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Approximate Orientation Steerability Based on
Angular Gaussians

Weichan Yu, Kostas Daniilidis, and Gerald Sommer

Abstract—Junctions are significant features in images with in-
tensity variation that exhibits multiple orientations. This makes the
detection and characterization of junctions a challenging problem.
The characterization of junctions would ideally be given by the
response of a filter at every orientation. This can be achieved by
the principle of steerability that enables the decomposition of a
filter into a linear combination of basis functions. However, cur-
rent steerability approaches suffer from the consequences of the
uncertainty principle: In order to achieve high resolution in ori-
entation they need a large number of basis filters increasing, thus,
the computational complexity. Furthermore, these functions have
usually a wide support which only accentuates the computational
burden.

In this paper we propose a novel alternative to current steer-
ability approaches. It is based on utilizing a set of polar separable
filters with small support to sample orientation information. The
orientation signature is then obtained by interpolating orientation
samples using Gaussian functions with small support. Compared
with current steerability techniques our approach achieves a
higher orientation resolution with a lower complexity. In addition,
we build a polar pyramid to characterize junctions of arbitrary
inherent orientation scales.

Index Terms—Low-level vision, orientation analysis, steerable
filters.

I. INTRODUCTION

J UNCTIONS of gray-value lines or edges in images carry
important information for many image processing tasks like

point matching in object recognition, point tracking in motion
analysis, attentive coding, and line-drawing interpolation [14].
In order to use junctions for such tasks we must be able to lo-
calize their corresponding keypoints which are defined as in-
tersection points of lines or edges. Then, we must characterize
junctions by means of signatures and classify them in junc-
tion categories. Regarding keypoint detection and localization
the reader is referred to Foerstner’s study [8] and the work of
Paridaet al.[16] and to the comparison of different operators by
Rohr [21], [22]. In this paper we address the problem of junction
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characterization. The resulting signature can be used for further
junction classification.

Junctions are local structures with multiple intrinsic orienta-
tions and spatial scales [2]. For the purpose of characterization
we project them onto the orientation space and build a one-di-
mensional (1-D) signature function of the orientation parameter.
Such signatures are often obtained by applying a set of filters
at different orientations. This leads to an enormous computa-
tional load. For example, in order to extract orientation infor-
mation of a junction, with conventional filter methods we have
to rotate the same filter around the keypoint repeatedly. For an
angular field of and a sampling interval of already 72
rotated copies of the original filter should be applied. The con-
cept of steerability has been introduced in order to reduce this
explosion of computational complexity. Steerable filters obtain
an analytic model of deformations for further analysis of the
grey-value structure [3], [6], [9], [10], [18], [24], [26].

Denoting with ( ) the deformation parameter we de-
fine a filter with as a steerable filter if its deformed
versions can be expressed as [13]

(1)

where and are referred to as basis filters and inter-
polation functions, respectively. The signature of a junc-
tion can be obtained by applying such a steerable filter on the
image

(2)

with

Here, denotes the usual inner product for two real functions
and

We see the motivation of steerability clearly in (2): The re-
sponses of the filter with are expressed as a
linear combination of basis filter responses. According to our
opinion, steerability approaches may be classified in exact and
approximate methods.

Although steerability was implicitly used by Danielsson and
Knutsson [6], [10], Freeman and Adelson [9] were the first
who coined the concept and introduced anexactsteerability
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approach. Freeman’s and Adelson’s approach to orientation
steerability of a Gaussian derivative is an interpolation using
rotated copies of the original filter. The derived kernels do
not possess sufficient orientational resolution due to their
large spatial support in orientation. Moreover, they are either
symmetric or antisymmetric [23]. This results in a period of

in orientation and leads to an ambiguity in responses
between terminating and nonterminating junctions.

Simoncelli et al. [24] extended this concept to include
dilation and translation. They proposed some conditions upon
which a filter is guaranteed to be exactly steerable, i.e., a
filter can be synthesized with finite Fourier bases. Recently,
Simoncelli and Farid [23] designed a steerable wedge filter
in the inverse direction. Regarding the angular direction, they
do not first choose one filter with expected shape and then
project it onto the Fourier basis. Instead, they first choose finite
components from the Fourier basis and then synthesize the
filter using only these components. Therefore, their filter is
guaranteed to be band limited and exactly steerable. Besides,
the shape of the wedge filter can be adjusted to be arbitrarily
narrow if we adopt adequate Fourier components. There is
no more symmetric ambiguity applying a steerable wedge
filter because the wedge kernel is asymmetric in the angular
direction.

