the continued development of fat-
server systems has been significantly
influenced by the industry trend to-
wards greater object orientation, which
favors a high degree of data encapsula-
tion. By encapsulating the data better,
more abstract services can be provided
by the server, and raw data is hidden
from the client. Instead of returning
unprocessed data, meaningful responses
to service requests are communicated
back to the client by the server.

The use of fat servers has also in-
creased because of their recently ex-
ploited efficiencies. Generally, fat serv-
ers are easier to manage and deploy
since the data and code exist in a cen-
tralized location. Instead of coordinat-
ing it across a network, debugging is all
done from one machine; unfortunately,
as mobile servers and processes become
the norm, this benefit will become less
important. Fat servers reduce the prob-
lem of limited bandwidth by carrying
out more of the work where the data
resides, reducing the need for costly

data transfers over the network. Mis-
sion-critical applications requiring the
highest degree of fault tolerance and
stability use fat servers for ease of
maintenance.

The fat server model is often used to
ensure greater compatibility between
clients and servers: the more work the
server does, the less dependent it is on
the client. For example, a Web page
designed under the fat server model
would assume that no plugins, ActiveX,
or Java capabilities are available (be-
cause the user is using a thin client, a
basic Web browser), and the server
would be restricted to the HTML 2.0
standard. Using this thin-client model
ensures that all users see an “accept-
able” page in a predictable manner, al-
though little flexibility for page design
or functionality is possible without the
use of the advanced technologies. If a
more robust user experience is needed
(which, in this example, would be de-
rived from using plugins and the like),
the fat client model can be used at the
expense of universal compatibility.

2.5 N-Tiered Systems

The canonical client/server model as-
sumes exactly two discrete participants
in the system. This is called a “two-tier
system;” the application logic must be in
the client or the server, or shared be-
tween the two. It is also possible to have
the application logic reside separately
from the user interface and the data,
turning the system into a “three-tier
system.” In an idealized three-tier sys-
tem, all application logic resides in a

Figure 2. Since the distribution of the user interface and data is fixed, the placement of the application
logic is what distinguishes fat-client from fat-server systems.
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layer separate from the user interface
and data. This rarely happens in actual
systems; usually, the bulk of the appli-
cation logic is in the middle tier, but
select portions of it are the responsibil-
ity of the client and/or the server.

The three-tier model is more ad-
vanced and flexible than the traditional
two-tier model because the separation of
the application logic from the client and
server gives application logic processes
a new level of autonomy. The processes
become more robust since they can oper-
ate independently of the clients and
servers. Furthermore, decoupling the
application logic from the data allows
data from multiple sources to be used in
a single transaction without a break-
down in the client/server model. This
advancement in client/server architec-
ture is largely responsible for the notion
of distributed data.

Standard Web applications are the
most common examples of three-tier
systems. The first tier is the user inter-
face, provided via interpretation of
HTML by a browser. The embedded
components displayed by the browser
reside in the middle tier; these could be
Java applets, ActiveXs, or some other
kind of entity that provide the applica-
tion logic pertinent to the system. The
final tier is the data served from a Web
server. Quite often this is a database-
style system, but it can be a data-ware-
housing or groupware system.

Many advanced applications can ben-
efit from the use of more than three
tiers. For example, when multiple data
sources are integrated (as in a data
warehousing application), four tiers are
possible: the individual data reposito-
ries, a server that unifies the view of
this data, an application server that
performs queries based on the unified
view of the data, and the front end. The
development of efficient and reliable
systems with more than three tiers is
still an imprecise science, but research
in distributed computing continues to
increase the availability and usefulness
of such systems.

2.6 Functions and Benefits of
Client/Server Systems

Although client/server systems are gen-
erally characterized by their compo-
nents, they must serve essential func-
tions in order to meet the demands of
network computing. To prevent inflexi-
ble local system organization, a client/
server system must keep parts of the
application loosely coupled; of course,
communication via message passing
must continue in order to support the
granularity of communication (most of-
ten, method invocation) required be-
tween client and server. Access to
shared resources must be regulated to
handle cases in which client and server
attempt to access the same resource
(this occurs most often when client and
server are running on the same ma-
chine) or in which multiple clients at-
tempt to access the same resource via
the server. In addition, a client/server
system must provide a standardized
system through which network services
can be utilized to provide location–
transparent access to all services.

As client/server systems have grown
more robust, the computing community
has acknowledged their many distinct
advantages. Perhaps the most impor-
tant advantage is the natural mapping
of applications into a client/server
framework. A typical example of this is
an electronic phonebook system. Since
the data is relatively static (and is uni-
form for all users of the system) and the
data repository needs to be able to re-
spond to queries, it makes sense to con-
struct this portion of the application as
a server. A thin client is a logical match
since it is difficult to update every us-
er’s database of phone numbers, the op-
timal search algorithm can change at
any time, and the space required for the
amount of data manipulated is prohibi-
tive for many users’ workstations.

As a result of the availability of com-
patible middleware for multiple plat-
forms and recent advances in binary
interoperability, client/server systems
can usually relate a client on one plat-
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form to a server on another. Technolo-
gies such as Java and object request
brokers (ORBs) promise to provide
seamless integration among all plat-
forms within a few years. If portions of
a client/server system encapsulate a
single function and follow a rigid inter-
face, those parts of a client/server sys-
tem providing the services can be inter-
changed without upsetting other
portions of the system. This allows users
to customize their environments for
maximum efficiency and system admin-
istrators to upgrade transparently to
more powerful, capable, or less expen-
sive servers without notifying the users
(clients). Application development is
simplified since a client and server each
fill a specific need, and each properly
designed server supports an interface
directly related to the realization of one
common goal.

Client/server models leverage the ad-
vantages of commodity-like hardware
prices since resource-intensive applica-
tions can be designed to run on multiple
low-cost systems. Systems can grow
since client/server systems scale both
horizontally and vertically, meaning
that clients can be added with little
performance penalty and that extra per-
formance can be extracted from a client/
server system by adding faster server
hardware.

Despite maintainability issues arising
from the distribution of data and code
throughout a network and the difficul-
ties vendors have “keeping up” with
competing standards, the client/server
model is extremely well suited for many
applications.

3. DISTRIBUTED OBJECTS AND
COMPONENTS

As computing systems evolved, new par-
adigms of constructing software applica-
tions were developed and the paradigm
of algorithmic computation was re-
placed by the use of interacting objects.

3.1 From Objects to Distributed Objects

Classical objects can be viewed as self-
contained entities that encapsulate
data, and a set of operations that act on
that data. The operations supported by
an object (often called “methods”) may
rely on the internal state of the object.
Objects provide a clean way of separat-
ing related data and functionality from
other parts of a system in order to ease
system construction and maintenance.

