
Fast Multi-Image Matching via Density-Based Clustering

Roberto Tron
Boston University

tron@bu.edu

Xiaowei Zhou, Carlos Esteves, Kostas Daniilidis
University of Pennsylvania

{xiaowz,machc,kostas}@seas.upenn.edu

Abstract

We consider the problem of finding consistent matches
across multiple images. Previous state-of-the-art solutions
use constraints on cycles of matches together with convex
optimization, leading to computationally intensive iterative
algorithms. In this paper, we propose a clustering-based
formulation. We first rigorously show its equivalence with
the previous one, and then propose QuickMatch, a novel
algorithm that identifies multi-image matches from a density
function in feature space. We use the density to order the
points in a tree, and then extract the matches by breaking this
tree using feature distances and measures of distinctiveness.
Our algorithm outperforms previous state-of-the-art methods
(such as MatchALS) in accuracy, and it is significantly faster
(up to 62 times faster on some bechmarks), and can scale to
large datasets (with more than twenty thousands features).

1. Introduction
Finding correspondences between points in two or more

images is a fundamental step in many computer vision appli-
cations, such as matching of object instances [2, 30, 40],
shape matching [10, 13], Structure from Motion [9, 18]
and homography estimation [27]. Matching is typically
performed by first determining repeatable feature points
(e.g., corner-like patches), then extracting feature descrip-
tors (such as SIFT [17], SURF [1], learned deep features [31]
or others), and finally associating them across images using
relative distances in feature space. Traditionally, the problem
has been considered only in its pairwise version, i.e., with
pairs of images. However, the applications above imply a
multi-image version, where matches need to be found across
several images, and need to map consistently to an underly-
ing set of physical entities (e.g., 3-D points). Researchers
have started to rigorously consider the multi-image version
only recently. Early practical solutions used simple greedy
strategies to add and remove pairwise matches [10]. More
recent strategies formulate multi-image matching as a ver-
sion of an optimal assignment problem [10, 23, 40]. In this
paper, we use a clustering formulation of the problem, where

each multi-image match is represented by a cluster in feature
space. We first rigorously show that this formulation is con-
sistent with previous ones that enforce cycle consistency in
the graph of pairwise matches (§2). We then review existing
practical approaches (§3) and propose QuickMatch (§4), an
algorithm derived from QuickShift [29] that performs clus-
tering by seeking the modes of an empirical density estimate.
This strategy deals well with the typical conditions found
in matching (large and unknown number of clusters whose
size is limited by the total number of images). QuickMatch
organizes all the datapoints (all the feature descriptors from
all the images) in a tree (based on the density estimate, as
in QuickShift) and then breaks it to find the clustering (i.e.,
matches). However, with respect to QuickShift, QuickMatch
takes into account two characteristics of the matching prob-
lem: the distinctiveness of the descriptors (that is, the fact
that it is more difficult to correctly match a point if there are
other, distinct points in the scene with similar appearance)
and the exclusion constraints given by the implicit mapping
to distinct physical entities (e.g. 3-D points) in an underlying
universe. We test QuickMatch against previous approaches
on standard benchmarks, small scale Structure from Motion
problems, and large scale object matching (§5).

Paper contributions Our first contribution is a rigorous
analysis of the relation between the multi-image matching
problem and graphs of pairwise matches. This analysis is
based on graph theory, is more general than previous re-
sults that use factorizations of permutations, and it provides
the theoretical justification for our clustering-based method,
QuickMatch, which is also our most significant contribution.
With respect to previous work, QuickMatch 1) represents a
novel application of density-based clustering; 2) directly out-
puts consistent multi-image matches without explicit pre-pro-
cessing (e.g., initial pairwise decisions) or post-processing
(e.g., thresholding of a matrix); 3) is non-iterative, determin-
istic, and initialization-free; 4) produces better results in a
small fraction of the time; 5) can scale to large datasets that
previous methods cannot handle; 6) takes advantage of the
distinctiveness of the descriptor as done in traditional match-
ing [17] to counteract the problem of repeated structures;
7) does not assume a one-to-one correspondence of features

1

between images; 8) does not require knowing the number of
entities (i.e., clusters) in the universe.

In addition, our experiments (§5) uncover the fact that
multi-matching methods yield more significative improve-
ments when, assuming a bounded feature space, the ratio
between features per cluster and total number of features is
higher (in hindsight, this is intuitive, since it implies more
easily recognizable clusters). This was not noticed before
due to the poor scaling of existing algorithms.

2. Results on Multi-Image Matching and
Graphs of Pairwise Matches

In this section we introduce different equivalent defini-
tions of the multi-image matching problem, and use graph
theory to analyze their relation with pairwise matches. These
definitions motivate the two main practical approaches based
on cycle consistency and on clustering (see also §3).

We consider a problem with N images, each one iden-
tified with a label i in the set I = {1, . . . , N}. A set of
Ki features, denoted as {xik}Kik=1, is extracted from each
image i ∈ I. Each feature xik represents an entity in the
universe (as seen in image i), and contains a descriptor (a
vector encoding appearance information) lying in a descrip-
tor space. We assume that we have available either a distance
d(xi1k1 , xi2k2) ≥ 0 or a similarity h(xi1k1 , xi2k2) ∈ [0, 1]
between any two features xi1k1 and xi2k2 . We denote the set
of all extracted features as X = {xik}i∈Ik∈1,...,Ki .