Michaelis and Sommer [13] and Teo and Hel Or [26]
provided the formal justification of the exact steerability by
applying Lie-group theory. The basic concept of exact steer-
ability is the shiftability [24]: Every periodic band-limited
function can be approximated at every position (“shift”) with
a finite linear combination of harmonic functions. Orientation
and scaling become shifts if we apply a logarithmic-polar
transformation to a function with two arguments. Lie group
theory gives us the theoretical framework for this transforma-
tion and for the exact interpolation. The complex harmonics

are the generating operators of translation. On the other
hand, all one-parameter Lie groups are locally isomorphic to
the translation group if we change the coordinates to so called
canonical coordinates, for example, Cartesian to polar coor-
dinates for rotations. Thus, for every deformation we achieve
exact steerability if we transform the coordinates to canonical
ones and then apply Fourier analysis. Teo and Hel Or list a
complete classification of functions steerable with respect to
any Abelian group.

Perona [17] introduced the concept of deformable kernels
which is based on the minimization of the discrepancy between
the left-hand side and the right-hand side of (1) with respect to
the basis functions . He showed that the basis functions
are the right singular functions of a continuous SVD. In case
of rotations and periodic translations it can be proved [11] that
the basis functions are the same in both the deformability and
the exact Lie-group based steerability. However, for other defor-
mations the functions must be sampled with respect to the de-
formation parameter and a numerical SVD is applied [25]. The
advantage of thedeformabilityapproach is that it steers contin-
uous and discrete filters and needs a minimal number of basis
functions for a given error. However, orientational resolution is
not addressed in this approach so that usually this approach suf-
fers from the uncertainty constraint. Since we are interested only

in orientation, both approaches yield the same set of basis func-
tions.

The steerability problem may be also considered as a problem
of signal reconstruction from samples [see
(2)]. This becomes evident if we consider the parameterin
(2) to be the same as the spatial domain variable. For clarity, we
change the notation to

(3)

Here, the interpolation functions can be from many
function classes, for example Laguerre functions or Legendre
polynomials ([15, pp. 29–30]). In current orientation steer-
ability approaches are usually the complex harmonics

, yielding

(4)

Note that are not necessarily the first frequencies as in the
standardFourier decompositions.

In this paper, we point out that the exact approach to orien-
tation steerability has insufficient orientational resolution be-
cause it is based on the sampling of the angular frequency. To
achieve a high orientational resolution a huge number of fil-
ters must be used. This computational burden is amplified by
the large support of the basis functions. We will also introduce
a new approximation approach based on Gaussian functions
which might be nonoptimal with respect to the approximation
error but substantially alleviates the above problems as shown in
theory and experiments.We extend this approach to an efficient
hierarchical scheme and provide a complete analysis of compu-
tational complexity. Thus, by considering only the problem of
orientation steerability, we sacrifice a coherent algebraic theory
(as in Lie group and SVD-based deformability approaches) to
achieve high orientational resolution as well as a dramatical de-
creasing of the computational complexity.

This paper is organized as follows: In Section II we intro-
duce the new approximate steerability approach based on an-
gular Gaussians and point out the theoretical difference between
our approach and current steerability approaches. Besides, we
analyze their computational complexity in detail. In Section III
we further introduce a polar pyramid scheme to treat orientation
scale variations. Then we present experimental results on both
synthetic and real data which vividly show a better performance
of our approach. The paper is concluded with a short discussion.

II. A PPROXIMATE ORIENTATION STEERABILITY

A. Definition

In the study of local orientation, we first conduct a local polar
transformation of the image from Cartesian to the polar coordi-
nate system and denote the new intensity function with ,
where and are the radius and angle, respectively. Since we
are interested only in orientation, we eliminate the radial vari-
able by applying averaging along the radial direction. In order
to obtain high orientation resolution, we are interested in filters
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Fig. 1. Gaussian averaging mask centered at angle� . Darker pixels represent
larger weights. Left: The mask in the Cartesian coordinate system. The keypoint
is at the center of the circle. Right: The mask withr and� as coordinates,R
andR are radial boundaries of the mask,W is the angle width of the mask.
We setR > 0 to avoid the confusion close to the keypoint.