Whereas regular objects “reside” in a
single program and do not even exist as
separate entities once the program is
compiled, distributed objects are ex-
tended objects that can reside anywhere
on a network and continue to exist as
physical standalone entities while re-
maining accessible remotely by other
objects. Robust distributed object sys-
tems allow objects written in different
languages and compiled by different
compilers to communicate seamlessly
via standardized messaging protocols
embodied by middleware. Such object
frameworks allow higher levels of trans-
parency of interoperability between dis-
tributed objects.

3.2 Benefits of Distributed Objects

Distributed objects promise to revolution-
ize the construction of scaleable client/
server systems by providing modularized
software that features interchangeable
parts. Advanced architectures will offer
the end user the ability to add compo-
nents, allowing simple customization of
applications.

Objects designed for self-management
are the types of components most easily
utilized since they impose little burden
on the application programmer. Self-
managing distributed objects take re-
sponsibility for their own resources,
work across networks, and interact with
other objects. These capabilities are fre-
quently given to objects through a dis-
tributed object framework that provides
middleware to regulate the necessary
inter-object communications and pro-
vides a resource pool for each object
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that is deleted when that object ceases
to exist. An example of such self-manag-
ing objects is ActiveXs; the DCOM
middleware ensures interoperation be-
tween remote objects and handles re-
source allocation.

Self-managing objects are used easily
by other objects since no management
burdens are imposed on the client ob-
ject: it receives object services “at no
cost.” Objects crafted to these specifica-
tions rely on a solid event model that
allows objects to broadcast specific mes-
sages and generate certain events.
These events, which can be likened to
an alarm signaling a human to take
some action, are “listened for” by other
objects, which then take action based on
them. Each listening object responds to
a given event in its own manner. By
using object-oriented techniques such as
polymorphism, closely related objects
react differently to the same event.
These capabilities simplify the program-
ming of complex client/server systems
and also help provide an accurate repre-
sentation of the real-world system mod-
eled.

Objects can generate events to notify
other objects that an action should take
place. In this sense, events can be
viewed as synchronization objects that
allow one thread of execution to notify
another thread that something has hap-
pened. Using this model, an event can
notify a component that it should take a
certain action. An object that can listen

for events provides a more robust
framework for interaction between ob-
jects than a model that forces objects to
wait for the next instruction. For exam-
ple, a word processor might generate a
“finished printing” event when it has
spooled a document to a printer. If
someone wants to add a display dialog
alerting the user that the printing was
done, it is necessary to write an object
listening for the “finished printing”
event; the word processor would not
know of the existence of the alert object
without it. Under a traditional model,
the alert object needs to be told explic-
itly to show the dialog; this requires
modifications to the word processor
source code and subsequent recompila-
tion, which is not always feasible.

Because of the strict encapsulation
that objects provide, distributed objects
are a fundamentally sound unit from
which to build client/server applications
when separation of data is important.
Cooperating objects form the logic por-
tion of most substantial client/server
systems because of the rich interaction
services they offer [Wegner 1997a;
1997b]. The flexibility of granularity of-
fered by components should not be over-
looked. Objects can be as small as re-
quired to provide the correct degree of
“mixing” of services, or as large and
complex as required to encapsulate com-
pletely the logic of a particular system
segment without unwarranted reliance
on other objects.

Figure 3. A sample event management system. Depicted is CORBA’s Event Service, which is
important because it extends CORBA’s otherwise synchronous communication model.
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Since distributed objects allow appli-
cations to be split up into lightweight
pieces that can be executed on separate
machines, less powerful machines can
run demanding applications. Advanced
applications for which distributed ob-
jects are well suited include roaming
agents (autonomous objects that move
logically or physically within a network,
performing various tasks at specified
locations) and objects that adjust dy-
namically to their execution environ-
ment to provide optimal performance in
any given situation.

3.3 Components

Components are the smallest self-man-
aging, independent, and useful parts of
a system that works in multiple envi-
ronments. Such parts may not even be
objects; ActiveX controls (Microsoft’s no-
tion of a standalone software component
that performs a common task in a stan-
dard way) provide one such example.
Components promise rapid application
development and a high degree of cus-
tomizability for end users, leading to
fine-tuned applications that are rela-
tively inexpensive to develop and easy
to learn.

Components are most often distrib-
uted objects incorporating advanced
self-management features. Such compo-
nents rely on robust distributed–object
models so as to maintain transparency
of location and implementation. Compo-
nents may contain multiple distributed
or local objects, and they are often used
to centralize and secure an operation.
For example, a function provided on a
Web page through JavaScript may be
moved to a component to protect the
logic of the application or to allow the
operation to execute on a more powerful
server.

The interface of a component should
be the primary concern of its developer.
Since components are designed for use
in a variety of systems and need to
provide reliable services regardless of
context, developers attempting to use a
component must be able to identify

clearly the function of a component and
the means of invoking this behavior.

4. A NEW MODEL FOR CLIENT/SERVER
COMPUTING

The use of distributed objects in client/
server systems provides numerous ben-
efits to end users and system develop-
ers. If distributed objects are used, it is
essential to choose the most appropriate
distributed object model and program-
ming language in order to leverage the
advantages of the client/server para-
digm.

4.1 Client/Server Using Distributed Objects

Due to market forces, only CORBA and
DCOM provide viable long-term solu-
tions to the challenge of a standardized
framework for object-based client/server
systems, since other technologies do not
support a large enough feature set or
have as great an installed base and
momentum as these two systems.

4.1.1 Client/Server with CORBA.
The computer industry has rallied to
create an open standard for distributed
object computing, which is known as the
Common Object Request Broker Archi-
tecture (CORBA).2 The most ambitious
middleware undertaking ever, CORBA
manages every detail of component in-
teroperability, ensuring the possibility
of interaction-based systems that incor-
porate components from multiple
sources. Because an object’s service
specification is completely separated
from its implementation, CORBA is
able to provide a self-specifying system
that allows the discovery of other ob-
jects on the network; this capability

2 Traditionally, an open standard is a standard
designed and supported by many companies that
provides for interoperation between specific ven-
dor implementations of similar systems; an open
standard allows continued innovation and devel-
opment of the system by all companies working on
it. The key benefits are: ready availability of infor-
mation about the standard and assurance that no
one company will gain a significant competitive
edge by having the “best” technology.
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opens up new possibilities for interac-
tive systems.

CORBA objects can exist anywhere on
a network, and their location is com-
pletely transparent. Details such as the
language in which an object is written
or the operating system on which it
currently runs are also hidden to cli-
ents. The implementation of an object is
of no concern to an invoking object; the
interface is the only consideration a cli-
ent must make when selecting a serving
object.

