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Approximate Orientation Steerability Based on
Angular Gaussians

Weichan Yu, Kostas Daniilidis, and Gerald Sommer

Abstract—Junctions are significant features in images with in- characterization. The resulting signature can be used for further
tensity variation that exhibits multiple orientations. This makesthe  junction classification.

detection and characterization of junctions a challenging problem. Junctions are local structures with multiple intrinsic orienta-

The characterization of junctions would ideally be given by the . . o
response of a filter at every orientation. This can be achieved by tions a|_'1d spatial scales [2]. _For th_e purpose of cha_racterlzatlo_n
the principle of steerability that enables the decomposition of a We project them onto the orientation space and build a one-di-
filter into a linear combination of basis functions. However, cur- mensional (1-D) signature function of the orientation parameter.
rent steerability approaches suffer from the consequences of the Sych signatures are often obtained by applying a set of filters
uncertainty principle: In order to achieve high resolution in ori- ¢ gitferent orientations. This leads to an enormous computa-
entation they need a large number of basis filters increasing, thus, . . . L
the computational complexity. Furthermore, these functions have tlongl load. For Qxamp_le, n order_ to ex_tract orientation infor-
usua”y a wide support which On|y accentuates the Computationa| mation Of a JUnCUOn, W|th Convent|0na| flltel‘ methOdS we haVe
burden. to rotate the same filter around the keypoint repeatedly. For an
In this paper we propose a novel alternative to current steer- angular field of360° and a sampling interval ¢f° already 72
ability approaches. It is based on utilizing a set of polar separable rotated copies of the original filter should be applied. The con-

filters with small support to sample orientation information. The . . . .
orientation signature is then obtained by interpolating orientation cept of steerability has been introduced in order to reduce this

Samp|es using Gaussian functions with small Support_ Compared eXpIOSion of Computational Complexity. Steerable filters obtain
with current steerability techniques our approach achieves a an analytic model of deformations for further analysis of the

higher_orientation resolu_tion with a Iow&_ar cc_)mplt_exity. In add_ition, grey-value structure [3], [6], [9], [10], [18], [24], [26].
we build a polar pyramid to characterize junctions of arbitrary Denoting witha (« € R) the deformation parameter we de-

inherent orientation les. . . TR . .
erent orientation scales fine afilter /() with # € R™ as a steerable filter if its deformed
Index Terms—tow-level vision, orientation analysis, steerable versjonsF, (') can be expressed as [13]

filters.

N
Fo(@) =) bi(a) () @
I. INTRODUCTION =1
UNCTIONS of gray-value lines or edges in images carfyhereA, (%) andb(«) are referred to as basis filters and inter-
importantinformation for many image processing tasks liksolation functions, respectively. The signatufer) of a junc-
point matching in object recognition, point tracking in motioRion can be obtained by applying such a steerable filter on the
analysis, attentive coding, and line-drawing interpolation [14i}nage_7(f)
In order to use junctions for such tasks we must be able to lo- N
calize their corresponding keypoints which are defined as in- de I ‘
tersection points of lines or edges. Then, we must characterize s(e) H{FL (D)) = Z mbi(e) @
junctions by means of sighatures and classify them in junc- k=1
tion categories. Regarding keypoint detection and localizati®rith
the reader is referred to Foerstner’s study [8] and the work of def L
Paridaet al.[16] and to the comparison of different operators by e = {Ae(@)|1(@)).

Rohr[21], [22]. In this paper we address the problem of junctiqqee (..} denotes the usual inner product for two real functions
F(Z) andG(Z)

- oy de - N =
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approach. Freeman’s and Adelson’s approach to orientatiororientation, both approaches yield the same set of basis func-
steerability of a Gaussian derivative is an interpolation usinigpns.
rotated copies of the original filter. The derived kernels do The steerability problem may be also considered as a problem
not possess sufficient orientational resolution due to theif signal reconstruction from samples(k = 1, ---, N) [see
large spatial support in orientation. Moreover, they are eith)]. This becomes evident if we consider the paramatén
symmetric or antisymmetric [23]. This results in a period df?) to be the same as the spatial domain variable. For clarity, we
180° in orientation and leads to an ambiguity in response&fange the notation té
between terminating and nonterminating junctions. N