Let xi1k1 → xi2k2 , i1 6= i2 denote a pairwise match, that
is, our belief that a feature xi1k1 “maps to” another feature
xi2k2 representing the same entity. With practical algorithms,
matches are not necessarily symmetric (i.e., xi1k1 → xi2k2
might not imply xi2k2 → xi1k1 , see §3.1).

We now consider two constructs for discussing multi-
image matches (matches spanning multiple images): the
directed graph of pairwise matches G and the set of multi-
image matchesM. The main result of this section is then
to provide different equivalent definitions of a set of multi-
image matches in terms of directed graphs, laying the theo-
retical foundations for the algorithms discussed in §3 and §4.

We first need a few definitions adapted from graph theory.

Definition 1. The directed graph of pairwise matches is a
pair G = (V, E) where the set of vertices V corresponds to
the set of features {xik}, and E ⊂ V ×V is a set of pairwise
matches of the form xi1k1 → xi2k2 ∈ E .

Given a subset of features C ⊂ V , we define the subgraph
of G restricted to C as the directed graph G|C = (C, E ′)
where E ′ = {xi1k1 → xi2k2 ∈ E : xi1k1 , xi2k2 ∈ C}. A
graph G = (V, E) is a clique if xi1k1 → xi2k2 ∈ E for all
xi1k1 , xi2k2 ∈ V (i.e., all possible matches are present). A
graph G = (V, E) is a union of cliques if there exist partitions
{Cc} and {Ec} of V and E of the same cardinality such that

G|Cc is a clique with edges Ec for all c, where c is an index
over the elements of the partitions. A graph G = (V, E) is
said to be connected if for any xi1k1 , xinkn ∈ V there exist
a sequence xi1k1 , xi2k2 , . . . , xinkn , called a path, such that
xijkj → xij+1kj+1

∈ E for all j ∈ {1, . . . , n− 1}. A cycle
is a path where start and end coincide, xi1k1 = xinkn .

We capture the intuitive concept of multi-image matching
with the following definition:

Definition 2. A set of multi-image matches is a setM =
{Cc} of clusters Cc = {xi1k1 , xi2k2 , . . .}, each one corre-
sponding to a single entity in the universe.

It is immediate to state an equivalent definition in terms
of pairwise matchings and cliques:

Definition 3. A set of multi-image matches is a setM =
{C} of clusters Cc = {xi1k1 , xi2k2 , . . .} such that

(C1) M is a partition of X (i.e., each feature xik appears
exactly in one set Cc);

(C2) Each set Cc has at most one feature per image;

(C3) There is an induced directed graph GM = (X , EM)
of pairwise matches such that, for any Cc ∈M, the sub-
graph GM|Cc is a clique (i.e., GM is a union of cliques).

Conditions (C1) and (C2) prescribe that the same entity
cannot appear in multiple clusters, and that a single entity
cannot appear more than once per image. Condition (C3)
requires that features from the same cluster always match.

Proposition 1. Definition 3 implies the following properties
on the induced graph GM = (X , EM):

(P1) Symmetry: If xi1k1 → xi2k2 ∈ EM, then xi2k2 →
xi1k1 ∈ EM.

(P2) Cycle constraint: given a path xi1k1 , xi2k2 , . . . , xinkn
in GM, having i1 = in (start and end images coincide)
implies k1 = kn (the path is a cycle).

(P3) Single match: If xi1k1 → xi2k2 and xi1k1 → xi2k′2 be-
long to GM, then k2 = k′2 (a feature cannot correspond
to two different features in another image).

Proof. Property (P1) is implied by the definition of clique in
(C3). Property (P2) can be proved by way of contradiction:
assume that k1 6= kn; using the sequence of matches and
the cycle constraint, we can deduce that xi1k1 → xinkn ;
however this is in contradiction with (C2), unless k1 = kn.
Property (P3) can be shown by using property (P1) to build
the path xi2k2 , xi1k1 , xi2k′2 , and then using (P2).

Given Definition 2, the multi-image matching problem
can be formalized as follows.

Problem 1. Given the set of featuresX and a distance d(·, ·)
or a similarity h(·, ·), build a set of multi-image matchesM.

Pairwise matching alone (see §3.1) cannot be used to
solve Problem 1, since, in general, it does not produce graphs
that are union of cliques. Instead, as we discussed in §3,
practical algorithms aim to either building the induced graph
GM (see §3.2) or the clusteringM = {Cc} (see §3.3 and §4).
From a computational standpoint, directly enforcing the
constraint imposed by (C3) (while pursuing some kind of
optimality) is hard, while it is much easier to deal with the
constraints given by properties (P1)–(P3). In particular, (P2)
has inspired the use of the concept of cycle consistency in
the literature. The definition we give below is the one of [10]
paraphrased with our graph-theoretic terminology.

Definition 4. A directed graph of pairwise matches G =
(V, E) is cycle consistent if, for any xi1k1 , xi2k2 , xi3k3 ∈ V ,

(L1) xi1k1 → xi2,k2 ∈ E implies xi2k2 → xi1,k1 ∈ E
(2-cycle consistency, see also (P1));

(L2) xi1k1 → xi2k2 , xi2k2 → xi3k3 ∈ G implies xi3k3 →
xi1k1 (3-cycle consistency).

The following result shows the equivalence between Def-
inition 4 and (C3).