CORBA provides fundamental system
and application services to the objects
that rely on it for management. The
inclusion of these services at the
middleware level eliminates the need
for most “mixin classes” (small classes
providing generic functionality, such as
garbage collection or persistence, to all
objects inheriting from them); these
classes tend to distort the object model
and unnecessarily complicate the inher-
itance hierarchy of systems.3

The most important part of a CORBA
system is the Object Request Broker
(ORB). The ORB defines the object
model and provides bidirectional loca-
tion-transparent object access. The ORB
is what shields clients from the neces-

sity of dealing with the complexities of
remote object communication; the ORB
handles all of the difficulties in coordi-
nating the task. The CORBA 2.0 specifi-
cation mandates intervendor ORB com-
patibility, which is accomplished via the
required Internet Inter-ORB Protocol
(IIOP). IIOP provides a common com-
munication backbone between different
ORBs by adding several CORBA-spe-
cific messages to the TCP/IP schema
already widely used today. The ORB
provides most of the middleware-like
services that a robust distributed object
system should provide. Many CORBA
features are drawn from proven models
such as Remote Procedure Calls (RPC)
and Message-Oriented Middleware
(MOM).

CORBA uses the ORB to establish a
client/server relationship between com-
ponents. The ORB intercepts method
invocations from client objects and
routes them to an appropriate server.
The serving component can be a specific
object or a general server that delivers
the services required to meet the de-
mands of a generic client request. By
using an ORB with such capabilities,
CORBA shields the programmer from
implementation details (e.g. the lan-
guage used to write the cooperating
component) as well as run-time vari-
ables (e.g. the details of which machine
hosts a given component). The ORB
does not bind a given component to a
client or a server role: the same compo-
nent acts as a client to other objects yet

3 In fact, the CORBA model does use mixins to
provide these services, but they do not interfere
with the “traditional” object interface since they
are mixed in at run time. Mixins could also be
included at build time, but this limits the flexibil-
ity of the model.

Figure 4. The CORBA architecture. The major ORB components used by the client and the implemen-
tation of the object are shown.
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still delivers requested services, making
it also a server.

At the heart of CORBA’s strong in-
teroperability is the language-neutral
Interface Definition Language (IDL).
The IDL, used to specify the services
that an object can provide, was designed
to be fully independent of the imple-
mentation language, tools, operating
system, and other factors that normally
affect interoperability. Important issues
such as error handling are accounted for
by this completely declarative language.
Programmers write interactive se-
quences of code using native language
constructs and rely on the IDL only to
express object interfaces and related
traits, such as its inheritance tree, the
events that the object can trigger, and
the exceptions the objects raise (for er-
ror-handling purposes). When the inter-
face is specified, the programmer speci-
fies parameter and return types to
ensure the appropriate invocation of the
object’s methods. To make the IDL easy
to learn, it is a superset of C11; the
IDL even includes support for prepro-
cessor directives.

Client IDL stubs communicate the
static interfaces that allow a client to be
written as though it simply invoked lo-
cal methods; in reality, the ORB routes

the method invocations to the appropri-
ate server objects. This flexibility comes
at the expense of equipping each client
component with an IDL stub for each
server used. In addition to static
method invocation, CORBA supports
dynamic method invocation, which is
handled through the Dynamic Invoca-
tion Interface (DII). DII allows a compo-
nent to learn about the methods of other
components at run time. It serves as a
generic interface that does not require
stubs; instead, it supports the dynamic
construction of method invocations as
needed by the client at run time. Stan-
dardized methods support the transfer
of data in a metadata format; however,
the full utility of DII is yet to be ex-
ploited due to the complexities inherent
in writing a component that uses ser-
vices not yet known to exist.

The server side of a client/server
transaction need not know whether the
method invocation it handles is static or
dynamic. Serving objects have Server
IDL Stubs, similar to the Client IDL
Stubs, that denote the static interface of
the serving component. To accommo-
date components without IDL-based
stubs, CORBA provides a Dynamic
Skeleton Interface (DSI) that binds in-
coming method calls for such objects at

Figure 5. The structure of a CORBA IDL file.
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run time. Server demands are met via
an Object Adapter, which provides the
core run-time functionality required by
servers. It supports the registration of
components, and thus returns object
references to client components. The
Implementation Repository gives server
components a repository for run-time
information about a variety of a server’s
services such as the supported inter-
faces, audit trails, security details, and
other administrative or “housekeeping”
information.

Related to these two interfaces is the
Interface Repository API, which allows
components to obtain and modify the
interfaces of registered components to
which it has access. The Interface Re-
pository contains all of the IDL defini-
tions, which describe the attributes, op-
erations, user-specified types, and
exceptions supported by server objects.
Using the Interface Repository API,
components can update their published
interfaces, making CORBA a self-de-
scribing system. By supporting these
flexible interface services, CORBA pro-
vides both the safety and speed of static
method invocation as well as the flexi-
bility afforded by dynamic method invo-
cation.

CORBA specifies two means by which
an object can locate another object in a
system. The first is the Naming Service.
This service is analogous to the white
pages in a phone book: an object looks
up another object by the name under

which the object registered itself with
the ORB on initialization. This method
of finding an object relies on unique
signatures: a client must know the ex-
act name a server gave when it regis-
tered for use. The second service is the
Trader Service, which is like the yellow
pages: objects can ask the Trader Ser-
vice what objects with certain service
characteristics have registered. The
trading repository then returns refer-
ences to salient objects and gives the
client information regarding the proper-
ties of the services. The client then
chooses a server to contact for the
needed services.

CORBA also provides CORBAser-
vices, which define system–level object
frameworks that extend the CORBA
model, and CORBAfacilities, which pro-
vide horizontal and vertical application
frameworks used by business objects.
Although quite important to the design
and implementation of a successful
CORBA-compliant system, these facili-
ties are not important in the use of
CORBA to support a robust client/
server environment [Orfali et al.
1996b].

4.1.2 Client/Server with DCOM. Mi-
crosoft is touting DCOM, which first
shipped with WindowsNT 4.0, as the
future model for Internet computing;
DCOM manifests itself primarily
through the use of ActiveX components,

Figure 6. Client/server computing using distributed objects. Communication between components
(denoted by arrows) is facilitated through ORBs (which have been omitted for clarity).
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which are DCOM objects.4 Furthermore,
software releases from Microsoft (such
as Visual J11) reveal that Microsoft is
intent on providing a workable platform
on which to implement Java objects.
The integration of Java with DCOM
through Visual J11 is even greater
than that of C11 and DCOM provided
through Visual C11. This is particu-
larly interesting in light of the fact that
C11 is the language originally in-
tended to be used with DCOM. DCOM
has migrated from a system for binary
interoperability to the more accepted
(and needed) system of providing high-
level bindings to popular languages.
The bindings provided with Visual J11
are strong enough so that ActiveXs
written in other languages can be made
to look like remote Java objects.