Simoncelli et al. [24] extended this concept to include
dilation and translation. They proposed some conditions upon s(0) = Z vk b (6)- )
which a filter is guaranteed to be exactly steerable, i.e., a =t
filter can be synthesized with finite Fourier bases. Recentblere, the interpolation functiond,(#) can be from many
Simoncelli and Farid [23] designed a steerable wedge filtRinction classes, for example Laguerre functions or Legendre
in the inverse direction. Regarding the angular direction, th@plynomials ([15, pp. 29-30]). In current orientation steer-
do not first choose one filter with expected shape and thgﬁility approached;,(6) are usually the complex harmonics
project it onto the Fourier basis. Instead, they first choose finige~+¢  yielding
components from the Fourier basis and then synthesize the
filter using only these components. Therefore, their filter is N s
guaranteed to be band limited and exactly steerable. Besides, s(0) = Z Vi &7 (4)
the shape of the wedge filter can be adjusted to be arbitrarily k=1

narrow if we adopt adequate Fourier components. Therengie thatw;, are not necessarily the firdf frequencies as in the
no more symmetric ambiguity applying a steerable wedg@sndardFourier decompositions.
fiI_ter pecause the wedge kernel is asymmetric in the angulany, this paper, we point out that the exact approach to orien-
direction. tation steerability has insufficient orientational resolution be-
Michaelis and Sommer [13] and Teo and Hel Or [26fause it is based on the sampling of the angular frequency. To
provided the formal justification of the exact steerability bychieve a high orientational resolution a huge number of fil-
applying Lie-group theory. The basic concept of exact stegeys must be used. This computational burden is amplified by
ability is the shiftability [24]: Every periodic band-limited the |arge support of the basis functions. We will also introduce
function can be approximated at every position (“shift”) withy new approximation approach based on Gaussian functions
a finite linear combination of harmonic functions. OrientatioQ,hich might be nonoptimal with respect to the approximation
and scaling become shifts if we apply a logarithmic-polasrror but substantially alleviates the above problems as shown in
transformation to a function with two arguments. Lie groupheory and experiments.We extend this approach to an efficient
theory gives us the theoretical framework for this tranSformﬁierarchica| scheme and provide a Comp|ete ana|ysis of compu-
tion and for the exact interpolation. The complex harmoniggtional complexity. Thus, by considering only the problem of
¢/“* are the generating operators of translation. On the othgfentation steerability, we sacrifice a coherent algebraic theory
hand, all one-parameter Lie groups are locally isomorphic tgs in Lie group and SVD-based deformability approaches) to

the translation group if we change the coordinates to so callgghieve high orientational resolution as well as a dramatical de-
canonical coordinates, for example, Cartesian to polar cogfeasing of the computational complexity.

dinates for rotations. ThUS, for every deformation we aChieveThiS paper is organized as follows: In Section Il we intro-

exact Steerabi”ty if we transform the coordinates to Canonic@kljce the new approximate Steerabi”ty approach based on an-

ones and then apply Fourier analysis. Teo and Hel Or listgglar Gaussians and point out the theoretical difference between

Complete classification of functions steerable with respect &r approach and current Steerabi"ty approachesl Besides, we

any Abelian group. analyze their computational complexity in detail. In Section IlI
Perona [17] introduced the concept of deformable kernelg further introduce a polar pyramid scheme to treat orientation

which is based on the minimization of the discrepancy betweesale variations. Then we present experimental results on both

the left-hand side and the right-hand side of (1) with respectdgnthetic and real data which vividly show a better performance

the basis functionsl (¥). He showed that the basis functionsf our approach. The paper is concluded with a short discussion.

are the right singular functions of a continuous SVD. In case

of rotations and periodic translations it can be proved [11] that Il. APPROXIMATE ORIENTATION STEERABILITY

the basis functions are the same in both the deformability and o

the exact Lie-group based steerability. However, for other defdr: Definition

mations the functions must be sampled with respect to the de4n the study of local orientation, we first conduct a local polar

formation parameter and a numerical SVD is applied [25]. Theansformation of the image from Cartesian to the polar coordi-

advantage of thdeformabilityapproach is that it steers contin-nate system and denote the new intensity function Wth 6),

uous and discrete filters and needs a minimal number of bagiserer and# are the radius and angle, respectively. Since we

functions for a given error. However, orientational resolution @re interested only in orientation, we eliminate the radial vari-

not addressed in this approach so that usually this approach sdifler by applying averaging along the radial direction. In order