Proposition 2. A directed graph of pairwise matches is cycle
consistent if and only if it is a union of cliques.

Proof. Cycle consistency implies that all matches are sym-
metric. We can therefore partition the graph G into connected
components (maximally connected subgraphs). We prove the
claim by showing that for any two xi1k1 , xin,kn in the same
component, xi1k1 → xin,kn ∈ E . By the definition of con-
nected graph there exist a path xi1k1 , xi2k2 , xi3k3 . . . , xin,kn .
Using the definition of cycle consistency and the first two
correspondences in the path, we deduce that xi1k1 → xi3k3 .
We can therefore build a shorter path xi1k1 , xi3k3 . . . , xin,kn .
By repeating the same argument we can build a sequence of
paths xi1k1 , xijkj . . . , xin,kn , j ∈ {2, . . . , n} until we arrive
to xi1k1 → xin,kn , thus showing the claim.

As a consequence of Proposition 2, we can provide an-
other equivalent definition of multi-image matches.

Theorem 1. In Definition 3, condition (C3) can be equiva-
lently substituted with the following:

(C4) There is an induced directed graph GM = (X , EM)
of pairwise matches such that, for any Cc ∈ M, the
subgraph GM|Cc is cycle consistent.

Overall, the goal of this section is to show that cycle-
consistency (see Theorem 1) and clustering (see Definition 2)
are both valid ways to approach Problem 1. In particular,
this justifies the use of a clustering algorithm (QuickMatch)
instead of relying on cycle consistency constraints (as pre-
viously done). Note that our results are more general than
previous ones based on factorizations of permutation map-
pings [10, 23, 40], which assume a one-to-one correspon-
dence between universe and features.

3. Review of Multi-Matching Algorithms
Section 2 provides the relation between feature clusters

pairwise matches. However, practical algorithms need to
solve Problem 1 and decide what matches are valid (while re-
specting the multi-image matching constraints above) by us-
ing actual distances or similarities. In this section we review
existing algorithms, starting with basic pairwise matching.

3.1. Pairwise Matching

In an ideal world, descriptors for the same entity should
be identical across images, and thus have zero distance or
maximum similarity. Hence, the most straightforward cri-
terion to use is to declare a pairwise match xi1k1 → xi2k2
whenever the distance d(xi1k1 , xi2k2) (or the corresponding
similarity) is lower (higher) than a fixed threshold. However,
this might produce incorrect matches when different entities
have similar appeareances in the same image (e.g., due to
repeated structures). A way to improve the results is to adapt
the threshold based on the distinctiveness of a point, quan-
tified by the distance to the closest descriptor in the same
image. This method, first proposed in [17], declares a match
when

d(xi1k1 , xi2k2) < ρdi1k1 , (1)

where ρ is a fixed constant (typically in the range [0.33, 1])
and di1k1 = d(xi1k1 , xi1k∗) is the distance between the
descriptor k1 in image i1 and the closest descriptor k∗ in the
same image. In practice this simple criterion is very effective
in preventing a large number of incorrect matches. Note that
an analogous criterion (with a reversed inequality) can also
be formulated with similarities instead of distances.

3.2. Cycle Consistency and Optimization

Algorithms for multi-image matching solve Problem 1
by trying to find “tight” clusters inside which features have
low distances or high similarities among them. Early work
aimed to simply identify and remove bad matches by using
the cycle exclusion property (P2) alone; these approaches,
however, require relatively high percentage of good matches
to work [10]. The majority of later approaches, instead,
attack the problem by considering the full characterization
given by Theorem 1, and use cycle consistency constraints.

While some works pose the problem as a global non-
convex optimization [13, 32, 33, 35, 36, 39], the most reliable
solutions are based on convex relaxations [10, 23, 40]. These
approaches keep track of the matches using an indicator
matrix X . This matrix has dimensions K ×K, where K =∑N
i=1Ki is the total number of points, and its stucture is

X =

X11 X12 · · · X1N

X21 X22 · · · X2N

...
...

. . .
...

XN1 · · · · · · XNN

 , (2)

where each block Xij has dimension Ki × Kj . Ideally,
each entry of X should be binary (where 1 indicates corre-
spondences between two points); however, this constraint
is typically relaxed to the unit interval [0, 1]. Intuitively,
each matrix Xij contains the pairwise matching information
from image j to i encoded as a permutation matrix. The
self-permutation Xii is canonically set to the identity matrix
for all i. Cycle consistency (Definition 4) can be expressed
with the constraints Xij = XT