DCOM is like CORBA in that it
cleanly separates interface from func-
tionality using an IDL. Microsoft has
chosen to use an IDL based on the Dis-
tributed Computing Environment
(DCE). The IDL is neither CORBA- nor
DCE-compliant; this severely limits the
potential for interoperability. In addi-
tion, separate interface functionality for
Microsoft’s Object Linking and Embed-
ding technology is provided using the
Object Definition Language (ODL).5

DCOM does not support the tradi-

tional notion of an object. DCOM “ob-
jects” do not have a state; rather, they
are collections of interfaces. One could
liken this to a collection of algorithms,
suggesting that a DCOM “object” is in-
herently not as powerful a computing
machine as a CORBA object [Wegner
1997b]. When a reference to a DCOM
object is requested, the handle is arbi-
trary; a subsequent request for the
same object may yield a different han-
dle connecting the client with an equiv-
alent interface. DCOM supports a regis-
try of available interfaces for objects to
reference, and even provides informa-
tion on the meanings and types of pa-
rameters that should accompany a ser-
vice request.

The client/server contract can be ful-
filled in DCOM by the use of object
interfaces. As in CORBA, DCOM inter-
faces make the implementation lan-
guage and the location of objects trans-
parent. This assumes that a language
binding for the language in question is
available. For a DCOM client to access
the methods of an object, it must use a
virtual lookup table to obtain a pointer
to that function. Multiple virtual tables
can exist for each object and they can be
modified to make interfaces alterable
while the application executes.

These differences from the traditional
notion of an object may leave the reader
wondering what a DCOM object really
is. A DCOM object can best be described
as a software component supporting at
least one interface; no knowledge of
state is provided. Since DCOM objects
have no unique object identification,
there are no naming or trading services

4 Microsoft’s WindowsDNA initiative strives to
further integrate DCOM with Web-based client/
server models.
5 OLE no longer refers to Object Linking and
Embedding but rather to any COM-based technol-
ogy. The ODL support for Object Linking and
Embedding exists in order to ensure backwards
compatibility [Chappell 1996].

Figure 7. Sample DCOM IDL code defining the interface for ISpellChecker. The compiler generates
proxies and stubs along with other related code. The non-standard parameter types are required by
COM.
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provided by the DCOM runtime. Since
individual objects cannot be referenced
while they exist, persistence is not sup-
ported, limiting the problem domains
for which DCOM objects becomes a via-
ble solution. Furthermore, since there is
no way to identify objects, a client object
cannot request to be connected to a
given server; it can only ask to be con-
nected to an arbitrary server supporting
the services needed. Since DCOM does
not support multiple inheritance of in-
terfaces (proven to be the purest model
for interface composition in Wegner
[1997b], DCOM objects cannot automat-
ically support multiple interfaces. If an
object contains an object supporting a
given interface, then the containing ob-
ject can tell requesting clients that it
supports that same interface; the calls
must be forwarded to the contained ob-
ject. There are two ways to do so.

(1) Containment/Delegation: The con-
taining object must request the
same service of its inner object as
requested of it. The top-level object
delegates service requests to more
capable objects.

(2) Aggregation: This model directly ex-
poses the object interfaces to re-
questing clients when they ask for
the interface of the top-level object.
Put another way, the top-level ob-
ject presents the interfaces of its
component objects as its own. This
has the side effect of allowing a cli-
ent to communicate directly with
the objects contained by the top-
level object. Performance and effi-
ciency can benefit from such an ap-
proach, but some flexibility, control,
and encapsulation may be lost.

By providing only for the functionality
mandated by the notion of inheritance
and thus ignoring inheritance on a con-
ceptual level, Microsoft limits users of
DCOM to a “flat” object world. In addi-
tion, programmers are forced to use con-
tainment in place of inheritance in or-
der to reuse code. This limitation has a
host of theoretical and practical ramifi-

cations, which are beyond the scope of
this paper.6

When a DCOM client needs a server,
it issues a request that an object sup-
porting the required interface be instan-
tiated to make the interface available.
As a result, all DCOM servers must
provide for a class factory supporting a
specialized interface (IClassFactory)
that instantiates the class. In addition,
the server must tell the Windows regis-
try which classes it supports; this often
takes place when the server component
is first installed on a system. Numerous
problems with Windows registries make
it a poor model for advertising system
services.7 A major disadvantage of the
Windows model is that it does not ac-
commodate “newly” supported clients
nicely (for example, compatible clients).

Using interface pointers, DCOM sup-
ports transparent communication be-
tween clients and remote server objects.
The DCOM runtime does some behind-
the-scenes work to ensure that the in-
terface pointer is local to the invoking
process (through the use of a proxy, if
necessary), but the client’s view is of the
perpetual availability of services. When
proxies are created, they communicate
with stubs on the serving end. This
model is quite similar to the mechanism
employed by CORBA to provide loca-
tion-independent access to objects.

Although Microsoft has taken many
liberties with the object model that
should improve performance, bench-
mark tests indicate otherwise: bench-
marks incorporating network communi-
cation and simple method invocation
show DCOM to be almost 20% slower
than CORBA.8

6 These issues are treated adequately in most
texts on software engineering and design.
7 Most of these problems involve registry integ-
rity. Because the Windows registry is used so
often, it is very susceptible to corruption.
8 A simple benchmark involved two 120-Mhz Pen-
tiums running WindowsNT Workstation 4.0 con-
nected by a 10 Mb/s Ethernet LAN. The client
(written in C11) invoked a method on a server
(also written in C11) 1000 times and measured
the average response time of remote pings. The
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4.1.3 CORBA as the Dominant Model.
With DCOM running only on Microsoft
operating systems, there is little ques-
tion that CORBA is the more portable
system.9 CORBA is now in its third
generation, and the standards body gov-
erning its evolution serves as assurance
that it will remain an open system. In
contrast, DCOM is currently a Win-
dows-only technology (although there
have been some experimentation with
porting the system to flavors of UNIX)
and it is apparently governed by its
maintainer, Microsoft. Several barriers
to porting DCOM to other platforms ex-
ist. For example, DCOM relies on the
WindowsNT security model to provide
system security; it is unclear what will
provide security when DCOM is used on
other platforms. In contrast, CORBA
uses a universal security mechanism
that will work on all platforms, regard-
less of operating-system-level security.

CORBA provides a superior object
model by supporting the foundations of
the popular classical object model. By

supporting unique object references, ca-
pabilities such as persistence are easily
supported by CORBA, allowing a whole
domain of specialized applications to le-
verage this strength to provide more
robust end user services. Native state
handling provided by CORBA frees the
client from the burden of providing a
managed-state system to handle the
needs of interacting objects.

Support for legacy systems is essen-
tial to the success of any new computing
technology. CORBA provides seamless
integration for the most popular object
oriented languages, and robust support
for all languages. DCOM language sup-
port is limited to Java, C, C11, and
Visual Basic. CORBA hides the IDL
from the programmer, whereas an un-
derstanding of the DCOM IDL is essen-
tial to DCOM programming.