fers from the uncertainty constraint. Since we are interested otdyobtain high orientation resolution, we are interested in filters
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Fig. 1. Gaussian averaging mask centered at ahglParker pixels represent @
larger weights. Left: The mask in the Cartesian coordinate system. The keypoi & n
is at the center of the circle. Right: The mask witAndé as coordinates? max = r 50=10 1 S 5T a 501 7
andR..;, are radial boundaries of the mask, is the angle width of the mask. 2 / - % / 6=10
We setR,,;, > 0 to avoid the confusion close to the keypoint. = k!
g“’ “N=20 ] <eér N=20 ]
with narrow angular support. We choose shifted Gaussian ave ‘
aging functions as basis filters to sample the orientation spact PR ’ o i
L 865 T %6=5
A d;f GO(D(evek)) (5) 2 - 1 o ) J
N(Rn1in7R1naX79k) N=10 N=10
with 6, (k = 1, ---, M) distributed evenly along the axis of ' ...« 5= 1 | ‘ ]
the orientation variablé. Here N ( Ry, Rimax, O%) iS an av- = - 30=1
eraging factor along the radial direction which is the sum 0 55— % &% " N N R N

discrete weights inside the basis filter mask centeret] ésee

Fig. 1). We denote with7y(D(6, 6;)) the Gaussian function Fig. 2. Complexity comparison between the exact steerability and the
’ approximate steerability. The dotted curves represent the complexity of exactly

centered g steerable filters composed of odd basis filters andV even basis filters with
def 1 o P as 1-D tap size. The solid lines show the relation between complexity and the

Go(D(8, 6;)) Z ——— e (PE6))7 /29 (6) sampling intervab¢ and P in computation ofS and DS in our approach. We
2ro see that the approximate steerability is more efficient than the exact steerability,

. . . especially in the case of high orientation resolution and large filter size.
where o denotes the scale of the Gaussian function. Séhce

and#,, are circular anglesd( 6, € [0, 2]), we defineD(-) to §j( )
represent the minimal circular difference betw@&eandd,, A3 ek
§8)

D9, 6r) < min(|6 — 6, 16— 61 — 2x], |6 — 61+ 2x]). (7) s
/o Go®

For example D2, 0) = 0; D(3597/180, w/180) = 7x/90. a2 N

Theoretically, a Gaussian function is not compactly supporteS (Gk)

In practice, we only consider the part 65(D(6, 6i)) whose

variable varies frond,, — (W/2) to 6, +(W/2) [see (11)]. Here, a1 A

W denotes the angular width of the basis filter mask. We wﬁ (ek) !

explain the choice of paramet® in Section II-C. In Fig. 1, Gl 0

we show a basis filter centered &t, where Ry, and Ry Sitve T A o®

denote inner and outer boundaries of the mask, respectively. O Ll 0

setR,.i, > 0to avoid the singularity close to the keypoint [12] 88 2

In order to choos&,,,. we must know the size of the significant_ 3. Left Polar pyramid structures(s) is the lowest level of

neighborhood around the keypoint, which can be provided " polar .ramid, namely the averaging outputs of sampling masks.

the preceding keypoint detection step [8], [20]. In this paper V\Se((ify)(j :pil, 2, 3) are hig%er levels aftgr sgubsargpling with thg gegnerating

setR,.in = 3 pixels andR,,,,, varies from nine to 15 pixels.  kernel K, of (22). Right: Corresponding interpolation functions at different

After defining basis filters we must interpolate them to buil(fVe!s: They are Gaussian functions with different scales.
the whole set of steerable filtgf#). Taking the local property ] N ) ) o
of basis filters into account we choose angular Gaussian func!n this new steerability approach, the neighboring basis fil-

tion with narrow support instead of complex harmonics as i@ s well as the interpolation functions are locally correlated
interpolation function and therefore nonorthogonal. To achieygimalsteerability we

would have to apply a nonlinear operator to estimate the coeffi-
bi(0) af Go(D(8, 61)). (8) cientsofthe i.nterpolation function. Inste_gd we use a linear oper-
_ _ _ ~ator and achieve ampproximate steerabilitwhich approaches
Thus, we construct eontinuoussteerable filter using Gaussianoptimality with decreasing support and thus increasing orthogo-
interpolation functions nality of the Gaussians. Approximating a function with a sum of
M Gaussians is a well-known method with properties extensively
9(6) def Z Ay, Go(D(8, 6r)). (9) described in the radial basis function approximation proposed
1 by Poggio and Girosi [19]. If we ignore the penalty term in

G§(©)
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Fig. 4. Top: Synthetic line junctions. Bottor8(6). R min = 3, Rmax = 15.

