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Abstract. In the last few years there has been a growing interest in
optimization methods for averaging pose measurements between a set of
cameras or objects (obtained, for instance, using epipolar geometry or
pose estimation). Alas, existing approaches do not take into consideration
that measurements might have different uncertainties (i.e., the noise
might not be isotropically distributed), or that they might be incomplete
(e.g., they might be known only up to a rotation around a fixed axis).
We propose a Riemannian optimization framework which addresses these
cases by using covariance matrices, and test it on synthetic and real data.

Keywords: Pose averaging. Riemannian geometry. Error propagation.
Anisotropic filtering. Incomplete measurements.

1 Introduction

Consider N reference frames, each representing, e.g., the pose of a camera or
of an object. Assume that we can completely or partially measure the relative
rigid body transformations for a subset of all possible pairs of frames (see Figure
1). Our goal is to combine all these measurements and obtain an estimate of
the position of each frame with respect to some global reference. In order to do
so, if there are enough measurements available, we can exploit the geometric
constraints induced by combining the poses in cycles. This usually takes the
form of an optimization problem that “averages” the poses. However, we need to
take into account that the estimates might be partially erroneous or unknown.
For instance, the noise in the estimated translations could be higher in some
direction, or two rotations could be constrained to be coplanar and have the
same z-axis, but differ otherwise. If these errors and ambiguities are not correctly
handled, they could propagate and bias the entire result. However, if correctly
combined, the different measurements can complement each other into a complete
and accurate solution. In this paper we propose to explicitly model non-isotropic
noise and incomplete poses through the use of covariance matrices. This is similar
to the idea of gradient-weighted least-squares fitting in the statistics literature [22].
More in detail, we propose to proceed as follows:

1. Estimate the relative rigid body transformations between pairs of references
and their uncertainties or ambiguities.
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(a) Camera-Targets (CT) dataset.
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(b) Camera-Depth sensor-Target
(CDT) dataset.

Fig. 1: Example of different graphs of relative poses. Green pyramids: cameras.
Green squares: targets with known structure. Blue pyramids: depth sensors.
White squares: planes. Blue lines: complete pose estimates. Red lines: incomplete
pose estimates. More details on this examples are given in §7.1.

2. Setup a graphical model for the joint probability of the poses.
3. Optimize the cost function associated with this model.

Note that our unknowns are poses, which lie on a Riemannian manifold. We
will show in this work how this affects the steps above.

Prior work . The idea of estimating covariance matrices to obtain better
estimation accuracies has been a long-standing idea, even in the context of
computer vision [23], [7]. In this work we use similar ideas, although from the
more formal setting of Riemannian geometry.

Regarding pose averaging, this problem has been considered in numerous
existing papers. The first contributions tried to solve the problem linearly using
quaternions [11] or rotation matrices [15]. Following works are based on local
optimization approaches: [12] uses Lie groups approximations, [19] applies gradient
descent on the sum of squared Riemannian distances (i.e., an `2 norm), while
[13,20] use absolute distances (i.e., an `1 norm). In practice, the latter approaches
are sensitive to local minimizers. Therefore, more recent work tackles the problem
of obtaining good initializations: [4] solves a discretization of the problem using
Belief Propagation, while [8] uses a formulation based on Lagrangian duality
and [2] proposes a spectral method and an SDP relaxation. Closer to our approach
is [5], where Belief Propagation is used for inference on the graphical models of
the poses. However, no conditions for a consistent solution were imposed and the
non-Euclidean structure of the rotations was not rigorously considered. Finally,
Cramer-Rao bounds for this type of problems are considered in [3].

Paper contributions. In almost all the previous work, the authors make
the implicit or explicit assumptions that either the noise in the measurements
is isotropically distributed or that the measurements themselves are complete.
The major contribution of the present paper is to propose a feasible way to
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remove these assumptions. In addition, we give in §5 detailed formulae for the
estimation of the covariance matrices from image data (while taking into account
the Riemannian structure of the space of poses), and, in §6.2, a linear solution
to the pose estimation problem from incomplete measurements (plane/pose
correspondences).