ji (2-cycle consistency, (L1))
and Xi1i3 = Xi1i2Xi2i3 (3-cycle consistency, (L2)). The re-
maining properties required by the definition of multi-image
matches (see Theorem 1 and Definition 3) can be imposed
by enforcing 0 ≤ Xij1 ≤ 1 (the same inequalities with the
transpose Xij are ensured by the symmetry constraint). The
papers [10, 23] show that, after assuming that Ki =M for
all i ∈ I , and that the M features in any image are in one-to-
one correspondence with those in any other image, the cycle
consistency constraint implies the low-rank factorization
X = AAT, where A ∈ RK×M . Each M -by-M block in A
can be interpreted as a permutation mapping the M entities
of the universe to the features in each image (this is equiva-
lent to the main result of §2, albeit in a less general setting).
Using this fact, [10, 23, 40] optimize an objective function
of the form f(X) = tr(S,X) subject to X satisfying all
the constraints above, plus a semi-definite positive (SDP)
constraint [10] or a nuclear norm low-rank regularizer [40];
or subject to X = AAT, where A is orthonormal [23]. The
matrix S ∈ RK×K represents the matrix of distances or
similarities between feature points computed from d(·, ·),
h(·, ·), or other similar information (such as the result of
pairwise graph matching [40]). The papers [10, 40] solve
the optimization problem using the Augmented Lagrangian
Method (ALM), while [23] reduces the problem to finding
the leading singular vectors of the similarity matrix S1. This
line of methods has a few limitations. While some of these
methods take into consideration the distinctiveness of the
features (1) while computing the input pairwise matches,
this information is not used again during the multi-match
problem. Moreover, since these approaches relax the con-
straint that the matrix A must have discrete entries in {0, 1},
an additional thresholding step might be required. Finally,
the size of the universe M needs to be explicitly provided.

Additional methods We mention the works of [22, 37],
which are also based on the use of permutation matrices
from a universe to the features, but exploit the fact that these
matrices, when applied to the feature descriptors, should
ideally produce identical vectors that can then be assembled
into a rank-1 matrix. These approaches share the same limi-
tations as [10, 23, 40]. A parallel line of work [32, 33, 35, 36]
considers the generalization of the multi-image matching
problem given by the multi-image graph matching problem,

1Interestingly, the resulting algorithm is equivalent to spectral clustering
(see §3.3), although the authors of [23] did not realize this connection.

where second order similarities (i.e., similarities between
pairs of pairs of features) are taken into account. Directly in-
corporating these second order similarities is not considered
in this paper, although this information can be indirectly used
by treating them as first-order similarities (as done in [40]).

3.3. Clustering

In this work we attack Problem 1 using the clustering
perspective given by Definition 2. The basic premise is that
points in the same cluster Cc should form a tight group in
feature space (see Fig. 1b). In principle, we could apply
popular clustering algorithms such as k-means [19] or spec-
tral clustering [21], but these algorithms require specifying
in advance the number of clusters M , which is generally
unknown. More importantly, they do not exploit two specific
characteristics of multi-image matching. First, the distinc-
tiveness criterion (1) can be used to estimate the size and
separations of the clusters. Second, the exclusion properties
(C1) and (C2) from the definition impose restrictions on the
possible clustering.

In [34], the clustering perspective is used in an algorithm
that iterates between a matching step and the selection of
mean features (similarly to k-means); this algorithm is sen-
sitive to the initialization used, and multiple iterations are
typically needed in order to achieve convergence.

In this paper, we will instead build upon density-based
clustering algorithms. These algorithms originated with
MeanShift [7], and aim to find clusters of points from the
modes of a non-parametric estimate of the density distribu-
tion of the data [24,25]. Among these algorithms, we choose
QuickShift [29], which is efficient and can be easily modified
to incorporate the descriptor distinctiveness and the exclu-
sion property constraint. Additionally, this algorithm does
not make any explicit assumption on the shape of the clusters,
and allows, for instance, non-isotropic, elongated clusters
(due, for instance, to points seen from different viewpoints).
The details of the algorithm are presented next.

4. QuickMatch: Method Description
Our algorithm, which we call QuickMatch, first organizes

all descriptors {xik} in a tree (similarly to QuickShift). Then,
this tree is broken into small connected components (i.e., a
forest) representing the multi-image matches (clusters). The
details are given below, and see Algorithm 1 for a summary.

4.1. Density Estimation

We start by defining a density function

D(x) =

N∑
i=1

Ki∑
k=1

a(dik)h̃(x, xik; ρdendik) (3)

where h̃ is a density kernel function with bandwidth ρdendik,
0 < ρden < 1 is a user-defined ratio, a is an arbitrary

0 0.5 1

0

0.5

1

(a) Descriptors and QuickMatch clusters.
Colors of the small/large circles: index of
the image/match for each descriptors. Red
arrows: the tree after QuickMatch. Black
arrows: edges discarded by QuickMatch.

2 4 6 8 10 12

2

4

6

8

10

12

(b) Pairwise Euclidean distances be-
tween descriptors (darker colors mean
lower values), ordered according to the
ground-truth matches. Notice the block-
diagonal structure.

1

0

-10

0.50-0.5 1.51

0.5

1

(c) The density used by QuickMatch to order the
points in a tree. Notice how the descriptors on
the right are more discriminative (farther away
with respect to other descriptors) and hence they
produce a stronger peak).

Figure 1: A toy multi-matching problem with 4 “images” and 3 two-dimensional descriptors per image, its intepretation as a
clustering problem, and the results of QuickMatch.

adaptive amplification factor that depends on dik and, again,
dik is the distance between xik and the closest descriptor
from the same image. In our experiments we will use a
non-normalized Gaussian kernel with σ = ρdend12,

h̃(x1, x2;σ) = exp

(
−‖x1 − x2‖

2

2σ2

)
, (4)

although other kernels (e.g., parabolic or triangular) could
be used. Empirically, the value of ρden = 0.25 gives a good
separation between two samples that are dik apart, while
avoiding the fragmentation of clusters. The function a(dik)
can be used to boost the density for descriptors that are easier
to match (i.e., where dik is large), and effectively controls
the relative importance of each match (given by the heights
of its mode in the density). We use a(dik) = log(1 + dik),
which helps with the ordering of “relevance” of the clusters,
but does not appreciably influence the clustering.