[19] enforcing smoothness our approach becomes the closettte estimated magnitude would be phase-dependent. To char-
the RBF approach when our Gaussians overlap minimally eaamtterize junctions we are not interested in a phase-independent
other. To increase approximation optimality the centers of tineagnitude response because we want to know which orienta-
Gaussians can be estimated in [19] whereas in our approdicim responses are closer to an edge and which are closer to

these centers are prechosen. line. Therefore, we obtain two separate signatures f&iiéh
Applying our filter on the intensity functiofi(r, #) we obtain andDS(#), for lines and edges, respectively.
the orientation signaturg(6) So far, we have defined the approximate steerability. In the
u following we will compare this approach with current steer-
def ability approaches regarding the mathematical background and
5(0) = Z e Go(D(0, 61)) (10)  the implementation performance.
k=1
where B. Difference to Exact Steerability
b The main difference between our approach and the exact
de, k72 G (DB, steerability is that we decompose one sigoahlly in the spa-
T = Z ) o(D(8, Ox)) tial domain, whereas exact approaches decompose the signal
0=, —(W/2) globally: In the approximate steerability we use a Gaussian
Tlnax I(r,6) mask with local spatial support (as shown in Fig. 1) as basis
N (Ruin: R, 1) (11) ﬁlter [i.e., Ax in (5)], While in th_e exact steerability every bas_is
=Fmin filter has the same wide spatial support as the steered filter.

In the orientation signatur§(#) local extremes represent ori- T his difference can be described in the spectral domain as well.

entations of lines and the positions of steepest descent or astBf€ approximate steerability the spectrum of a filter response
indicate orientations of edges. Correspondingly, the two-dimeig€€ (10)] is decomposed into a sespkctralGabor functions
sional (2-D) orientation analysis reduces into 1-D line/edge dNiftéd Gaussians in the spatial domain) weighted by the basis

tection. In order to extract edge information we estimate tfifer responsesy,

derivative of S(#) and take the amplitude of the derivative as M
another signature F[S(6)] = Vi F[Go(8 — 1))
k=1
def | d M
DS(9) = |—=5(9 :
o [ s0) =Y W FGO) T @3)
M d k=1
= Z Y =7 Go(D(0, 9k))‘ whereF denotes the Fourier transform. In contrast, in the exact
de o . :
k=1 steerability the spectrum of a filter response [see (4)] is decom-
M posed into a series of Dirac sampling functions weighted by the
= Z G1(D(8, ek))‘ (12) corresponding basis filter responses
k=1 N
where G1(D(#, 6;)) denotes the first derivative of Gaussian Fls(0)] = > 1 6w — wi)- (14)
k=1

filter Go and| - | denotes the absolute value. We point out here

that S(#) and DS(6#) cannot constitute a quadrature pair be- This formula describes also the behavior of the exact ap-
causeDS(0) is not the Hilbert transform of (#). Such a pair proaches using rotated filter copies as basis functions. The proof
would have significant energy on the negative frequencies aofithe steerability using rotated copies is based on the fact that
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Fig. 5. Top: Synthetic edge junctions. BottomS(#). The local maxima show the orientation of edgRS,:, = 3, Rmax = 15.

SNR=20dB SNR=10dB SNR = 5dB SNR = 0dB

90 90 90 90
180. 0180 0180 ' 0180 0
270 270 270 270
Fig. 6. Top: A synthetic edge junction disturbed by four increasing levels of random noise. Bottom: Corresgaf@#)gEven in the very noisy case (SNR 0
dB) the signature can characterize the junctiBR,i, = 3, Rmax = 15.