Although CORBA is clearly a superior
technology, one should never underesti-
mate any technology backed by Mi-
crosoft and its huge installed base and
resource pool. However, the rest of the
industry, including giants such as
Hewlett Packard, IBM, Novell, and Ap-
ple, along with quickly moving newcom-
ers such as Netscape, Oracle, and Java-
Soft, are rallying behind CORBA to
make it the distributed object standard.

DCOM setup gave an average execution time of
3.9ms; the CORBA setup, which used the VisiBro-
ker ORB, gave an execution time of 3.2ms.
9 As of mid-1997, Microsoft has pledged to support
DCOM on the MacOS and on the most popular
UNIX variants.

Figure 8. A typical DCOM component, showing the supported interfaces and mandatory class factory
and object creation capabilities.
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4.2 Using Java For Client/Server
Applications

Client/server systems developed using
Java employ a model of interaction
more advanced than that offered by
other languages. Software systems de-
veloped in Java rely on applications
that have many component-like quali-
ties. Using Java applications, one can
distribute executable content as easily
as one can deliver traditional static con-
tent.

Java supports a mobile code system;
this makes it an excellent choice for
meeting the needs of mobile agents,
which need to share (or distribute) both
code and data across multiple servers
and clients. Mobile code is distinguished
from traditional application code in that
it is dynamically executed by an appli-
cation that provides the run-time envi-
ronment. In Java, the assisting applica-
tion is quite often a Web browser or
some other stand-alone application, al-
though operating systems are probably
a better choice for this task. For code to
be considered mobile, it must be porta-
ble, meaning the code can be run on a
variety of platforms; code bound to a
specific machine architecture or operat-
ing system is not very mobile. Because
the security provided by the runtime
varies, mobile code systems must pro-
vide security. Since Java applications
can “roam” and are executable on any
client machine, and since we would like
users to be able to download and exe-
cute programs without the threat of
harm to their computing environment,
the mobile code system must protect
host resources such as memory and
files. Other considerations for mobile
code systems are: mechanisms for load-
ing, unloading, and discarding applica-
tions, and a way to transfer applications
to hosts in a manner that guarantees
their integrity.

Java’s mobile code system is provided
through bytecodes, which elegantly
solves the portability and security prob-
lems. The bytecode system calls for pro-
grams to be “compiled” until they are at

the point where they can run on a Java
Virtual Machine, which translates the
bytecodes into actual machine instruc-
tions on the fly. Certain factors, such as
the size of data types and the behavior
of arithmetic operators, are standard-
ized across virtual machines to ensure
that a Java program executes in the
same manner on any machine.10 Before
this translation and execution, the Java
Verifier checks all code scheduled to be
executed for malicious code (such as
forged references or access violations).
Security is augmented by four other lev-
els of verification, ranging from native
language design features to regulated
access to system facilities.

Although Java is often compared to
C11, it is quite different in many ways.
Java supports only single inheritance of
implementation, which solves many se-
mantic problems arising in complex in-
heritance hierarchies and allows an ob-
ject to support multiple interfaces.
Interface inheritance is not considered
harmful and is generally recognized as
providing a more clean and accurate
object model. Java interfaces are quite
similar to CORBA IDL files in that they
both specify the services available from
an object without revealing its imple-
mentation.

Namespace semantics are provided by
Java packages. Packages allow dynamic
class linking with methods that can be
overridden at runtime. Java also pro-
vides automatic garbage collection and
array-bounds checking; it does not allow
pointers, enforces strong type checking,
and treats exceptions as essential lan-
guage constructs. Native support for
multi-platform multithreading is pro-
vided; some simple features to meet
thread synchronization needs are also
included. These language features as-
sist developers writing client/server
components that must interoperate eas-
ily and provide high degrees of security
and reliability.

10 Unfortunately, this works better in theory than
in practice; numerous incompatibilities between
virtual machines still exist.
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Much of Java’s appeal comes from the
core classes that are part of any stan-
dard Java implementation. Since much
of the application functionality is pro-
vided externally, application sizes are
minimized, and since a lot of “busy-
work” code has already been written,
debugged, and approved as multi-plat-
form-compatible, program development
is greatly simplified. Some of these pre-
built classes are provided through pack-
ages such as java.lang, java.io, and java.
util, while other parts come from
established frameworks. Some core
frameworks relevant to client/server
computing include:

—Java Applet Framework: Provides the
“basics” needed for Java applets
(small applications meant to be down-
loaded from the Web and executed
usually within a Web browser) such
as base objects, native types, threads,
exceptions, stream and file support,
sockets, generic data structures (hash
tables, stacks, etc.), a portable GUI
layer (to support events), animation,
and wave audio.

—Java Commerce Framework: Provides
secure monetary transactions, includ-
ing online purchasing and financial
management.

—Java Enterprise Framework: Provides
object- and database-access services
for distributed systems. Incorporated
here are APIs that support Java-to-
CORBA communication, Java-to-Java
communication, and Java-to-Java-Da-
tabase-Connectivity (very similar to
ODBC) communication.

—Java Server Framework: Simplifies
the development of Internet servers
by providing APIs specifying simple
and uniform access to servers. It also
supports servlets, which are minia-
ture servers that end users can deploy
on a network to handle simple client
requests.

—Java Media Framework: Supports 2D
graphics and animation, synchroniza-

tion services, and audio. It is being
extended to support MIDI, 3D graph-
ics, telephony, conferencing, and
video. Using the media framework al-
lows applications with robust interac-
tion semantics to work across multi-
ple platforms with modification.

—Java Security Framework: Provides
support for authentication, digital
signatures, and encryption.

—Java Beans Framework: Serves as a
component model native to Java. It
extends the application model by al-
lowing flexible event handling across
multiple components, discovery of
methods supported by other objects,
persistent objects, and user interface
allocation among multiple objects.
This framework is quite important as
it allows objects on a Web page to
communicate and occupy overlapping
screen areas.

These frameworks suggest that Java is
not simply a language but, rather, a
portable object platform.

By introducing a new way to develop
applications, Java has created a new
paradigm for managing and deploying
client/server systems. By ensuring
multi-platform compatibility, Java al-
lows a developer to deliver an applica-
tion to millions of users through its
availability for downloading from a Web
server. A formal installation procedure
is not usually required, and updates are
provided by updating the single copy of
the application on the Web server.
Server technology also stands to benefit
from Java, most notably from the use of
mobile code. With no modification to the
application or its source code, servers
can start processes on any machine on
the network, and can move themselves
or their child processes to the most ap-
propriate machine at any time. The po-
tential for rapid application develop-
ment also makes Java a good client/
server programming language since
effective client/server development re-
quires constant feedback from end users.
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4.3 Client/Server Using Java and CORBA

Java has transformed the World Wide
Web into an interactive system support-
ing objects, but it is not a sufficient
solution to the problem of creating
transparently interoperating objects for
client/server systems. However, when
coupled with distributed object technol-
ogy, it forms a strong basis for the devel-
opment of a robust system that supports
client/server computing. A platform for
universal network computing can be
created using Java as a programming
language and mobile code system and
CORBA as an integration technology.