with narrow angular support. We choose shifted Gaussian aver-
aging functions as basis filters to sample the orientation space

(5)

with distributed evenly along the axis of
the orientation variable. Here is an av-
eraging factor along the radial direction which is the sum of
discrete weights inside the basis filter mask centered at(see
Fig. 1). We denote with the Gaussian function
centered at

(6)

where denotes the scale of the Gaussian function. Since
and are circular angles ( ), we define to
represent the minimal circular difference betweenand

(7)

For example, ; .
Theoretically, a Gaussian function is not compactly supported.
In practice, we only consider the part of whose
variable varies from to [see (11)]. Here,

denotes the angular width of the basis filter mask. We will
explain the choice of parameter in Section II-C. In Fig. 1,
we show a basis filter centered at, where and
denote inner and outer boundaries of the mask, respectively. We
set to avoid the singularity close to the keypoint [12].
In order to choose we must know the size of the significant
neighborhood around the keypoint, which can be provided by
the preceding keypoint detection step [8], [20]. In this paper we
set pixels and varies from nine to 15 pixels.

After defining basis filters we must interpolate them to build
the whole set of steerable filter . Taking the local property
of basis filters into account we choose angular Gaussian func-
tion with narrow support instead of complex harmonics as the
interpolation function

(8)

Thus, we construct acontinuoussteerable filter using Gaussian
interpolation functions

(9)

Fig. 2. Complexity comparison between the exact steerability and the
approximate steerability. The dotted curves represent the complexity of exactly
steerable filters composed ofN odd basis filters andN even basis filters with
P as 1-D tap size. The solid lines show the relation between complexity and the
sampling interval�� andP in computation ofS andDS in our approach. We
see that the approximate steerability is more efficient than the exact steerability,
especially in the case of high orientation resolution and large filter size.

Fig. 3. Left: Polar pyramid structure,S(�) is the lowest level of
the polar pyramid, namely the averaging outputs of sampling masks.
Ŝ (� )(j = 1; 2; 3) are higher levels after subsampling with the generating
kernelK of (22). Right: Corresponding interpolation functions at different
levels. They are Gaussian functions with different scales.

In this new steerability approach, the neighboring basis fil-
ters as well as the interpolation functions are locally correlated
and therefore nonorthogonal. To achieveoptimalsteerability we
would have to apply a nonlinear operator to estimate the coeffi-
cients of the interpolation function. Instead we use a linear oper-
ator and achieve anapproximate steerabilitywhich approaches
optimality with decreasing support and thus increasing orthogo-
nality of the Gaussians. Approximating a function with a sum of
Gaussians is a well-known method with properties extensively
described in the radial basis function approximation proposed
by Poggio and Girosi [19]. If we ignore the penalty term in
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Fig. 4. Top: Synthetic line junctions. Bottom:S(�). R = 3; R = 15.

[19] enforcing smoothness our approach becomes the closer to
the RBF approach when our Gaussians overlap minimally each
other. To increase approximation optimality the centers of the
Gaussians can be estimated in [19] whereas in our approach
these centers are prechosen.

Applying our filter on the intensity function we obtain
the orientation signature

(10)

where

(11)

In the orientation signature local extremes represent ori-
entations of lines and the positions of steepest descent or ascent
indicate orientations of edges. Correspondingly, the two-dimen-
sional (2-D) orientation analysis reduces into 1-D line/edge de-
tection. In order to extract edge information we estimate the
derivative of and take the amplitude of the derivative as
another signature

(12)

where denotes the first derivative of Gaussian
filter and denotes the absolute value. We point out here
that and cannot constitute a quadrature pair be-
cause is not the Hilbert transform of . Such a pair
would have significant energy on the negative frequencies and

the estimated magnitude would be phase-dependent. To char-
acterize junctions we are not interested in a phase-independent
magnitude response because we want to know which orienta-
tion responses are closer to an edge and which are closer to
line. Therefore, we obtain two separate signatures from
and , for lines and edges, respectively.

So far, we have defined the approximate steerability. In the
following we will compare this approach with current steer-
ability approaches regarding the mathematical background and
the implementation performance.