2 Notation

We model the set of frames and measurements as a directed graph G = {V,E},
where the vertices V = {1, . . . , N} represent the reference frames and the edges
E ⊆ V × V represent the pairs of nodes for which we have a rigid body trans-
formation measurement. We denote the pose of each reference frame as a pair
gi = (Ri, Ti) ∈ SE(3), where SE(3) = SO(3)× R3 is the space of 3-D poses and
SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1} is the space of 3-D rotations. We
also denote as g̃ij = (R̃ij , T̃ij) ∈ SE(3), (i, j) ∈ E, the measured relative rigid
body transformations. We use the convention that (Ri, Ti) represents the transfor-
mation from local to global reference frames. Then, ideal, complete and noiseless
measurements are given as gij =

(
Rij , Tij) = g−1i gj = (RTi Rj , R

T
i (Tj − Ti)

)
.

The tangent space at g ∈ SE(3) is given by TgSE(3) = TRSO(3) × R3, where
TRSO(3) = {RV : V ∈ so(3)} is the tangent space at R ∈ SO(3) and where
so(3) is the space of 3× 3, skew symmetric matrices. We can identify a tangent
vector VR ∈ TRSO(3) with a vector vR ∈ R3 using the hat (·)∧ and vee (·)∨
operators, given by the relations

vR =

vR1

vR2

vR3

 (·)∧

�
(·)∨

VR = R

 0 −vR3 vR2

vR3 0 −vR1

−vR2 vR1 0

 . (1)

Similarly, we can identify a vector V = (v̂R, vT ) ∈ TgSE(3) with a vector
v = stack(vR, vT ) ∈ R6. Given two tangent vectors V1, V2 ∈ TgSE(3) and the
corresponding vector representations v1, v2 ∈ R6, we use the following Riemannian
metric for SE(3):

〈V1, V2〉 = vT1 v2. (2)

This metric is equivalent to consider SE(3) as the cartesian (instead of semi-
direct) product of SO(3) and R3, and then summing the standard metrics of the
two.

For a given R ∈ SO(3), the exponential and logarithm map are denoted,
respectively, as expR : TRSO(3) → SO(3) and logR : UR → TRSO(3), where
UR ⊂ SO(3) is the maximal set containing R for which expR is diffeomorphic. For
convenience, we also define Log : UI → R3, the vectorized version of the logarithm
map at the identity, i.e., Log(R) = (logI(R))∨ ∈ R3, where R ∈ SO(3). For any
given rotation R ∈ SO(3), we denote as DLog(R) the matrix representation of
the differential of the logarithm. More precisely, let R(t) be a smooth curve such
that R(0) = R0 and Ṙ(0) = v̂R, then

d

dt
Log(R)|t=0 = DLog(R0)vR. (3)
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The operators Log and DLog can be computed in closed-form [18].
For a given g ∈ SE(3), the exponential and logarithm map are defined by the

same maps applied independently on the rotation and translation components:

exp(R,T )(v̂R, vT ) = (expR v̂R, T + vT ), (4)

log(R1,T1)(R2, T2) =(logR1
R2, T2 − T1). (5)

Note that these definition are consistent with the choice of Riemannian metric
in (2), and are different than the so-called screw-motions (see, e.g., [14]). If
g̃ = (R̃, T̃ ) ∈ SE(3) is a random variable with distribution p(g̃), the covariance
matrix with respect to g = (R, T ) (which is conventionally taken to be the mean)
is defined as

Σ =

∫
SE(3)

vg̃gv
T
g̃gp(g̃)dSE(3), (6)

where v = stack(Log(R̄T R̃), T̃ − T̄ ) and dSE(3) denotes the measure induced by
the Riemannian metric [17]. Note that v is not defined on the so-called cut locus
of g (i.e., outside of the set UR mentioned above). However, it can be shown [9]
that the cut locus has measure zero. Hence, for well-behaved distributions (such
as those considered here), the integral in (6) is well defined.