CORBA can replace the current Web-
based system of providing client/server
services, which uses HTTP/CGI. Doing
this would bring three significant bene-
fits to Java.

(1) Superior performance and flexibil-
ity: CORBA allows clients to invoke
methods on a server directly, with
parameters passed by precompiled
stubs or generated dynamically.
This system is more flexible than
the system supported by HTTP
since the client component is not
limited to the predefined methods
supported by HTTP; any IDL-de-
fined method can be invoked. In ad-
dition, CORBA allows parameters of
any type to be passed, whereas CGI
accepts only strings as parameters.
CORBA also avoids rerunning a pro-
gram at each client request, and can
store state between client invoca-
tions; CGI requires the program to
be executed for each request, and it
does not support state.

(2) Scalability: The CORBA ORB can
dispatch incoming client requests to
a server of its choosing, allowing
load balancing of client requests
(this is further facilitated by inter-
server communication via the ORB).
CGI applications have no way of dis-
tributing client requests to other
servers; one CGI application must
handle all the requests it receives.

(3) Component infrastructure: Java
does not provide native support for
method invocations across address
spaces, meaning that Java applica-
tions cannot request services of re-
mote Java objects. Using CORBA
would allow communication not only
among Java applications, but also
among Java applications and com-
ponents written in other languages.
Of course, CORBA would also sup-
ply its standard component services,
such as transactions and persis-
tence.

Since it was designed to naturally sup-
port three-tier client/server systems,
CORBA is a natural extension to Java’s
object model that brings robust distri-
bution services to Java objects. In many
cases, using CORBA with Java would
allow Java components to be split into
client and server side components, mak-
ing the Web client/server model even
more attractive since download time
would decrease (only the client compo-
nent would need to be downloaded).

Java can build on the strengths of
CORBA. By using CORBA to provide
network transparency and Java to pro-
vide implementation transparency, a
system that offers total transparency of
components can be created. Some ways
in which Java improves on CORBA in-
clude:

—Simplified code distribution: Using
Java, code is easily deployed from a
central server for download on de-
mand. This ensures that all updates
are “installed” (instead of requiring
that system administrators update
each workstation manually).

—Mobile code: Using Java’s native mo-
bile code capabilities, functionality
can be moved dynamically between
machines or between the client and
server components of a system.

—Agenting: Since it is assumed that
every machine visited by a roaming
agent will have a Java virtual ma-
chine installed on it, CORBA applica-
tions requiring agents can use Java’s
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mobile code system to move around
behavior, with CORBA providing
state persistence services and Java
providing the behavior.

—Additional component services:
CORBA defines “visual containers”
(based on Apple Computer’s OpenDoc)
for components, and Java applications
can serve as the portable components
that exist within these containers.
CORBA’s mobile container structure,
based on OpenDoc’s “Bento” system
for storing structured data, can be
used as a mechanism for moving Java
agents around.

—Superior language features: Java is
well suited for writing robust client
and server code because of its native
multithreading, garbage collection,
and error management. Java works
well with CORBA since both systems
separate interface from implementa-
tion.

Java and CORBA complement each
other quite well, with CORBA providing
a distributed object infrastructure and
Java providing a strong mobile code sys-
tem. Together, they let any two objects
on the same network communicate un-
der all circumstances.

5. FRAMEWORKS

A goal of object technology is the con-
struction of software systems structured
in the same way as the analogous real-
world systems. Frameworks are a tool
to help programmers achieve this goal.

5.1 What Are Frameworks?

Frameworks typically provide a way to
manage a system of interacting objects
and to develop objects that will inte-
grate seamlessly into the framework.
Frequently, frameworks suggest pat-
terns of collaboration between the ob-
jects that constitute the framework, al-
though a well designed framework
allows flexible channels of collaboration
that suit the application at hand. Com-
ponents that emerge from a finished

framework share consistent design at-
tributes, and may even share common
implementations. The benefit is a more
maintainable and consistent software
system.

In contrast to the traditional ap-
proaches to software reuse, which are
built on the paradigm of a set of librar-
ies containing many small building-
blocks, object-oriented frameworks al-
low the highest common abstraction
level between a number of similar sys-
tems to be captured in terms of general
concepts and structures. The result is a
generic design that can be instantiated
for each object system constructed.

The framework is ideally suited for
capturing the elements common to a
family of related systems. In this sense,
the framework is essentially a large de-
sign pattern capturing the essence of
one specific kind of object system. The
bulk of the system functionality is cap-
tured in the framework, which is main-
tained as a single entity. Each software
system using framework is an instantia-
tion of that framework.

Frameworks provide a high degree of
design reuse for interactive systems
composed of collaborating objects and
ensure that a “product” of the frame-
work will work within it. Thus, frame-
works are a valuable tool for ensuring
the availability of object services.

5.2 Business Objects as a Client/Server
Framework

Business objects are self-managing com-
ponents used to represent key objects or
processes in a real-life system. Business
objects are “shippable” products that
usually have a user interface and the
ability to cooperate with other objects to
meet a certain user need. They can be
used across single or multiple enter-
prises. Business objects allow applica-
tion-independent concepts to be de-
scribed at a high level, minimizing the
importance of languages, tools, and ap-
plication-level concepts. Business ob-
jects represent a major breakthrough in
the modeling of business events since
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they can describe both a portion of a
real-world business system and the exe-
cuting piece of the information system
supporting that portion of the business
[Orfali et al. 1996a; 1996b].

Perhaps the most significant advan-
tage of using business objects is the
capability to model accurately the corre-
sponding real-life business processes.
Collaboration among business objects is
essential to most robust systems since
few business events involve only one
object. For example, the task of billing a
customer involves the invoice, the pur-
chaser, the goods being sold, and the
seller. While some systems are modeled
relatively easily using basic objects,
business objects allow collaboration at a
higher degree of semantic accuracy, re-
ducing application development costs.
When reengineering a business’s com-
puter systems, the result of modeling
should be a high-level group of compo-
nents that can be configured immedi-
ately to run distributed across a net-
work [Orfali et al. 1996b]. With this
infrastructure in place, modeling any
event affecting the business requires
simply the instantiation of a new busi-
ness object. For example, if an order is
placed, a new invoice object must be
instantiated. This new object then has
its own life-cycle and could support it-
self by collaborating with other objects
using the underlying ORB. (It should be
noted that “business objects” need not
apply to business processes. Any system
relying on concrete objects can be mod-

eled using business objects. A more ac-
curate name would thus be “domain ob-
jects;” however, the mainstream client/
server community has adopted the term
business objects already.)