B. Difference to Exact Steerability

The main difference between our approach and the exact
steerability is that we decompose one signallocally in the spa-
tial domain, whereas exact approaches decompose the signal
globally: In the approximate steerability we use a Gaussian
mask with local spatial support (as shown in Fig. 1) as basis
filter [i.e., in (5)], while in the exact steerability every basis
filter has the same wide spatial support as the steered filter.
This difference can be described in the spectral domain as well.
In the approximate steerability the spectrum of a filter response
[see (10)] is decomposed into a set ofspectralGabor functions
(shifted Gaussians in the spatial domain) weighted by the basis
filter responses

(13)

where denotes the Fourier transform. In contrast, in the exact
steerability the spectrum of a filter response [see (4)] is decom-
posed into a series of Dirac sampling functions weighted by the
corresponding basis filter responses

(14)

This formula describes also the behavior of the exact ap-
proaches using rotated filter copies as basis functions. The proof
of the steerability using rotated copies is based on the fact that
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Fig. 5. Top: Synthetic edge junctions. Bottom:DS(�). The local maxima show the orientation of edges.R = 3,R = 15.

Fig. 6. Top: A synthetic edge junction disturbed by four increasing levels of random noise. Bottom: CorrespondingDS(�). Even in the very noisy case (SNR= 0
dB) the signature can characterize the junction.R = 3, R = 15.

a function is written as a Fourier series with respect to the angle
(see [9, eq. (9)]). Equation (14) is the expression of this fact in
the frequency domain. Note that in (14) the term in [9] is
replaced by since we consider the filter response here.

Thus, in the case of approximate steerability we sample the
spatial orientation space with Gaussian masks whereas in the
exact steerability we sample the spectral domain of the orienta-
tion space with Dirac sampling functions. This difference makes
our approach perform better with respect to orientational reso-
lution. According to the well known uncertainty principle we
cannot localize one signal both in the spatial domain and in the

spectral domain exactly. If we use one Dirac sampling function
to localize one spectral component of the signal exactly, as in
the case of the exact orientation steerability, we will no more
be able to localize this component in the spatial domain. There-
fore, we need many Dirac impulses to increase the localization
capability in space. This tradeoff can be optimized by applying
functions with Gaussian shape [7]. Therefore, the approximate
steerability has better properties with respect to the uncertainty
principle.

To summarize, our main concern is orientational resolution
with low complexity. To achieve this goal, we directly built our
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Fig. 7. Top: Deviation of the keypoint from the central position of the mask. Bottom:DS(�). R = 3; R = 15.

Fig. 8. (a) So-called “Siemens star” with 16 edges spanning uniformly the orientation space. (b) Polar plot of the result using the steerable wedge filter [23]
composed of 46 basis filters with 31-tap size. In total, 61 486 multiplications and 60 360 additions are needed. The edges are hardly discernible. (c) The same as
(b) but using 90 basis filters with 119 610 multiplications and 118 440 additions. The orientations of the edges are clearly presented. (d)DS(�) using the Gaussian
averaging steerable filter. We compute only 10 086 multiplications and 9006 additions to achieve the same resolution.

filter in the spatial domain. The price we pay is that we do not
achieve exact steerability but an approximation of the orienta-
tion response.

C. Complexity Analysis

Approximate steerability achieves a higher orientation res-
olution with a lower complexity due to the narrow support of
the basis filters. Our approach starts with a local polar mapping
which can be done “off-line” since it is a transform between co-
ordinates and is therefore valid forall different images. Online
applying the resulting look-up-table (LUT) is of negligible com-
plexity compared with calculating the filter responses.

In order to compare the implementation complexity of the
approximate steerability and that of the exact approach we set
the radial extensions of masks in both schemes to be the same.

If we denote the 1-D tap size of an exactly steerable filter with
, the following relation is satisfied:

Here, we choose the steerable wedge filter [23] for compar-
ison since it has a similar shape to our filter mask. The steer-
able wedge filter is a separable polar filter. Its radial component
looks like a wedge and its angular component is synthesized by
the Fourier series. Its computational complexity is proportional
to the number and the spatial support of basis filters. In order to
make a fair comparison we apply it after the local polar map-
ping, too.