Given a function f : SE(3) → RD, we denote as gradg f a unique set of

tangent vectors {graddg f}Dd=1 such that, for any tangent vector v ∈ TgSE(3), we
have

〈graddg f, v〉 =
d

dt
fd(g̃(t))

∣∣∣∣
t=0

, (7)

where fd is the d-th component of f and g̃(t) is a curve in SE(3) such that
g̃(0) = g and ˙̃g∨ = v. In practice, using the identification given by the hat
operator, grad f can be expressed as a 6 × d matrix. This is equivalent to the
definition of gradient and Jacobian for the case where f is defined on the usual
Euclidean space.

Lastly, we use Id and 0d to denote the identity and square zero matrix in
Rd×d, respectively. Also, we denote with {ed}3d=1 and {e′d}2d=1 the standard bases
in R3 and R2.

3 Problem Setting

For complete measurements g̃ij , we assume a clipped Gaussian distribution with
mean at the true values gij . This distribution has the form

p(g̃ij ; gi, gj) = kij exp

(
−
vTijΓijvij

2

)
(8)

where

vij =

[
vRij
vTij

]
, vRij = Log

(
R̃TijR

T
i Rj), vTij = T̃ij −RTi (Tj − Ti), (9)
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Notation-wise, we will use the following partition of Γij :

Γij =

[
ΓRRij ΓRTij
ΓTRTij ΓTTij

]
, (10)

where ΓRRij , ΓRTij , ΓTTij ∈ R3×3. The clipped Gaussian has been shown [17] to
be a generalization of the usual Gaussian distribution in RD to the manifold case,
in the sense that it is the distribution that maximizes the entropy for a given
covariance matrix Σij . The constant kij is chosen such that p(gij) integrates to
one over SE(3) [17]. If the distribution is relatively concentrated (intuitively, far
from a uniform distribution), the dispersion or information matrix Γij is related,
as a first order approximation [17], to the covariance matrix by the formula

Γij ' Σ−1ij −
1

3
Ric, (11)

where Ric is the matrix form in normal coordinates of the Ricci (or scalar)
curvature tensor. In our case, we have the following:

Proposition 1. With the choice of metric for SE(3) made in §2, we have

Ric =

[
1
2I3 03
03 03

]
. (12)

See the additional material for a proof. Intuitively, the correction in (11) takes
into account the effect of clipping the tails of the Gaussian distribution.

For incomplete measurements, we model the unknown degrees of freedom as
directions along which the covariance Σij is infinite. In practice, this leads to
dispersion matrices Γij which are singular along the same directions.

Under the additional assumption that the noise terms affecting different edges
(i, j) ∈ E are independent, the joint distribution of the measurements is given by

p({g̃ij}(i,j)∈E ; {gi}i∈V ) =
∏

(i,j)∈E

p(g̃ij ; gi, gj). (13)

We then formulate the problem of estimating the poses {gi}i∈V as a maximum
likelihood problem, i.e., as minimizing the following log-likelihood.

l({gi}i∈V ) = −1

2

∑
(i,j)∈E

vTijΓijvij . (14)

Note that in (14) we have excluded the constant terms containing the normaliza-
tion constants kij , because they are not relevant for the optimization problem.

4 Minimization Algorithm

For the minimization of the cost (14), we will employ Riemmannian gradient
descent with exact line search. The general form of this algorithm is given in
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Algorithm 1 Riemannian gradient descent with exact line search

Input: Initial elements {g0i}i∈V ∈ SE(3)N , a maximum step size t̄.

1. Initialize gi(0) = g0i

2. For l ∈ N, repeat
(a) Compute the gradient {hi}i∈V defined by (15)
(b) Solve the line search problem

t∗ = argmin
t∈[0,t̄]

l({expgi(l)
(thi)}i∈V (19)

(c) Compute the update

gi(l + 1) = expgi(l)
(t∗hi), i ∈ V (20)

Algorithm 1. Other variations are also possible (e.g., using an inexact line search
or a fixed step size). See [1] for details on such variations and for convergence
proofs. The only part of the algorithm that is specific to our problem is in the
computation of the gradient, which is given by the following.