Like other components, business ob-
jects should support late binding so they
can be interchanged easily and interact
immediately with existing components;
they should also support standard com-
ponent features such as event handling
and state maintenance. Business ob-
jects are relatively easy to develop,
since they can be based on CORBA ob-
jects, which already provide a means for
inter-component collaboration and re-
source management. By using CORBA
as a framework to construct business
objects, much of the work of building a
robust component is eliminated from
the development cycle.

Business objects provide the same
benefits to system developers that tradi-
tional objects provide; however, the ben-
efits are specialized to a particular do-
main. Business objects are reusable, so
the same invoice object can function in
both the accounts receivable and ship-
ping portions of a company’s order man-
agement system. In fact, the component
could be shippable to the purchaser of
the goods and also work with the ac-
counts payable module of the purchas-
er’s computer system. Business objects
can be specialized to meet the unique
demands of a business. A business can
purchase an accounting package and
then specialize the invoice object to ac-

Figure 9. CORBA and business objects work together to provide client services.
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commodate some special need, such as
verifying the compatibility of items or-
dered.

The Business Object Model Special
Interest Group (BOMSIG) has proposed
a standard for business objects. The
standard calls for each business object
to be composed of three types of cooper-
ating objects.

(1) Business Logic Object (BLO) defines
how the object reacts to certain
events; it is responsible for the busi-
ness logic of the component as well
as for storing the relevant business
data.

(2) Business Process Object (BPO) helps
maintain the business logic for the
entire system. The primary differ-
ence between a BPO and a BLO is
the logical lifetime of the unit of logic:
BPOs traditionally handle long-
lived processes or processes related
to the system as a whole.

(3) Presentation Objects provide the
user with a representation of the
component, usually but not neces-
sarily visual.

A normal business object is likely to
have multiple Presentation Objects, but
usually has one BLO and BPO. Because
these three objects are managed by one
object, collaborating components see

only one object that provides the aggre-
gate services of its constituent objects.

This three-object construction can be
viewed as a three tier client/server sys-
tem.

—Tier 1: Visual aspects of a system,
usually handled by a client system.

—Tier 2: Data for the object and the
application logic required to meaning-
fully act on it.

—Tier 3: Data and application logic re-
quired to integrate the business object
with other business objects and exist-
ing systems, such as legacy servers or
databases.

The middle tier plays the largest role in
this organizational scheme. Tier-two ob-
jects communicate directly with the
tier-one objects to provide feedback to
the user; they also provide the logic for
the entire business object. Furthermore,
tier-two objects communicate with mul-
tiple data repositories (tier three) and
collaborate with other business objects
to assist them provide services. This
model separates the client from data for
which it is not logically responsible. By
channeling all requests for information
through the tier-two servers, major
changes (such as the implementation of
a new database system) remain com-
pletely transparent to the user. If ORBs

Figure 10. The parts of a business object and their communication with other system objects [Orfali et
al. 1996b].
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are used for communication between
the clients and the tier-two objects, ro-
bust system services such as load bal-
ancing and event exchanges are imple-
mented easily and applications remain
scaleable.

The business object model works well
with CORBA because CORBA allows
the constituent objects to reside on any
machine. For example, the objects man-
aging the business logic can reside on a
server, while the client-side Presenta-
tion Object runs on a local workstation.
This setup provides an inherent client/
server relationship between compo-
nents. Business objects can collaborate
in a semantically and technically rich
manner by using the facilities provided
to every CORBA component. By lever-
aging CORBA’s frameworks for data
transfer and collaboration and the pow-
erful mobile code system provided by
Java, business objects can interoperate
in a stable manner, while allowing com-
ponents to be added to or removed from
the system. By keeping the framework
for collaboration fixed, the object life-
cycle continues without affecting end
users.

5.3 Compound Documents as a Client
Framework

A compound document is a tool for orga-
nizing components that serves as a
framework for integrating the visual
and containment relationships between
cooperating components. Compound
documents can be composed of compo-
nents from a wide variety of sources,

making them universally applicable.
The familiarity of documents to end us-
ers makes the compound document an
obvious choice for introducing object
technology on a widespread basis. The
extension of the desktop metaphor,
which incorporates application services
and operating system services to pro-
vide a seamless user experience, demon-
strates the viability of such compound
document systems.11

The compound document framework
calls for containers that can contain
components. The containers themselves
are components; this allows recursive
system construction. That is, a spelling-
checker “container” can be constructed
from dialog boxes, buttons, a dictionary
file, and a database engine. This con-
tainer can then become a component in
a word processor, along with compo-
nents for stylized text, graphics, gram-
mar checking, and the like. Components
can represent traditional programming
entities or common data types. In fact,
any data type can be extended to be-
come a component. By melding each
data type into a component mold, com-
pound documents accommodate all user
demands, since they can contain any-
thing the user would like. Since data is

11 The most notable compound document system
is Apple’s now-canceled OpenDoc project; many of
the concepts and principles of current compound
document models are derived from this project.
Interested readers are encouraged to examine
some of the literature available both online and in
print. For a fairly detailed introduction to Open-
Doc, see Feiler and Meadow [1996].

Figure 11. Three tiers in a business object.
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managed by its containing component,
new data types can be added immedi-
ately to documents; the document need
not know about the specific data type.

In order that components with no pre-
existing knowledge of other components
be allowed to collaborate within a com-
pound document, a system of communi-
cation is required between the compo-
nents managing a document’s data and
those managing the document itself.
The component framework provides this
communication and manages shared re-
sources, such as files and windows on
the user’s screen. A compound docu-
ment framework is built on top of an
object bus, such as CORBA, which is
built from object services. The frame-
work provides four core services to ob-
jects serving as run-time members of
the framework [Orfali et al. 1996b]:

(1) Document layout allows indepen-
dent components to share a common
display area (usually a window).
Components are required to collabo-
rate via the document layout service
to present themselves to the user.
Once a display area is allocated,
components that are also containers
must recursively allocate space to
the components they contain. Each
individual component is responsible
for interacting with the user and
displaying its data in the space allo-
cated to it. Containers distribute
events to the components they con-

tain and manage the resources they
share.

(2) Structured storage. Since compound
documents consist of many pieces of
data managed by separate compo-
nents, the storage needs of the
framework are unique. A file storing
a compound document consists of
separate blocks of data, each man-
aged by a component. Much like the
display, files must be partitioned
into spaces that each component can
control without adversely affecting
other components. A recursive
structure similar to that used by the
document layout manager is em-
ployed. In addition to containing
embedded data, files can also con-
tain links to external data.

(3) Automation allows users to create
their own relationships between
components and to customize their
documents to create robust applica-
tions. Scripts may replace tradi-
tional code, allowing the client com-
ponent of a client/server system to
be implemented as a compound doc-
ument; intelligent active compound
documents can also be crafted using
scripts [Wegner 1997a]. The possi-
bilities for scripts are wide-ranging:
password protection for documents,
personalized document views, and
active data gathering are just a few
examples. The use of scripts in con-
junction with compound documents

Figure 12. The compound document framework uses the object framework (here CORBA) to take
advantage of object services.
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allows users to create documents
that can manage themselves and
are self-sufficient. Scripts may acti-
vate upon user request or in re-
sponse to the occurrence of a docu-
ment or system-level event.