a function is written as a Fourier series with respect to the anglpectral domain exactly. If we use one Dirac sampling function
(see [9, eq. (9)]). Equation (14) is the expression of this fact fa localize one spectral component of the signal exactly, as in
the frequency domain. Note that in (14) the tetpir) in [9] is  the case of the exact orientation steerability, we will no more
replaced byy; since we consider the filter response here.  be able to localize this component in the spatial domain. There-
Thus, in the case of approximate steerability we sample tfare, we need many Dirac impulses to increase the localization
spatial orientation space with Gaussian masks whereas in tiagpability in space. This tradeoff can be optimized by applying
exact steerability we sample the spectral domain of the orienfanctions with Gaussian shape [7]. Therefore, the approximate
tion space with Dirac sampling functions. This difference makeseerability has better properties with respect to the uncertainty
our approach perform better with respect to orientational reqminciple.
lution. According to the well known uncertainty principle we To summarize, our main concern is orientational resolution
cannot localize one signal both in the spatial domain and in théth low complexity. To achieve this goal, we directly built our
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Fig. 8. (a) So-called “Siemens star” with 16 edges spanning uniformly the orientation space. (b) Polar plot of the result using the steerabtery28pe fil
composed of 46 basis filters with 31-tap size. In total, 61 486 multiplications and 60 360 additions are needed. The edges are hardly discdraibéenéchd
(b) but using 90 basis filters with 119 610 multiplications and 118 440 additions. The orientations of the edges are clearly presstgd). (8)ng the Gaussian
averaging steerable filter. We compute only 10 086 multiplications and 9006 additions to achieve the same resolution.

filter in the spatial domain. The price we pay is that we do ndt we denote the 1-D tap size of an exactly steerable filter with
achieve exact steerability but an approximation of the orient&; the following relation is satisfied:
tion response.
P=2R ..+ 1

C. Complexity Analysis Here, we choose the steerable wedge filter [23] for compar-

Approximate steerability achieves a higher orientation reon since it has a similar shape to our filter mask. The steer-
olution with a lower complexity due to the narrow support ofble wedge filter is a separable polar filter. Its radial component
the basis filters. Our approach starts with a local polar mappitwpks like a wedge and its angular component is synthesized by
which can be done “off-line” since it is a transform between cahe Fourier series. Its computational complexity is proportional
ordinates and is therefore valid fall different images. Online to the number and the spatial support of basis filters. In order to
applying the resulting look-up-table (LUT) is of negligible commake a fair comparison we apply it after the local polar map-
plexity compared with calculating the filter responses. ping, too.

In order to compare the implementation complexity of the Both the approximately steerable filter and the wedge filter
approximate steerability and that of the exact approach we ae¢ polar separable filters. If we carry out a polar mapping on
the radial extensions of masks in both schemes to be the sathe.images then filter responses can be computed with two 1-D
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Fig. 9. Characterizing a junction using the polar pyramid. Top: A junction composed of two close lines with distance of 1 pixel, two edges blurradsigra Ga
function withe = 4 and a wide line with a width of 6 pixels. Middle: The characterizing signatures reconstructed from the first four levels of the polar pyramid:
S(6), S1(0), S2(9), andS?(8). The wide line is distinctly characterized & (¢). But two close lines are also recognized as one line. Bottom: Corresponding
DS(9),DS'(8), DS%(6),andD.S3(8). The blurred edges are presented more and more clearly with the increase of pyramid level. The neighboring boundaries
of two close lines near80° can be seen only at the first two levels. After increasing the scale only outer boundaries of these two lines are recognized.

convolutions in radius and angle, respectively. Such a pre-maipe wedge filter the reader should have in mind that, if convolu-
ping would have the effect that the complexity of both filtertion were applied, approximate filter would still perform better
would depend linearly and not quadratically on the tap $ize but only linearly and not quadratically.

Because we deal in this paper with characterization and not withSuppose we apply a steerable wedge filter compose&dvof
detection we assume that several candidate points have beerbdsis filters (v odd basis filters andv even basis filters). As
tected and that we do not need a signature at every image pwntioned before, all basis filters have the same spatial support
sition. Therefore, it is more economical to compute the filteas the steered filter, the 1-D size of all basis filters is therefore
response at specified positions using a scalar product thoughftstoo. In order to apply one basis filter we neBd multipli-
complexity is quadratic on the tap si#e When comparing with cations andP? — 1 additions to calculate the corresponding
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Fig. 10. Top: The parkbench with marked edge junctions. A: horizontal edge; B: vertical edge; C: corretsjin¢tion. Middle: Steerable wedge filter results
using 30 basis filters? = 19. Bottom: D S(#) of the Gaussian averaging steerable filter. The edgelrédarin D is very blurred. BuD.S(#) still can characterize
it. Rin = 3, Rmax = 9.