Proposition 2. The gradient of the negative log-likelihood function (14) is given
by

gradgi l({gi}i∈V ) =( ∑
(i,j)∈E

(RTi Rjh
′
Rij + h′′Rij)−

∑
(j,i)∈E

h′Rji,
∑

(j,i)∈E

hTji −
∑

(i,j)∈E

hTij

)
(15)

where

h′Rij = DLog(RTijR
T
i Rj)

T (ΓRRijvRij + ΓRTijvTij) (16)

h′′Rij =
(
RiT (Tj − Ti)

)∧
(ΓTRTijvRij + ΓTTijvTij) (17)

hTij = Ri(Γ
T
RTijvRij + ΓTTijvTij); (18)

See the Appendix for a proof.

4.1 Numerical Normalization

Notice that terms in (15) depend directly on the entries of {Γij}(i,j)∈E , which
can be relatively large or small when the measurements are either really precise
(small variances) or not precise at all (large variances). In practice, this has the
effect that the step size t found by Algorithm 1 could become very small or very
large. In order to avoid potential numerical problems that could arise, we rescale
the cost (14) by performing the substitution

Γij ←
Γij
µΓ

(21)
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where

µΓ =
1

6|E|
∑

(i,j)∈E

tr(Γij). (22)

With this normalization the average of the eigenvalues of Γij will be equal to one.
Note that this rescaling does not affect where the minimizers of (14) are located.

5 Computing the Dispersion Matrices

In this section, we give details on how to compute the dispersion matrices Γij .
We consider the cases where we estimate complete poses from image data and
where we have incomplete pose constraints.

5.1 Complete Poses from Image Data

In most applications, each relative transformation g̃ij is estimated as the solution
to some minimization problem of the form

g̃ij = argmin
gij

K∑
k=1

f(gij , x
(k)
ij ), (23)

where {x(k)ij }Kk=1 represents a set of K measurements in RD (e.g., matched
image point coordinates). Then, one can think of the noise in g̃ij as being a

consequence of the noise present in the data x
(k)
ij . We can extend well-known

error propagation techniques (see, e.g., [7,22,23]) to the case of manifolds. Define

∇f(gij , x
(k)
ij ) = gradgij f(gij , x

(k)
ij ). The solution g̃ij of (23) implies the condition∑
k

∇f(gij , x
(k)
ij ) = 0 (24)

Writing the first order Taylor expansion of (24) with respect to both gij and x
(k)
ij ,

we have
K∑
k=1

Hijkvij +

K∑
k=1

Jijkv
k
xij ' 0, (25)

where

Hijk = gradgij ∇f(gij , x
(k)
ij ) (26)

Jijk = grad
x
(k)
ij
∇f(gij , x

(k)
ij ) (27)

and vij ∈ TgijSE(3), vkxij ∈ RD represent the errors in the estimate gij and the

measurements x
(k)
ij , respectively. Under the assumption that errors in the image

point are corrupted by an isotropic Gaussian noise with zero mean and covariance
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E[vkxijv
k T
xij ] = σI4 for some σ ∈ R, we can compute the covariance matrix of vij

as

Σij = E[vijv
T
ij ] = (

K∑
k=1

Hijk)−1(

K∑
k=1

JijkJ
T
ijk)(

K∑
k=1

Hijk)−T . (28)

This result can then be plugged into (11) to obtain the dispersion matrices for
the optimization problem.

As a concrete example, consider the estimation of the pose of a camera i from
an object j with known geometry by minimizing the sum of reprojection errors

f(Rij , Tij , x
(k)
ij ) = ‖π

(
RTij(X

(k)
ij − Tij)

)
− x(k)ij ‖

2, (29)

where X is the 3-D coordinate vector of a known point in the object’s reference
frame, x is its (measured) projection in the camera’s image and π represents the
perspective projection operator with unit focal length. The camera is assumed to
be calibrated. Then, we have the following.

Proposition 3. The matrices Jijk and Hijk in (28) for the cost (29) are

Hijk = JTx Jx +

2∑
d=1

(xp − x(k)ij )T edHxd, Jijk = −Jx, (30)

where

Jx =
1

λ2c
PMJXw, λc =eT3Xc (31)

Hxd =
1

λ2c

(
1

λc
JTXe3e

T
dMJX +JTX(e3e

T
d − edeT3 )JX +

3∑
d′=1

(eTdMed′HXd′)

)
, (32)

M =(λcI3 −Xce
T
3 ), P =

[
I2 02

]
, xp =

1

λc
PXc (33)

JX =
[
X̂c R

T
ij

]
, HXd =

[
X̂cêd ê

T
dR

T
ij

Rij êd 03

]
, Xc =RTij(X

(k)
ij − Tij). (34)

See the additional material for a proof. Note that this result could also be used
in PnP problems or in a bundle-adjustment iteration when the 3-D structure is
fixed.