(4) Uniform data transfer (UDT). Cur-
rent user environments allow data
transfer via the clipboard, linking,
and drag-and-drop; compound docu-
ments must do likewise, at the same
time taking into account the added
technical complexities of the new
metaphor. UDT provides a single
mechanism that works with the
transfer mechanisms mentioned and
handles containers intelligently by
copying not only the container itself
but also its components.

Compound documents offer enhance-
ments to older user interface meta-
phors. Since it is possible to switch to
any component immediately without
launching a different application (usual-
ly by clicking on it), editing multiple
components “simultaneously” is not as
burdensome as in the current model,
which requires users to switch applica-
tions. Through this metaphor, compo-
nents give the user the tools required
for the contained data in a context-sen-
sitive way. Usability therefore im-
proves, as positioning palettes next to
the data being edited instead of at some
“default location,” and other such things
are now allowed. The components of a
document are further integrated by
eliminating the need for separate files
for each document component. Every-
thing a document contains is stored
within a single file (links to the compo-
nents can be maintained instead) so
that the user need not track the individ-
ual items of data separately.

As compound document frameworks
become embedded more seamlessly into
the operating system, everything a user
deals with will be considered a compo-
nent. Initially, the transition from the
WIMP user interface metaphor will not
be apparent. Users will still move fold-
ers, and the files in them will follow.

But users will truly move components,
which have more intelligence than to-
day’s simple folders (which are really
icons representing directories). They
will be able to collaborate to share re-
sources and accomplish complex tasks
together.

Compound documents have the poten-
tial to usher in a new era of mobile
documents. Mobile documents are able
to be edited, printed, and shared just
like regular documents. Their added
power comes from the ability to exploit
the compound nature of the document.
Since documents can contain executable
code, they can perform functions such
as routing themselves automatically. In
addition, the document can contain not
only the salient data, but also the user
interface for the document, a record of
changes to it, a method for controlling
who can access what portions of it, and
other advanced functionality.

The compound document model can
be extended to create new user environ-
ments. As compound documents begin
to replace the traditional desktop meta-
phor, collaborative environments tai-
lored to real-world models can be con-
structed. Different environments for
children, doctors, and salespeople can
form the basis of a person’s interactions
with local and remote services. Creating
such a virtual environment requires
merely assembling a collection of com-
ponents into a container document, so
the environment can be easily down-
loaded by users who do not wish to craft
their own environment. To accommo-
date fee-based service access, companies
can charge to download an environ-
ment. The environment alone would
contain the components needed to
transact with the remote components,
so non-paying consumers would be un-
able to access the service. Once an envi-
ronment has been constructed, it can
serve as the client for all network ser-
vices, including access to business ob-
jects.

Compound documents provide a
framework for Web browsing as they
are a visual component foundation for a
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new generation of open Web browsers
as well as a concrete container meta-
phor for storing and distributing data.
By downloading a pre-built compound
document, a user has access to an en-
tirely new and customized operating en-
vironment. The use of compound docu-
ments in place of the older models of
Web browsing has several distinct ad-
vantages. Compound documents inte-
grate the visual experience by allowing
components on a Web page (including
Java applets or applications and tradi-
tional content) to share window real
estate and users to edit a component in
place without a separate application.
New documents are created easily by
combining high-level components from
existing documents in a new way. The
metaphor also allows a user to rear-
range a Web “page” to his or her tastes.
In addition, the components automati-
cally share common menus, palettes,
colors, and clipboards so the user expe-
rience is seamless. Components can be
dragged onto other components, or com-
ponents can realize they are in the same
document and work together to take
some action. Once Web documents be-
come componentized, new methods of
displaying information will abound.

Because of its unique advantages, the
compound document model is likely to
become a dominant force on the client
side in the growing client/server mar-
ket. The model provides a convenient
way of grouping related objects and
manages the difficulties of displaying,
storing, and moving them via networks.
Since a compound document maintains
links to servers, it serves as a universal
client. Client applications can be built
with ease by developers or end users by
incorporating ready-made components
and pre-written application logic, and
then customized for each individual
user. The user’s entire workspace can
be stored in one document if desired.

6. CONCLUSIONS

Distributed objects promise to revolu-
tionize the stagnant client/server mar-

ket. CORBA’s object references provide
a clean way of gaining an object’s inter-
face. Callbacks allow servers to control
clients and allow clients to receive new
content to add to compound documents.
In addition to its speed, the CORBA
ORB is interoperable with C11 objects
and integrates smoothly with Java. By
supporting a three-tier client/server
system, CORBA allows data from multi-
ple sources to be encapsulated and pools
of servers to be created. The provisions
for dynamic discovery of object inter-
faces make CORBA components self-de-
scribing, allowing flexible binding and
easy interoperation between compo-
nents. The development of ubiquitous
middleware available on all platforms
will lead to true location transparency,
and the fact that CORBA is an open
standard will ensure continued innova-
tion and evolution of the system.

Leveraging CORBA and Java pro-
vides the most notable advantages of
component technology in the domain of
client/server computing. CORBA works
well with Java applications, which
make very good downloadable clients
because of their small size and Java’s
mobile code system. Using just-in-time
(JIT) compilers, Java applications can
deliver acceptable speed for all but the
most demanding of client/server appli-
cations, and as processors specialized
for Java are introduced, this perfor-
mance will increase further. The Ab-
stract Window Toolkit (AWT) provided
with Java allows multipanel applica-
tions to be created easily and deployed
under a variety of windowing systems
with no need to rewrite UI-specific code.

Business processes can be modeled
naturally and efficiently using distrib-
uted objects. The interactive and collab-
orative relationships between processes
or business divisions can be modeled
especially well by business objects. The
potential for the reuse of key portions of
business objects can decrease develop-
ment costs substantially, and the map-
ping of business objects into a three-tier
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client/server system brings many ad-
vantages in the areas of efficiency and
the transparent integration of data.

Compound documents can serve as a
new metaphor for the client-side of cli-
ent/server applications and can be
adapted to be the next generation of
Web browsers. By leveraging the capa-
bilities of cooperating components and
the component management facilities of
compound documents, a new generation
of active documents can change the way
in which client/server applications are
viewed. The capability for interaction
among components within a document
will drastically change the limits of cli-
ent-side data manipulation. Compound
documents can also form the basis for
dynamic customizable user environ-
ments crafted from components.

It is clear that components can usher
in a new wave of client/server comput-
ing that will bring new capabilities to
the masses. The only questions that re-
main are: whether the superior technol-
ogies reign over Microsoft’s well-funded
DCOM, and how soon ORBs will be
integrated at the operating system
level, creating a market environment
conducive to the development of many
interactive components.
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