Use of similarities instead of distances If instead of dis-
tances d(·, ·) we have similarities h(·, ·), we redefine (3)
as h̃(x1, x2;σ) = h(x1, x2)

1
σ2 . This choice reduces to

(4) when the similarity h is computed from d using a
unit-bandwidth Gaussian. To produce sparser similari-
ties, the elevation to power operation can also be approx-
imated with the piecewise linear function h̃(x1, x2; ρ) =

max(0, h(x1,x2)−ρ
1−ρ) (this is used in the experiments in §5.3).

4.2. Construction of the Tree

Given a descriptor xik, the parent in the tree is given by
the closest point with higher density from another image:

parent(xik) = argmin
i′k′∈J

d(xik, xi′k′),

where J = {i′k′ : k 6= k′, D(xi′k′) > D(xik)}, (5)

and d(·, ·) is the distance in the descriptor space (see
Fig. 1a). If xik is the root of the tree (highest mode), then

parent(xik) = ∅. Equation (5) is the same as in QuickShift,
except that the set J incorporates constraint (C2). If similar-
ities are used instead of distances, then argmin∈J d(xı, x)
should be substituted with argmax∈J h(xı, x).

Intuitively, with this procedure, a point tends to connect
through a “short” edge to another point with a higher density
in the same cluster, or, if it has already the highest value of
the cluster (i.e., it represents a mode of D), then through a
“long” edge to a node in another cluster (see Fig. 1a). Here,
“short” and “long” refer to other edges in the same cluster.

4.3. Breaking the Tree into Clusters

Given a tree, we would like to break it into clusters (con-
nected components) that correspond to valid multi-image
matches, following the exclusion property (C2) and the dis-
tinctiveness criterion (1). Our algorithm works by tracking
the collection of multi-image matches sets {Cc}. We define
two functions: matchImgs(Cc), which returns the indices
of the images {i1, i2, . . .} ⊂ I to which the features in Cc be-
long, and matchDis(Cc), which returns the tightest distinc-
tiveness criterion, matchDis(Cc) = minik:xik∈Cc dik (if
similarities are used, matchDis(Cc) = maxik:xik∈Cc hik).
We use a bottom-up procedure where we initialize one clus-
ter for each point, and then consider each edge in the tree
in ascending distance order (or descending similarity), from
the shortest to the longest. Assume that the edge under con-
sideration connects two datapoints xik and xi′k′ that belong
to two clusters Cc and Cc′ , respectively. We consider an edge
valid, and merge Cc and Cc′ , when:

(EC1) The edge is short with respect to the distinctiveness
criterion of the two clusters, that is d(xik, xi′k′) ≤
ρedge min

(
matchDis(Cc),matchDis(Cc′)

)
(swap h

with d and reverse the inequality if similarities are used).

(EC2) The sets of images covered by the two clusters are
disjoint, matchImgs(Cc) ∩ matchImgs(Cc′) = ∅;

If either condition is not satisfied, we discard the edge. Since
the only operation we are performing on the clusters is merg-
ing, the sets {Cc} are always disjoint (condition (C1)). More-
over, condition (EC2) implies that a single cluster cannot
contain two points from the same image (condition (C2)).
Finally, we canonically consider every feature in a cluster Cc
as matching with all the other features in the same cluster
(condition (C3)). The user-defined constant ρedge can be
used to tune the balance between false positives and false
negatives in the final matches. The algorithm terminates
after considering all the edges (see Fig. 1a).

4.4. Computational Considerations

As attested by the experiments in §5.1, QuickMatch is
several times faster and more scalable than previous solu-
tions. Nevertheless, there are a few aspects that can greatly
speed up an implementation with relatively modest effort.
1) We can store the tree generated in §4.2 using two 1-D
vectors (one for the indeces of the parent of each point,
the other for the corresponding distance). 2) The functions
matchImgs and matchDis do not need to be explicitly
implemented. Their outputs can instead be efficiently ob-
tained using data structures that are updated when an edge
is considered valid. In particular, the intersection operation
in condition (EC2) can be efficiently implemented using
bit arrays. 3) The tree breaking procedure of §4.3 needs
to handle sets of at most 2N datapoints, since each clus-
ter, by construction, cannot contain more than N elements

Algorithm 1 The QuickMatch algorithm

Require: Descriptors {xik}, parameters ρden, ρedge.
Ensure: Clusters {Cc} with multi-image matches.

for all pairs xik, xi′k′ do . Estimating the density
Compute the pairwise density h̃ (e.g., using (4)).

end for
for all xik do

Compute density D(xik).
end for
for all xik do . Building the tree

Compute parent(xik).
end for
Initialize one cluster Cc per datapoint. . Breaking the tree
Order edges in the tree from shortest to longest.
for all edges (in order) do

Let xik ∈ Cc, xi′k′ ∈ Cc′ be the endpoint of the edge
if d(xik, xi′k′) ≤ ρedge min

(
matchDis(Cc, Cc′))

)
and matchImgs(Cc) ∩ matchImgs(Cc′) = ∅ then

Merge Cc and Cc′ .
else

Discard the edge.
end if

end for

(N being the number of original images). 4) The most
computationally expensive steps of the algorithms are the
computation of all the pairwise point distances and the cor-
responding kernel values in §4.1; however, these operations
are embarrassingly parallel. 5) For large datasets, we can
significantly reduce the memory and computation require-
ments by considering only a subset of nearest neighbors
for each point. If a sufficient number of neighbors is used,
the approximation introduced is practically acceptable (this
technique is used in §5.2 and §5.3). An optimized Mat-
lab implementation is available on the first author’s website
(http://sites.bu.edu/tron/software/).