inner product. Straightforwardy2.V P2 multiplications and well known Shannon’s Sampling Theorem, we determine the
2N (P? — 1) additions are required to obtaihV coefficients corresponding Nyquist frequengy, with

[see (2)]. Assuming that we use signatures of length 360 we

need720N multiplications and’20(N — 1) additions to obtain - L_ (15)
outputs of odd and even filters. Thus, totallyV (P? + 360) 260

multiplications and@2N (P? + 359) additions are computed t0 |4 5yr approach, we choose Gaussian masks instead of Dirac
implement a steerable wedge filter composedVobdd basis fnctions as sampling masks along the angular direction. This
filters andV even basis filters. is equivalent to Dirac series [the shah functior{d)i [4]] con-

In our approach the computational load is determined by thielved with a Gaussian function. Correspondingly, the spectrum
number and the angular width of Gaussian functions. In ordef the ideal sampling will be further multiplied by a low pass
to sample the whole orientation space with a sampling intervdter with Gaussian shape. The stop frequency of this low pass
86, we need totallyl/ = 360/66 basis filters. According to the filter is determined by the terry/2o (here we define the turning
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Fig. 11. Resolution comparison between the steerable wedge filter [23] and the Gaussian averaging steerable filter. Top Left: The image “Lemigiswith h
corner as a keypoint. Top Right: Lips corner in detail. Bottom Left: Polar plots using the steerable wedge filter [23] with 46 basis filters. Oniyntne dark
line between the lips can be recognized. Bottom Middle: Even with 90 basis filters we cannot recognize two lips. BottoR.Righbf the Gaussian averaging
steerable filter. The edges of two lips are characterized distinctly.
frequency of the Gaussian functioyi2o as the stop frequency). need6°? multiplications and6P? — (360/66) additions to
This stop frequency is preferred to be not below the Nyquist frebtain A samples. In constructin§(#) and DS(6) we apply
quencyf, a Gaussian function and its first derivative, respectively, with
1 the angular widthiW as interpolation functions. In order to
— > fm = =—, hence o < é4. (16) produce the signature®(8) and DS(6) with the same length
20 260 . )
~of 360 as in the wedge filter approach above, we rec68V’

On one hand, we should set the scale parametmall in - myltiplications and360(W — 1) additions for interpolation.

order to have fine orientation resolution. On the other hand, thg g, totally we needsP? + 432060 multiplications and

filter mask should contain adequate pixels to calculate averagiggz 4 432056 — (360/66) — 720 additions to obtairs () and
values robustly. Therefore, we set= 66 = 1° to achieve the p 5(6) in case of approximate steerability.

compromise between fine resolution and robustness. TheoretiThe complexity of both approaches is plotted in Fig. 2. In the
cally, a Gaussian function is not compactly supported. Thus, Wgproximate steerability the sampling interéél plays a very
must cut off its support to build an FIR-filter. It is easy to ShOVlhteresting role. We observe that by settif@ysmaller, which

that in order to keep the energy of the cut-off area below 1fgeans we have higher orientation resolution, computation load
of the total energy, the angular width of the sampling MBSk gecreases. We can draw the conclusion that the approximate

must be at leasto. In this paper, we sé¥’ = 6o. steerability is more efficient than the exact steerability, espe-
We useM = 360/66 sampling masks to obtain angularially in the case of high orientation resolution and large filter

samplesy,(k = 1, ---, M). On an average we have at mosgje.

(W/360)m(R2.. — R2,) < (W/360)P? pixels in one

sampling mask. In order to analyze the upper limit of th(?“
complexity, we simply assume that in one sampling mask there’
are(W/360)P? pixels. Correspondingly, we neé#’/360) P> The orientation scale problem is like every scale problem a
multiplications and(W/360)P? — 1 additions to calculate tradeoff between the intrinsic structure of a junction and the ori-
one angular sampling. Taking into account thiat= 6660 we entation scale of a filter. As shown in Fig. 9, if the orientation

JUNCTION CHARACTERIZATION USING A POLAR PYRAMID
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Fig. 12. Comparison between the steerable wedge filter [23] and Gaussian averaging steerable filter. Row 1: An image of the NASA sequence dstbffour kin
marked junctions. A:Y” junction; B: “V"” junction; C: “I™ junction; D: “K” junction. Row 2: Junctions in detail. The keypoints are not always at centers of the
masks. Row 3: Polar plots using the steerable wedge filter [23] using 46 basis filters with 31 tap size .IRSW#using the Gaussian averaging steerable filter
(Rmin = 3, Rmax = 15). Both methods are stable with respect to the offsets of keypoints. Our method presents higher orientation resolution with lower cost.

