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Outline of the lecture

1. Estimation of multiple view geometry of central dioptric & catadioptric
omnidirectional cameras

2. Non-central cameras, their models, and stereo geometries

Part 1.

Estimation of multiple-view geometry of
central
dioptric & catadioptric

omnidirectional cameras

Central Omnidirectional Cameras

Catadioptric Dioptric

LR

Perspective cam.  Orthographic cam. Nikon Coolpix Canon EOS-1
Hyperbolic mirror Parabolic mirror FC-E8 Lens Sigma Lens
360° x 180° 360° x 140° 360° x 183° 360° x 180°
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Spherical model

Perspective model

X, —X represent
two different image points

X, —X represent
one image point

Rays are half-lines
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From the sensor
- plane to the digital —
image

From the camera
to the sensor plane

Why two steps?

Scene coordinates — separated by non-linear projection from — image coordinates




From the camera to the sensor plane

From the camera
to the sensor plane

Sensor plane | Optical axis

optical axis

optical axis
\
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Mirrors & lenses are axially symmetric Sensor plane L optical axis

From the camera to the sensor plane — general form

Spherical image point q” € 5% = {x € R?: ||x|| = 1}, represented by the directional vector
p” of its projection ray, projects to a sensor plane ploint u” so that

optical axis

sensor plane

where functions f,h: R? — R are rotationally symmetric, i.e. for every rotation R of the
sensor plane plane

From the camera to the sensor plane — examples
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Parabolic mirror  Hyperbolic mirror  Nikon FC-E8 Lens Sigma Lens
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A generalization of the perspective & catadioptric projection

Perspective projection Omnidirectional projection

Catadioptric projection (Geyer & Daniilidis ECCV 2000)

(L+m) + V][ [2(1 = 1?) + (L4 m)?
[0”]* + (I +m)*

f@W)=h(W")(l+m)-1

hu) =

From the sensor plane to the digital image

Sensor plane with  Digitized by skewed Digital image
Cartesian coord. s.  pixel grid in computer

) Affine
transformation

ull — A/u/ JF t/

A € R%X2 regular, t' € R?

Complete image formation model

1Y 44" 1ot Ny ,
Ja" > 0: %PX:p":(h(u u >:<h(Au +t/)(A'u +t)>

F(u) F’ + 1)
central projection non-perspective optics digitization
Parameters: P € R3*4 rank P =3 ... projection matrix
A € R?*2 rank A’ = 2 linear transformation
t' € R2 ... translation
a’ v',...eR ... parameters of functions h, f

f,h:R2 = R:

fyh(Ru”) = f,h(u”) for a rotation R rotational symmetry

Epipolar geometry

Epipolar constraint holds for every central camera
p'FP=0
Epipolar curves are . . .

1. conics for central catadioptric cameras (Svoboda & Pajdla 1JCV 2002)

2. non-conics for wide-angle dioptric cameras (Micusik & Pajdla CVPR 2003)




Calibration by epipolar geometry estimation

Let C = {1 < 11} be a set of corresponding points in two omnidirectional images.

Find image formation parameters &,%,a,b,... and &, t,a,b, ... so that there exists
F € R3*3 rank F = 2 such that for every correspondence 11 <> ii € C holds

p'FP=0
for
. [ h(AQ +£)(AW + t) . [ h(Ai' +t)(RiY +t)
P= 1w +4) P= 1 s +%)
Remember: A, t,a,b,... (in gﬁeral) Nt a" Y.
.. Nt d", b, ... cannot be often recovered.

(Recall that perpspective cameras also cannot be fully calibrated from epipolar geometry)

Two steps of the calibration

Step 1.

Image Coord. s. Calibration
u=Acu +to
Ao = %R*A', tc=t,p>0

Q 5 it X Metrically

calibrated
camera

Step 2.

Calibration of non-linear f & h by Epipolar geometry estimation

Step 1. — Calibration of image coordinate system

1. Complete circular field of view
= complete ellipse in the image

2. Black background

1. Detect contour
2. Fit ellipse

3. Find center

1. Move the origin to the center

2. Transform the ellipse to a circle

Step 2. — Calibration of non-linear f & h

i.e. ... from an image point to its 3D ray

0 . .. angle w.r.t. the optical axis

[lu]| .. .image point radius




Para-catadioptric camera

Camera Points Rays

Para-catadioptric camera - model

—u —2au
p = v o~ 2av
a’—r? 2 _ )2
I a®—r
Coordinate system of the
Y r = yu24 02

para-catadioptric camera.
The origin is located in F.

\%
pi
The coordinate system in

the calibrated image.