5. Experimental Evaluation
5.1. Graffiti Dataset

In this section we use the Graffiti dataset2 to evaluate
QuickMatch. The main goal of these experiments is to use
the same evaluation protocol as previous work [40] to com-
pare our proposed solution with other state-of-the-art [23,40]
and baseline algorithms (pairwise matching).

The dataset contains images from six planar scenes with
six views each, and a manual ground-truth annotation of
around 1000 keypoints. Using the evaluation protocol in-
troduced in [20, 40], we extract 1000 SIFT features from
each image using VLFeat [28]. The multi-image matching
problem is solved using traditional pairwise matching, the
spectral method of [23], the MatchALS method of [40] and
QuickMatch (with ρedge = 0.7). We evaluate each result by
transferring the annotated keypoint from each view into the
other views using Matlab’s scatteredInterpolant
function to interpolate from the matched features, and then
calculate the distance between the estimated and true an-
notated keypoint positions. We compute the percentage of
matches that have errors less than a thresholds ranging from
zero to 0.1 pixels, and plot the resulting curves, shown in
Fig. 2. Tables 1 contain the summary of the area-under-the-
curve (AUC) metric and computation times (all recorded on
the same machine). This protocol with annotated keypoints
and interpolation allows to indirectly evaluate the quality of
the matches independently from their number (thus avoiding
the need for precision/recall curves). Overall, QuickMatch
improves the AUC metric by 3.2 to 17.9 percentage points
with respect to the Spectral method and by 1.5 to 5.5 with
respect to MatchALS (which represents the previous best
method in this area). Moreover, QuickMatch is 8.8 to 32.1
times faster than the Spectral method and 34.9 to 62.2 times
faster than MatchALS.

5.2. Structure-from-Motion Datasets

In this section we compare QuickMatch against the pair-
wise matching baseline on small Structure from Motion

2http://www.robots.ox.ac.uk/˜vgg/data/data-aff.html

http://sites.bu.edu/tron/software/
http://sites.bu.edu/tron/software/
http://www.robots.ox.ac.uk/~vgg/data/data-aff.html

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

(a) graff
0 0.02 0.04 0.06 0.08 0.1

0

0.5

1

(b) bikes

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

(c) boat
0 0.02 0.04 0.06 0.08 0.1

0

0.5

1

(d) light

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

(e) bark
0 0.02 0.04 0.06 0.08 0.1

0

0.5

1

Pairwise
MatchALS
Spectral
QuickMatch

(f) ubc

Figure 2: Graffiti dataset: Curves for percentage of annotated
points (y-axis) versus distance in pixels (x-axis).

(SfM) datasets. The goal of these experiments is not to fully
evaluate the application of QuickMatch to SfM (which would
require considering the effect of the entire SfM pipeline and
is out of the scope of this paper), but rather to provide an anal-
ysis which is complementary to the one of §5.1 by allowing
the explicit calculation of precision/recall curves (using the
epipolar constraint as validation). More in detail, we use the
SfM datasets from [26] which include ground-truth camera
pose information. We extract around 500–600 SIFT feature
points from each image (again using VLFeat) and perform
both pairwise matching and multi-image matching using
QuickMatch. We can validate matches across pairs of im-

Pairwise Spectral MatchALS QuickMatch

graff 58.8 68.8 (23.3 s) 84.3 (68.0 s) 86.7 (1.6 s)
bikes 72.1 85.0 (53.1 s) 88.8 (94.9 s) 95.3 (1.7 s)
boat 79.3 86.6 (13.2 s) 89.6 (61.7 s) 91.5 (1.5 s)
light 81.9 94.0 (54.6 s) 95.3 (105.8 s) 96.9 (1.7 s)
bark 75.1 87.6 (17.8 s) 90.3 (60.7 s) 91.8 (1.5 s)
ubc 87.4 87.5 (16.7 s) 93.4(59.4 s) 95.7 (1.7 s)

Table 1: Graffiti dataset: Area under the curve and com-
putation times (in parentheses). Times for Spectral and
MatchALS do not include pairwise matching.

ages by calculating the essential matrices from the provided
ground truth camera poses, and then computing the epipolar-
line-distance errors for the matches. For a given image pair,
we compute the precision (Nth

Nmatches
, x-axis)-recall (Nth

Nfeatures
, y-

axis) curves (where Nmatches is number of matches returned,
Nfeatures is the lower number of features from either image,
and Nth is number of matches with epipolar-line-distance
error less than 5 px). The curves are generated by varying
the parameter ρedge for QuickMatch in the range [0.5, 1.5]
and the analogous parameter for pairwise matching (namely,
the threshold THRESH in VLFeat’s vl ubcmatch) in the
range [1, 10]. The curves, shown in Fig.5, are averaged
across all pairs of images. The precision values are relatively
low because the actual number of true matches between fea-
tures extracted in the different pairs of images is unknown,
so we use the number of features in the images Nmatches as a
proxy. In all datasets, the use of QuickMatch consistently im-
proves the precision of the matches. In general, QuickMatch
takes around twice the time of computing pairwise matches.
For the sake of transparency, we mention that if we repeat
the same experiment with a significantly larger number of
extracted features (in the order of tens of thousands instead
of 500–600), the use of QuickMatch does not provide sig-
nificant benefits vis-à-vis pairwise matching. We conjecture
that this is due to the fact that in this regime feature vec-
tors become quite dense in feature space (while the number
of features per clusters remains about the same), and the
descriptors are not informative enough. This conjecture is
supported by the results of the next section, in which Quick-
Match performs significantly better than pairwise matching.