scale of a filter is too small, a blurred edge is not visible andementsS$7(6;,) with Gaussian function&? (D(8, 6;)) of dif-
wide line will be recognized as two edges [12]. If the orientatioferent scales;

scale of afilter is too large, two very close lines will be charac- N '

terized as one line. In this paper we introduce a polar pyramid toS’ () = Z ST0)GA(D(,6r))  j€EL,2, -] (A7)
obtain signatures of different scales efficiently. Here we do not k

treat the problem of steering spatial scale. Regarding the st%irt-h

ability of spatial scale the reader is referred to [11], [18].

It is known that one of the most appealing kernels for hieraGg(D(e, 6r)) = o~ ((D(8,61))* /207) jell, 2 -
chical approaches is the Gaussian function [1]. We know from 2no;
spatial scale theory that the choice of scale necessitates a hier- . . ) (18)
archical treatment. Burt and Adelson [5] prove thatageneratiW ere_SJ(e) d]enote the elements on thth level of the polar
kernel of subsampling can be used as the interpolation functi f amid ands’ (6) rgpresents_ the 3'9”""“.”? reconstructed from
for reconstruction from coarser scales. Moreover, they arg e(e)' We can obtain edge signatures similarly
that the interpolation functions can be (discrete approximations
of) Gaussian functions with different scales (Fig. 3). Thus, the DSJ(Q) = Z 8(6 — nAe)S‘J’(a) * G{(G)
continuous orientation information can be reconstructed from n
all levels of the polar pyramid by interpolating the pyramid el- Jjel, 2, -] (19)
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Fig. 13. Top Left: Face of a child. Top Right: Its left eye corner in detail. It can be regarded as a combination of irregular wide lines and blurristLedge oy
noise. Middle: Orientation signatures reconstructed from the first, third and fifth level of the polar pyramid. The eyelids are clearté(ggamtwo maxima at
135° and225°. The local maximum nedr80° is due the white of the eye. Bottom: CorrespondiP§(6), D.5%(#) andD S*(6). At small scales the signatures
present more detail, but are also sensitive to noise. At large scales we obtain dominant structures but lose details. A valid characterizatiotbgh®albthese
signatures.

whereG? () is the first derivative of?(6). The local maxima the coarsest level360 = 2® x 3% x 5). Let us denote with

in S7(#) and D S’(6) denote orientations of lines and edges a;(;j) the j-th coefficient of the FIR filter in theth pyramid

different scales, respectively. layer. According to [5] the generating kernels with subsampling
If we want to build a pure 1-D one-octave Gaussian pyramfector: should be normalized

of angles, according to [5] we should hag@” + 1 samples

where L is the number of levels an@ + 1 is the number of 2i+1
samples at the highest level. Taking the periodicity into account Z Ki(j)=1 i€[2 -] (20)
we should havé)2” samples as the sampling outputs. However, j=1

since initially the orientation signal is defined as 360 discrete )

values we cannot build a pure octave Gaussian pyramid. Alt@nd symmetric

natively, we apply a factor two subsampling of the first three

levels, a factor three at the next two, and have five samples ak;(j) = K;(2i+1—(j — 1)) je, ---,i+1]. (21)
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Moreover, Every sample at a given level should make equal cdh- Real Experiments

tributions to construct the next higher level. The contributions . .
. . e We have observed the successful behavior of the approxi-

of one sample are weighted by the corresponding coefficients of o - . I
mate steerability on synthetic junction characterizations. Here

the generating kernels. Equal contributions imply that the suvrl\sne show some real experimental results, One example is the

gff(l)lnltsst;:r?tnnected elements in the generating kernels ShOUIdpaerkbench picture used in [23] (Fig. 10). In comparison to the

steerable wedge filter [23] with 30 basis filters our method char-

As mentioned in [5], the generating kernels satisfying the , . L . : S L
) ; erizes the directions of junctions more distinctively. This is
above constraints should have Gaussian shape. We use the 10l-. . . L
. ; L . ! explicitly presented by thel™ junction in D where the blurred
lowing discrete approximations of Gaussian functions to sery o : . . .
as generating kernels with subsamoling factor two. three ae ge neafl80° is better characterized with the approximately
9 9 ping ' » 8%erable filter. We see also that our approach is relatively more

five sensitive to high frequency components due to the differentia-
tion.
1 In Fig. 11, we show the high orientation resolution of the
K2 = 16 (1 46 4 1) (22) approximate steerability. While the steerable wedge filter [23]
1 with 90 basis filters only detects the dominant dark line between
Ka = 264 (3 22 66 82 66 22 3) (23) the lips of Lena, the approximately steerable filter characterizes