Both the approximately steerable filter and the wedge filter
are polar separable filters. If we carry out a polar mapping on
the images then filter responses can be computed with two 1-D
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Fig. 9. Characterizing a junction using the polar pyramid. Top: A junction composed of two close lines with distance of 1 pixel, two edges blurred by a Gaussian
function with� = 4 and a wide line with a width of 6 pixels. Middle: The characterizing signatures reconstructed from the first four levels of the polar pyramid:
S(�), S (�), S (�), andS (�). The wide line is distinctly characterized inS (�). But two close lines are also recognized as one line. Bottom: Corresponding
DS(�),DS (�),DS (�), andDS (�). The blurred edges are presented more and more clearly with the increase of pyramid level. The neighboring boundaries
of two close lines near180 can be seen only at the first two levels. After increasing the scale only outer boundaries of these two lines are recognized.

convolutions in radius and angle, respectively. Such a pre-map-
ping would have the effect that the complexity of both filters
would depend linearly and not quadratically on the tap size.
Because we deal in this paper with characterization and not with
detection we assume that several candidate points have been de-
tected and that we do not need a signature at every image po-
sition. Therefore, it is more economical to compute the filter
response at specified positions using a scalar product though its
complexity is quadratic on the tap size. When comparing with

the wedge filter the reader should have in mind that, if convolu-
tion were applied, approximate filter would still perform better
but only linearly and not quadratically.

Suppose we apply a steerable wedge filter composed of
basis filters ( odd basis filters and even basis filters). As
mentioned before, all basis filters have the same spatial support
as the steered filter, the 1-D size of all basis filters is therefore

, too. In order to apply one basis filter we need multipli-
cations and additions to calculate the corresponding
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Fig. 10. Top: The parkbench with marked edge junctions. A: horizontal edge; B: vertical edge; C: corner; D: “T ”-junction. Middle: Steerable wedge filter results
using 30 basis filters.P = 19. Bottom:DS(�) of the Gaussian averaging steerable filter. The edge near180 in D is very blurred. ButDS(�) still can characterize
it. R = 3; R = 9.

inner product. Straightforwardly, multiplications and
additions are required to obtain coefficients

[see (2)]. Assuming that we use signatures of length 360 we
need multiplications and additions to obtain
outputs of odd and even filters. Thus, totally
multiplications and additions are computed to
implement a steerable wedge filter composed ofodd basis
filters and even basis filters.

In our approach the computational load is determined by the
number and the angular width of Gaussian functions. In order
to sample the whole orientation space with a sampling interval

, we need totally basis filters. According to the

well known Shannon’s Sampling Theorem, we determine the
corresponding Nyquist frequency with

(15)

In our approach, we choose Gaussian masks instead of Dirac
functions as sampling masks along the angular direction. This
is equivalent to Dirac series [the shah function III [4]] con-
volved with a Gaussian function. Correspondingly, the spectrum
of the ideal sampling will be further multiplied by a low pass
filter with Gaussian shape. The stop frequency of this low pass
filter is determined by the term (here we define the turning
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Fig. 11. Resolution comparison between the steerable wedge filter [23] and the Gaussian averaging steerable filter. Top Left: The image “Lena” with her lips
corner as a keypoint. Top Right: Lips corner in detail. Bottom Left: Polar plots using the steerable wedge filter [23] with 46 basis filters. Only the dominant dark
line between the lips can be recognized. Bottom Middle: Even with 90 basis filters we cannot recognize two lips. Bottom Right:DS(�) of the Gaussian averaging
steerable filter. The edges of two lips are characterized distinctly.

frequency of the Gaussian function as the stop frequency).
This stop frequency is preferred to be not below the Nyquist fre-
quency

hence (16)

On one hand, we should set the scale parametersmall in
order to have fine orientation resolution. On the other hand, the
filter mask should contain adequate pixels to calculate averaging
values robustly. Therefore, we set to achieve the
compromise between fine resolution and robustness. Theoreti-
cally, a Gaussian function is not compactly supported. Thus, we
must cut off its support to build an FIR-filter. It is easy to show
that in order to keep the energy of the cut-off area below 1%
of the total energy, the angular width of the sampling mask
must be at least . In this paper, we set .

We use sampling masks to obtain angular
samples . On an average we have at most

pixels in one
sampling mask. In order to analyze the upper limit of the
complexity, we simply assume that in one sampling mask there
are pixels. Correspondingly, we need
multiplications and additions to calculate
one angular sampling. Taking into account that we

need multiplications and additions to
obtain samples. In constructing and we apply
a Gaussian function and its first derivative, respectively, with
the angular width as interpolation functions. In order to
produce the signatures and with the same length
of 360 as in the wedge filter approach above, we require
multiplications and additions for interpolation.
Thus, totally we need multiplications and

additions to obtain and
in case of approximate steerability.