5.3. Object Instance Matching Dataset

Finding semantic correspondences between images of
different object instances is an open problem [4,11,38], with
applications in reconstruction of object category models for
object shape and pose estimation [12]. In this section, we
demonstrate on the FG3DCar dataset [15] that QuickMatch
can not only improve the matching accuracy (compared to
pairwise matching), but also serve as an approach to discover
discriminative parts shared by a class of objects.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

Pairwise
QuickMatch

Figure 3: FG3DCar dataset: Curves for percentage of anno-
tated points (y-axis) versus distance in pixels (x-axis).

Figure 4: Discovered parts in sedan images.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

(a) castle-P30 (543.9)
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

(b) castleentry-P10 (585.7)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

(c) fountain-P11 (603.2)
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

Pairwise
QuickMatch

(d) Herz-Jesu-P25 (622.7)

Figure 5: Results on the SfM datasets from [26], curves
for recall (y-axis) versus precision (x-axis). Captions show
dataset name, number of images and average number of
features/image.

The FG3DCar dataset consists of high-resolution car im-
ages with keypoint and viewpoint annotations. In our experi-
ment, all left-view sedan images (37 images in total) are used
for matching. As the cars in two images might be of different
models with very different local features, traditional geomet-
ric features like SIFT can hardly work. Instead, we adopt the
deep features extracted from pre-trained convolutional neau-
ral networks (CNNs) for matching, which have been proven
to be effective in previous work [16]. Consistent with [40],
we assume that the background segmentation is given, and
we sample feature points along the edges on objects. The
edges are detected by the structured forests [6]. Then, we
forward each image through the AlexNet [14] trained on Im-
ageNet [5] and stack the feature map responses from Conv1
to Conv5 corresponding to each feature point as its descrip-
tor (a.k.a. hypercolumns [8]). In order to leverage the prior
of object rigidity and avoid forming a dense distance matrix
as the input to QuickMatch, we first run graph matching for
all pairs of images using the Reweighted Random Walk al-

gorithm [3] and collect the output scores of graph matching
to form a sparse affinity matrix for all feature points. This
affinity matrix is used to provide the similarities h(·, ·) for
QuickMatch. Graph matching took around 5 s per image
pair, while QuickMatch (with the computed pairwise simi-
larities), took around 108 s to run on the entire dataset. Note
that the other optimization-based method like MatchALS
cannot be used here due to the large size of the problem
(which contains more than twenty thousands features).

We evaluate the accuracy using the same protocol used
for the Graffiti dataset in §5.1. The matching accuracy is
shown in Figure 3, which clearly shows the advantage of
joint matching. We also visualize the top-5 largest clusters
by showing the image patches centered at the feature points
in each cluster, as shown in Figure 4. Despite of few outliers,
all patches in the same cluster correspond to a semantically
meaningful part, such as wheel, window and light. This
illustrates the possibility of using the proposed approach for
automatic discovery of semantic parts in a large collection of
images, which could be potentially used for other high-level
tasks, such as fine-grained classification and pose estimation.
Note that the only training data used here is ImageNet with
class labels. No correspondence or part annotation is used.

6. Conclusion and Future Work

We presented QuickMatch, a novel method that solves the
multi-image matching problem as a clustering problem using
density-based techniques, distinctiveness of features, and ex-
clusion constraints. Our method significantly improves the
accuracy of state-of-the-art multi-image methods while be-
ing at least one order of magnitude faster and more scalable.
In the future we will investigate iterative post-processing
strategies for improving the performance of QuickMatch,
especially in the challenging regime with a large number of
distinct features but a low number of samples for each fea-
ture. We will also study the integration of QuickMatch with
deep learning frameworks for improving semantic matching.

We gratefully acknowledge the support of ONR grant
N00014-17-1-2093.

References
[1] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Speeded-

up robust features (SURF). Computer Vision and Image
Understanding, 110(3):346–359, 2008.

[2] J. Carreira, A. Kar, S. Tulsiani, and J. Malik. Virtual view
networks for object reconstruction. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 2937–2946,
2015.

[3] M. Cho, J. Lee, and K. M. Lee. Reweighted random walks
for graph matching. In ECCV. Springer, 2010.

[4] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker. Uni-
versal correspondence network. In NIPS, 2016.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, 2009.

[6] P. Dollár and C. L. Zitnick. Structured forests for fast edge
detection. In International Conference on Computer Vision,
2013.

[7] K. Fukunaga and L. Hostetler. The estimation of the gradient
of a density function, with applications in pattern recogni-
tion. IEEE Transactions on Information Theory, 21(1):32–40,
1975.

[8] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localization.
In CVPR, 2015.

[9] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, second
edition, 2004.