Calibration based on epipolar geometry

p'Fp = 0
—ii
(—u v “2_(['2 )F 2@‘2 = 0
(l2—aT
. fi f2 fs
Denote d=( fi fo) » F=| f1 fs fs
fr fs fo

Gather the point coordinates and radii into five design matrices — a quartic (degree 4)
equation in parameter a and linear in d

(Dy + aD; + aDs + a’Dy + a’Ds) d = 0

Di,...,Ds € R2%? for 9 correspondences

Calibration based on epipolar geometry

(D1 + aDz + a°Ds + a®Dy + a’Ds) d = 0,

is known as the Polynomial Eigenvalue Problem (PEP) (Bai et al 2000) (polyeig in Matlab)

1. Generalization of (Fitzgibbon CVPR 2001) to omnidirectional cameras

2. Solution for 9 correspondences — RANSAC can be used




Algorithm

Algorithm for computing 3D rays and an essential matrix F.

1. Find the ellipse corresponding to the view field of the camera. Transform the image so
that the ellipse becomes a circle. Establish 9 point correspondences {11 < 11} between
two images.

2. Create matrices D, 5 € R%%? and solve PEP. Use Matlab:
[H a] = polyeig(D1,D2,D3,D4,D5), His a 9 X 36 matrix with columns d, a is a 36 x 1
vector with elements a.

3. Choose only real positive finite a # 0 (other solutions seem never be correct), 1-3
solutions remain. For every a there is a corresponding essential matrix F.

4. Compute the angular error for all pairs {a < F} as a sum of errors for all
correspondences. The pair with the minimum error is the solution and a, and the
essential matrix F are obtained.

For integrating the algorithm into the RANSAC, 9 points are selected from whole set of
automatically detected correspondences and steps 1-4 are repeated till the model captured
the highest number of matches is found.

Finding correspondences

Tentative correspondences using Inliers satisfying epipolar geometry
similarity (Matas et al BMVC 2002) of para-catadioptric cameras

(many outliers)

(Micusik & Pajdla TR-18 2003)

Estimated camera trajectory
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®
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Reconstructed camera positions Estimated rotation angles

Camera

Dioptric camera

Image Rays
360° x 183°




Dioptric cameras — models

almost linear

® 1

radiug[mm]

//||

. a”/HX
Nikon FC-E8 0= T/HX””Q

. 1 . b/// X//
Sigma 0= 7 asin (L',,, ”

Dioptric cameras — models

... Nikon FC-E8
u//
flu”]
I x" h(u")u” 1u” u” fan %
= ()= ()= ()= () -
[[u”]|

1 ogin 27
tan (WasmT

Linearization

is too much non-linear

Linearization

Linearization

f(halab,..) =

f(”ll”ﬂl,b,...) = f(”uHaa07b0:"')
+  fa(llull; a0, bo, - .)(a — ao) + fu([lull, ao, bo, .. .)(b — bo) + -+

p = [( £ = aoful) _bofl:(,)+afa(.)+bfb(-) )}

= () (2) (7))

= w+as+bt

See Micusik & Pajdla CVPR 2003 for details. (derivatives, how to linearize)
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Back to Polynomial Eigenvalue Problem (for Nikon FC-E8)

33/73

p'FP = 0

|
o

(W+as+bt) F (W+as+bi)

i fo fs
Denote F=| fi f5 fo
fr fs fo

Gather the point coordinates and radii into three design matrices — a quadratic equation
in parameter a, b and linear in d(F,b)

(D; + aD, + a®D3) d = 0

... Quadratic Eigenvalue Problem (QEP) (Bai et al 2000) (polyeig in Matlab)

See Micusik & Pajdla CVPR 2003 for details.

(e

Algorithm

34/73

Algorithm for computing 3D rays and an essential matrix is an extension of the algorithm for
para-catadioptric camera by the linearization.

See Micusik & Pajdla SCIA 2003 for details.

h 3D Metric Reconstruction - |

ST e

Images — Calibration form EG's — Projective Factorization (Martinec & Pajdla ECCV
2002), see details in Micusik & Martinec & Pajdla TR-20 2003.

(e

3D Metric Reconstruction - |l
36/73

Images — Calibration form EG's — Projective Factorization (Martinec & Pajdla ECCV 2002), see details in
Micusik & Martinec & Pajdla TR-20 2003.




3D Metric Reconstruction - Il - video Conclusions

1. Multiple view geometry of perspective cameras extended to omnidirectional cameras

(1) =)

Perspective projection Omnidirectional projection

2. Para-catadioptric camera — Polynomial Eigenvalue Problem
3. Other cameras — linearization — Polynomial Eigenvalue Problem

4. Complexity given by the number of parameters of the model
rather than by the form of h, f.

5. Non-iterative solution — RANSAC (i.e. PEP is iterative but converges very fast).

Non-central cameras

Space is projected to images along more general arrangements of
Part 2. lines called non-central cameras

Central camera Non-central camera
Non-central cameras

models \\
. N

a set of rays (just) a set of rays
stereo geometries incident with one point




Example: Circular panoramas

Advantages: large view field, higher precision, interesting . . .