1 (1 74 299 725 950 1022 950 edges o_f two lips Qistinctly. This may be very useful in facial
5120 expression analysis.

725 299 74 1). (24)  Another real example is presented in Fig. 12. The kernel cen-
ters are displaced from the keypoints of the junctions. The re-
sults show that both steerable wedge filter and approximately
steerable filter are stable with respect to the offsets of keypoints
while the Gaussian approach achieves higher orientation reso-
A. Synthetic Junction Examples lution with lower cost.

In thi " ilustrat | £ uncti h A real example with varying scales is further presented in
n this section we Iflustrate Some examples of junction ig. 13. A child’s left eye corner can be regarded as a combi-

acterization using the approximate steerability and its hie“ﬂ'tion of irregular wide lines and blurred edges disturbed by
chical version. In Figs. 4 and 5, synthetic line junctions ar]gﬁl

. . . ) oise. The characterizing results from different pyramid levels
edge junctions are s_hown. The corresponding S|gna_lﬂlf_é}: form a complete set of signatures providing information at dif-
andDS(6) characterize them correctly. The small deviations I rent orientation scales
Fig. 5 come from the fact that an edge can only be representecj3 '
by two pixels in the grid, while we cannot set the center of a
wedge between two pixels. _ o o V. CONCLUSION

The robustness of our method against noise is shown in Fig. 6.

The edge junction is disturbed with increasing random noise.Most current orientation steerability approaches are based on
Even in the very noisy case the junction is well characterizetthe Fourier decomposition of the steered filter with respect to
The keypoints in Fig. 7 are deviated from the central positiomsientation. Although they are optimal with respect to approxi-
of the masks. Though the signatures have some variations, wation error, they suffer from the uncertainty principle: Due to
can still characterize the junctions. the sampling of the spectral domain with Dirac functions the fil-

In Fig. 8, we compare the performance of both steerabilitgrs have wide spatial supports. In order to achieve high orienta-
approaches. A complex junction called “Siemens star” with Zi®nal resolution a huge number of basis filters must be applied.
edges spans the orientation space uniformly. Applying the steerWe proposed a new approach to obtain the orientation sig-
able wedge filter we even have to use 90 basis filters to achievature for junction characterization. We called it approximate
the same orientation resolution as applying the Gaussian ateerability because it enables the approximation of a contin-
eraging steerable filter. Hence, we need about eleven timesuasis response with respect to orientation based on a number of
many multiplications and thirteen times as many additions usibgsis filter responses. These filters are designed in the spatial do-
the steerable wedge filter as using the Gaussian averaging ste@in so that they have narrow support. We used Oth- and first-
able filter. This demonstrates the advantages of the local decamder derivatives of Gaussians to characterize lines and edges,
position scheme in the approximate steerability. respectively. Unfortunately, the Oth- and first-order derivative

Fig. 9 is an example to solve the orientation scale problecannot be combined into a quadrature pair with the Oth as even
applying a polar pyramid. The junction is composed of twand the 1st derivatives as odd part, respectively. Such a pair pro-
blurred edges, a wide line and two close lines. We use a pothrces a significant energy in the negative frequencies and does
pyramid with four levels to characterize it. With the increase afot provide a phase independent magnitude response. However,
the pyramid level the orientation of the wide line and blurreth most tasks in vision lines and edges have totally different
edges are characterized more and more distinctly. Howevernieaning. Therefore, a phase-independent magnitude response
the mean time the responses of two close lines seem more andot so helpful without the phase. Instead, our approach pro-
more like one line. This is exactly the demonstration of orientaides two signatures (Oth and 1st) characterizing the closeness
tion scale problem. to lines and edges, respectively.

Ks=

IV. EXPERIMENTS
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