[10] Q.-X. Huang and L. Guibas. Consistent shape maps via
semidefinite programming. Computer Graphics Forum,
32(5):177–186, 2013.

[11] A. Kanazawa, D. W. Jacobs, and M. Chandraker. Warpnet:
Weakly supervised matching for single-view reconstruction.
In CVPR, 2016.

[12] A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Category-
specific object reconstruction from a single image. In CVPR,
pages 1966–1974, 2015.

[13] V. G. Kim, W. Li, N. J. Mitra, S. DiVerdi, and T. A.
Funkhouser. Exploring collections of 3d models using fuzzy
correspondences. ACM Transactions on Graphics, 31(4):54,
2012.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, 2012.

[15] Y.-L. Lin, V. I. Morariu, W. Hsu, and L. S. Davis. Jointly
optimizing 3d model fitting and fine-grained classification. In
European Conference on Computer Vision, 2014.

[16] J. L. Long, N. Zhang, and T. Darrell. Do convnets learn
correspondence? In NIPS, 2014.

[17] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[18] Y. Ma. An invitation to 3-D vision: from images to geometric
models. Springer, 2004.

[19] D. J. MacKay. Information theory, inference and learning
algorithms. Cambridge university press, 2003.

[20] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A
comparison of affine region detectors. International Journal
of Computer Vision, 65(1-2):43–72, 2005.

[21] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. Neural Information Processing
Systems, 2:849–856, 2002.

[22] R. Oliveira, J. Costeira, and J. Xavier. Optimal point cor-
respondence through the use of rank constraints. In IEEE
Conference on Computer Vision and Pattern Recognition,
volume 2, pages 1016–1021, 2005.

[23] D. Pachauri, R. Kondor, and V. Singh. Solving the multi-
way matching problem by permutation synchronization. In
Advances in Neural Information Processing Systems, 2013.

[24] E. Parzen. On estimation of a probability density function
and mode. The annals of mathematical statistics, 33(3):1065–
1076, 1962.

[25] M. Rosenblatt. Remarks on some nonparametric estimates
of a density function. The Annals of Mathematical Statistics,
27(3):832–837, 1956.

[26] C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoen-
nessen. On benchmarking camera calibration and multi-view
stereo for high resolution imagery. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2008.

[27] R. Szeliski. Computer vision: algorithms and applications.
Springer Science & Business Media, 2010.

[28] A. Vedaldi and B. Fulkerson. VLFeat: An open and
portable library of computer vision algorithms. http:
//www.vlfeat.org/, 2008.

[29] A. Vedaldi and S. Soatto. Quick shift and kernel methods for
mode seeking. In IEEE European Conference on Computer
Vision, pages 705–718. Springer, 2008.

[30] S. Vicente, J. Carreira, L. Agapito, and J. Batista. Recon-
structing Pascal VOC. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 41–48. IEEE, 2014.

[31] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
DeepFlow: Large displacement optical flow with deep match-
ing. In International Conference on Computer Vision, 2013.

[32] J. Yan, M. Cho, H. Zha, X. Yang, and S. Chu. Multi-graph
matching via affinity optimization with graduated consistency
regularization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2015.

[33] J. Yan, Y. Li, W. Liu, H. Zha, X. Yang, and S. M. Chu.
Graduated consistency-regularized optimization for multi-
graph matching. In European Conference on Computer Vision,
2014.

[34] J. Yan, Z. Ren, H. Zha, and S. Chu. A constrained clustering
based approach for matching a collection of feature sets. In
International Conference on Pattern Recognition, 2016.

[35] J. Yan, Y. Tian, H. Zha, X. Yang, Y. Zhang, and S. Chu. Joint
optimization for consistent multiple graph matching. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 1649–1656, 2013.

[36] J. Yan, J. Wang, H. Zha, X. Yang, and S. Chu. Consistency-
driven alternating optimization for multigraph matching: a
unified approach. Image Processing, IEEE Transactions on,
24(3):994–1009, 2015.

http://www.vlfeat.org/
http://www.vlfeat.org/

[37] Z. Zeng, T.-H. Chan, K. Jia, and D. Xu. Finding correspon-
dence from multiple images via sparse and low-rank decom-
position. In IEEE European Conference on Computer Vision,
pages 325–339. Springer, 2012.

[38] T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and A. A.
Efros. Learning dense correspondence via 3d-guided cycle
consistency. In CVPR, 2016.

[39] T. Zhou, Y. J. Lee, S. X. Yu, and A. A. Efros. Flowweb: Joint
image set alignment by weaving consistent, pixel-wise cor-
respondences. In Computer Vision and Pattern Recognition
(CVPR), 2015 IEEE Conference on, pages 1191–1200. IEEE,
2015.

[40] X. Zhou, M. Zhu, and K. Daniilidis. Multi-image matching
via fast alternating minimization. In Proceedings of the IEEE
International Conference on Computer Vision, 2015.

	. Introduction
	. Results on Multi-Image Matching and Graphs of Pairwise Matches
	. Review of Multi-Matching Algorithms
	. Pairwise Matching
	. Cycle Consistency and Optimization
	. Clustering

	. QuickMatch: Method Description
	. Density Estimation
	. Construction of the Tree
	. Breaking the Tree into Clusters
	. Computational Considerations

	. Experimental Evaluation
	. Graffiti Dataset
	. Structure-from-Motion Datasets
	. Object Instance Matching Dataset

	. Conclusion and Future Work