Example: Non-central catadioptric cameras

Real para-catadioptric camera

Flat-bed scanners are non-central cameras

... they can be used to do 3D reconstruction

Principle of stereoscopic scanning

position A posiionB
object.a g gass  (nghteys)  (eRey)
panted cirewt board { = projection plane) :
=

-
Y
: |

projection lines s
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A Bl |

| N

housing

et

x SCANNing array

Reconstruction
(by Soft Imaging System GmbH.

http://www.soft-imaging.de)
Courtesy of Richard Schubert (http://www.stereoscopicscanning.de/)

1843

1990 - ...

2001

2001 - ...

Some history of non-central cameras

Joseph Puchberger patented the ‘slit camera’ (similar to pushbroom camera).

Non-central cameras used in mosaicing (Ishiguro et. al 1992, Peleg et. al 1999,

Shum et. al 1999, Huang et. al 2000, Nayar & Karmarkar 2000), reconstruction
(Gupta & Hartley 1997), visualization (McMillan et. al 1995, Gortler et. al 1996,
Levoy et. al 1996, Rademacher et. al 1998, Weinshall et. al 2002) ...

T. Pajdla (Pajdla CVWW 2001) and S. Seitz (Seitz ICCV 2001) discoverd the
generalization of epipolar planes to epipolar quadrics.

Non-central camera models developed camera models (Grossberg & Nayar ICCV
2001, Swaminathan et al ICCV 2001, Pless CVPR 2003, Neumann et al CVPR
2003, Micusik & Pajdla TR-19 2003), some stereo geometries analyzed (Pajdla
[JCV 2001, Seitz & Kim [JCV 2001, Feldman et al ICCV 2003), . . .




Epipolar lines in central images are ‘independent’

Every point in space that projects on an epipolar line in the left image
projects on the corresponding epipolar line in the right image

1. Search for correspondences can be done along epipolar lines — constraints

2. Each epipolar line is solved almost (epipoles) independently — easier search

?
Non-central cameras — stereo geometry

Epipolar lines — stereo correspondence curves

left
image

right
image

Every point in space that projects on the curve in the left image projects
on the curve in the right image

Stereo correspondence curves = stereo reconstruction with non-central cameras
similar to stereo reconstruction with central cameras

Stereo geometry of non-central cameras

to have stereo correspondence curves

Epipolar planes Stereo correspondence surfaces

= ar

Result: (Pajdla CVWW 2001, Seitz ICCV 2001)

Interesting stereo correspondence surfaces are double ruled quadrics (all)

\
epipolar plane hyperbolic paraboloid  hyperboloid of one sheet

There are many stereo geometries

Double ruled quadrics can be arranged in space in many different ways
Examples

Pushbroom camera Stereo panorama
(Gupta & Hartley 1997) (Shum et. al 1999, Nayar & Karmarkar 2000)

~ [
T A

two intersecting lines circle

the situation can be somewhat complicated in general — current research (epilinear
geometries, example)




Hierarchy of cameras

central camera all other cameras ?

all rays intersect at C ~— some rays intersect «—  no rays intersect

Oblique camera

Definition
An oblique camera is a collection of lines such that every point in the
projective space is contained in exactly one line.

Observation Rays of an oblique camera do not intersect.

?

Do oblique cameras exist

Oblique cameras exist — an example

A set of lines generated by the linear mapping o (more)

point X line[X o(X)]

T x -y

Y Y T

span | 7 — span| T
w w -z

Lines are reguli of pairwise non-intersecting
rotational hyperboloids

X =0, s€[0,1]

Remark: OC are called spreads & wild spreads (not cospreads) exist!

picture by Hans Havlicek

Stereo geometry of oblique cameras

CD on a general plane in 3D Circular search curves do not intersect

seen by an Oblique Camera

Remarks:

projection

Non-intersecting
rotational hyperboloids

The best geometry: independent search curves
Oblique cameras can be realized




Non-central catadioptric cameras

Real para-catadioptric camera - calibration & reconstruction

TT T real

Non-central projection — Trajectory start # Trajectory end

Rays are tangent to a caustic

1mm ~ 36.6 pxl, f‘ =70 mm - 6.6l = O M
lens

3000

2500

2000

z [px]

1500 -

1000 (- 1

500 1

2l
. 8 B 88882

-500 500
X [pxI]

Rays reflected by the mirror are tangent to a caustic surface.