The complexity of both approaches is plotted in Fig. 2. In the
approximate steerability the sampling intervalplays a very
interesting role. We observe that by settingsmaller, which
means we have higher orientation resolution, computation load
decreases. We can draw the conclusion that the approximate
steerability is more efficient than the exact steerability, espe-
cially in the case of high orientation resolution and large filter
size.

III. JUNCTION CHARACTERIZATION USING A POLAR PYRAMID

The orientation scale problem is like every scale problem a
tradeoff between the intrinsic structure of a junction and the ori-
entation scale of a filter. As shown in Fig. 9, if the orientation
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Fig. 12. Comparison between the steerable wedge filter [23] and Gaussian averaging steerable filter. Row 1: An image of the NASA sequence with four kinds of
marked junctions. A: “Y ” junction; B: “V ” junction; C: “T ” junction; D: “K” junction. Row 2: Junctions in detail. The keypoints are not always at centers of the
masks. Row 3: Polar plots using the steerable wedge filter [23] using 46 basis filters with 31 tap size. Row 4:DS(�) using the Gaussian averaging steerable filter
(R = 3; R = 15). Both methods are stable with respect to the offsets of keypoints. Our method presents higher orientation resolution with lower cost.

scale of a filter is too small, a blurred edge is not visible and a
wide line will be recognized as two edges [12]. If the orientation
scale of a filter is too large, two very close lines will be charac-
terized as one line. In this paper we introduce a polar pyramid to
obtain signatures of different scales efficiently. Here we do not
treat the problem of steering spatial scale. Regarding the steer-
ability of spatial scale the reader is referred to [11], [18].

It is known that one of the most appealing kernels for hierar-
chical approaches is the Gaussian function [1]. We know from
spatial scale theory that the choice of scale necessitates a hier-
archical treatment. Burt and Adelson [5] prove that a generating
kernel of subsampling can be used as the interpolation function
for reconstruction from coarser scales. Moreover, they argue
that the interpolation functions can be (discrete approximations
of) Gaussian functions with different scales (Fig. 3). Thus, the
continuous orientation information can be reconstructed from
all levels of the polar pyramid by interpolating the pyramid el-

ements with Gaussian functions of dif-
ferent scales

(17)

with

(18)
where denote the elements on theth level of the polar
pyramid and represents the signature reconstructed from

. We can obtain edge signatures similarly

(19)
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Fig. 13. Top Left: Face of a child. Top Right: Its left eye corner in detail. It can be regarded as a combination of irregular wide lines and blurred edges disturbed by
noise. Middle: Orientation signatures reconstructed from the first, third and fifth level of the polar pyramid. The eyelids are clear to see inS (�) as two maxima at
135 and225 . The local maximum near180 is due the white of the eye. Bottom: CorrespondingDS(�),DS (�) andDS (�). At small scales the signatures
present more detail, but are also sensitive to noise. At large scales we obtain dominant structures but lose details. A valid characterization shouldcombine all these
signatures.

where is the first derivative of . The local maxima
in and denote orientations of lines and edges at
different scales, respectively.

If we want to build a pure 1-D one-octave Gaussian pyramid
of angles, according to [5] we should have samples
where is the number of levels and is the number of
samples at the highest level. Taking the periodicity into account
we should have samples as the sampling outputs. However,
since initially the orientation signal is defined as 360 discrete
values we cannot build a pure octave Gaussian pyramid. Alter-
natively, we apply a factor two subsampling of the first three
levels, a factor three at the next two, and have five samples at

the coarsest level . Let us denote with
the -th coefficient of the FIR filter in theth pyramid

layer. According to [5] the generating kernels with subsampling
factor should be normalized

(20)

and symmetric

(21)
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Moreover, Every sample at a given level should make equal con-
tributions to construct the next higher level. The contributions
of one sample are weighted by the corresponding coefficients of
the generating kernels. Equal contributions imply that the sum
of all its connected elements in the generating kernels should be
a constant.

As mentioned in [5], the generating kernels satisfying the
above constraints should have Gaussian shape. We use the fol-
lowing discrete approximations of Gaussian functions to serve
as generating kernels with subsampling factor two, three, and
five

(22)

(23)

(24)

IV. EXPERIMENTS

A. Synthetic Junction Examples

In this section we illustrate some examples of junction char-
acterization using the approximate steerability and its hierar-
chical version. In Figs. 4 and 5, synthetic line junctions and
edge junctions are shown. The corresponding signatures
and characterize them correctly. The small deviations in
Fig. 5 come from the fact that an edge can only be represented
by two pixels in the grid, while we cannot set the center of a
wedge between two pixels.

The robustness of our method against noise is shown in Fig. 6.
The edge junction is disturbed with increasing random noise.
Even in the very noisy case the junction is well characterized.
The keypoints in Fig. 7 are deviated from the central positions
of the masks. Though the signatures have some variations, we
can still characterize the junctions.

In Fig. 8, we compare the performance of both steerability
approaches. A complex junction called “Siemens star” with 16
edges spans the orientation space uniformly. Applying the steer-
able wedge filter we even have to use 90 basis filters to achieve
the same orientation resolution as applying the Gaussian av-
eraging steerable filter. Hence, we need about eleven times as
many multiplications and thirteen times as many additions using
the steerable wedge filter as using the Gaussian averaging steer-
able filter. This demonstrates the advantages of the local decom-
position scheme in the approximate steerability.

Fig. 9 is an example to solve the orientation scale problem
applying a polar pyramid. The junction is composed of two
blurred edges, a wide line and two close lines. We use a polar
pyramid with four levels to characterize it. With the increase of
the pyramid level the orientation of the wide line and blurred
edges are characterized more and more distinctly. However, in
the mean time the responses of two close lines seem more and
more like one line. This is exactly the demonstration of orienta-
tion scale problem.

B. Real Experiments

We have observed the successful behavior of the approxi-
mate steerability on synthetic junction characterizations. Here
we show some real experimental results. One example is the
parkbench picture used in [23] (Fig. 10). In comparison to the
steerable wedge filter [23] with 30 basis filters our method char-
acterizes the directions of junctions more distinctively. This is
explicitly presented by the “” junction in D where the blurred
edge near is better characterized with the approximately
steerable filter. We see also that our approach is relatively more
sensitive to high frequency components due to the differentia-
tion.

In Fig. 11, we show the high orientation resolution of the
approximate steerability. While the steerable wedge filter [23]
with 90 basis filters only detects the dominant dark line between
the lips of Lena, the approximately steerable filter characterizes
edges of two lips distinctly. This may be very useful in facial
expression analysis.

Another real example is presented in Fig. 12. The kernel cen-
ters are displaced from the keypoints of the junctions. The re-
sults show that both steerable wedge filter and approximately
steerable filter are stable with respect to the offsets of keypoints
while the Gaussian approach achieves higher orientation reso-
lution with lower cost.

A real example with varying scales is further presented in
Fig. 13. A child’s left eye corner can be regarded as a combi-
nation of irregular wide lines and blurred edges disturbed by
noise. The characterizing results from different pyramid levels
form a complete set of signatures providing information at dif-
ferent orientation scales.

V. CONCLUSION

Most current orientation steerability approaches are based on
the Fourier decomposition of the steered filter with respect to
orientation. Although they are optimal with respect to approxi-
mation error, they suffer from the uncertainty principle: Due to
the sampling of the spectral domain with Dirac functions the fil-
ters have wide spatial supports. In order to achieve high orienta-
tional resolution a huge number of basis filters must be applied.

We proposed a new approach to obtain the orientation sig-
nature for junction characterization. We called it approximate
steerability because it enables the approximation of a contin-
uous response with respect to orientation based on a number of
basis filter responses. These filters are designed in the spatial do-
main so that they have narrow support. We used 0th- and first-
order derivatives of Gaussians to characterize lines and edges,
respectively. Unfortunately, the 0th- and first-order derivative
cannot be combined into a quadrature pair with the 0th as even
and the 1st derivatives as odd part, respectively. Such a pair pro-
duces a significant energy in the negative frequencies and does
not provide a phase independent magnitude response. However,
in most tasks in vision lines and edges have totally different
meaning. Therefore, a phase-independent magnitude response
is not so helpful without the phase. Instead, our approach pro-
vides two signatures (0th and 1st) characterizing the closeness
to lines and edges, respectively.
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Last we mention the narrow support of the basis functions of
our approach enables a high orientational resolution with a mod-
erate computational load. We showed this difference to earlier
approaches both in theory as well as in real images of junctions.
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