Ray = point x + direction vector p

Camera model is a mapping from

u — rays (X,p)

p p
X
Point x Point x
is on the caustic. is on the mirror
(Grossberg & Nayar ICCV 2001 (Micusik & Pajdla TR-19 2003)

Swaminathan et al ICCV 2001)

Geometric, Radiometric, Photometric Geometric

Must be computed Available

Calibration form a Stereo geometry

The corresponding rays (X, Pw), (Xw, Dw) intersect.

Tune parameters (bundle adjustment) of cameras, i.e.

KaRCV{-’CWd and k7RC7£Caaaﬁm7£m

x so that the mean distance
.p.
d .. N
mgan d [(Xw, Puw)s (X, Puw)]
/

between all the corresponding rays C is minimized.




C C
Camera ~ Correspondences N~
57/73 58/73
Real para-catadioptric camera
Tentative correspondences using Inliers satisfying epipolar geometry
similarity (Matas et al BMVC 2002) of central para-catadioptric
(many outliers) camera model (Micusik & Pajdla TR-18 2003)
@ C
Calibration & Reconstruction ~ Non-central vs. Central model ~
59/73 60/73

Marked polygons

3D reconstruction

1) Non-central model initialized by the central one

2) Stereo geometry optimized with non-central model

¥
Ay

+

R .

Central model (angles are wrong) Non-central model (angles are correct)

were used to reconstruct the scene




Crossed-Slits (X-Slits) projection

defined by two lines (slits) through which all projection rays must pass (generalization of
Pushbroom cameras) (Weinshall et al ECCV 2002, Feldman et al ICCV 2003)

Quadratic mapping: P? — P?

x XTsiq85X XTT X
u=|y || XTsi@QsiX | =| X'T,X
w X Ts1Q383 X XT3 X

Dual Pliicker matrices S7, S5 are defined by the slits.

Pliicker matrices Q1, Q2, Q3 are defined by the image plane 7.

Pliicker matrices Q; x xiyiT — yixiT, where x;, y; are any 2 points that line on in 1;.

Dual Pliicker matrices S: o u,-,v;r — v,;u;r, where u;, v; are any 2 distinct planes that intersect in 1;.

X-Slits cameras by sampling Image volumes

S
e oo™

W

\
\

Virtual slits

\

Image volume

One sampling function — ones slit

X-Slits Image

X-Slits “Fundamental matrix” F

image point —  Pliicker matrix of its ray
W — L) =[]

i — L) = [l

I
=

L intersects . < l.12Z:34 + 1'34Z12 + 213[42 + 1.42[13 + l'14i.23 + l‘23i‘14

Il
=

v(i) " Fo(i)
using the V i : T 2 2 HT
g the Veronese mapping v: (u1,us,u3) — (ui, uiuz, uius, u3, usus, u3)
1. Maps points in one image to conics in the other image

2. rankF =4
3. F exists even if there are no ‘epipolar quadrics’

X-Slits stereo geometry

Observation: A general pair of X-Slits cameras does not have stereo correspondence surfaces.

Theorem (Feldman & Pajdla & Weinshall ICCV 2003):
A pair of X-Slits cameras posseses epipolar quadrics iff

(a) slits intersect in four pairwise disjoint points, or

.

(b) the cameras share a slit (correspondence curves are “image rows").

1, .1.2




X-Slits stereo geometry — example
65/73

No correspondence curves . . . search curves are conics (hyperbolas)

More at ICCV 2003: Feldman & Pajdla & Weinshall ICCV 2003

Applications

(e

66/73

Reconstruction from Circular panorama & Perspective image

Circular panorama Perspective image

Circular panorama & Perspective image

Courtesy of Marc Menem

Reconstruction

Courtesy of Marc Menem




Application: Image Based Rendering with Non-central
cameras

Application: IBR with Non-central cameras

Original sequence acquired by a central omni-camera along a circle

linear slit

circular slit | X

1. Central omnidirectional images aquired along a circular trajectory
2. At every viewpoint v inside the circle, a non-central image synthesized from acquired rays
3. by volume slicing . . . easy & fast

4. No 3D reconstruction needed, only pixel manipulation

Application: IBR with Non-central cameras Application: Visualization with X-Slits

Synthesized sequence as if taken by a (non-central) camera inside the circle Synthesized sequence as if taken by a (non-central) camera inside the circle




Conclusions

1. Non-central cameras explain mosaics, panoramas, image volumes, . . .

2. Models of Non-central cameras developed (pramatrization on caustics, reflectors, Pliicker
coordinates)

3. Stereo geometry understood for X-Slits cameras and circular panoramas . . . not known
for many others

4. Applications in Reconstruction, Image Based Rendering, . . .
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