5.2 Partial Pose Constraints

In different applications, especially those combining sensors of different modalities,
we can only obtain partial constraints between pairs of poses. For instance,
consider the problem of calibrating the extrinsic transformation between a depth
sensor and a camera using measurements from a plane in different positions (see
Figure 1b, for instance). Using a known pattern on the plane, one can compute
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the relative transformation between the camera frame and a frame attached to
the pattern. From the depth sensor, however, we can only estimate the equation
of the plane. The relative transformation between the depth sensor and the plane
frames can therefore be obtained only up to an in-plane rotation and translation.
Similarly, consider the case where multiple known patterns are attached to the
plane. We can then add the constraint that the reference frames should differ
only by an in-plane rotation and translation.

Mathematically, these cases can be considered as follows. Assume that the
measurement g̃ij is without noise, but with an ambiguity given by a rotation
and translation in a plane with normal n, ‖n‖ = 1. We then have g̃ij = gijgn,
where gn = (Rn(θ), vn), Rn(θ) is a rotation around of θ radiants around n and
vn is a vector orthogonal to n, i.e., vTn = 0. Note that Log

(
Rn(θ)

)
= θn. It then

follows that the tangent vector vij is given by

vij =

[
θn
vn

]
. (35)

We then propose to use the following dispersion matrix

Γij =

[
I3 − nnT 03

03 nnT

]
. (36)

It is then easy to check that the term vTijΓijvij in (14) is zero if and only if vij is
of the form (35), i.e., this quantity can be used to measure the similarity between
the poses g−1i gj and g̃ij .

6 Initialization

Since Algorithm 1 represents a local optimization, using good initial values for
{gi}(i,j)∈E is important. These can be found by using linear algorithms. We
consider in this section the two cases of complete or incomplete pose estimates.

6.1 Complete Poses

For this case, we can use the spectral method of [2] to estimate the rotations.
For the translations, we solve the least squares problem

min
{Ti}

∑
(i,j)∈E

‖T̃ij −RTi (Tj − Ti)‖2, (37)

which can be rewritten in the form

min
T

1

2
TTAT + bTT, (38)

where T = stack({T}i∈V ) ∈ R3N , and where the matrix A ∈ R3N×3N and the
vector b ∈ R3N can be computed from {Ri}i∈V and {Tij}(i,j)∈E . Note that A
is singular, due to the fact that if {Ti}i∈V is a minimizer of (37), then also
{Ti + T̃}i∈V will be a minimizer for any T̃ ∈ R3. In practice, one needs only to
compute T = A†b, where A† is the Moore-Penrose pseudoinverse of A.
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6.2 Incomplete Poses

Assume that we have a node i for which all the measurements {gij}j:(i,j)∈E
contain the ambiguity described in §5.2 and all the poses {gi}j:(i,j)∈E are known
(e.g., they can be directly measured). Assume that the equation of the plane
for the ambiguity in gij is described as nTijXi + dij = 0 in the frame gi, and

nTjiXj + dji = 0 in the frame gj . Then, we have

nTijRijXj + nTijTij + dij = 0, (39)

from which we can obtain the following constraints:

Rinij = Rjnji, (40)

nTijR
T
i (Tj − Ti) + dij = dji. (41)

It follows that we can first estimate Ri through (40) and an orthogonal Procrustes
analysis [10]. In practice, defining C =

∑
j:(i,j)∈E Rinijn

T
ji, we can set Ri =

U diag
(
1, 1,det(UV T )

)
V T , where U, V are given by the SVD decomposition

C = UΣV T . Once Ri is determined, we can use (41) to estimate Ti linearly in a
least-squares sense.

7 Experiments

7.1 Synthetic Datasets

We first test the minimization algorithm described in §4 on two synthetic datasets.
Cameras-Targets (CT) dataset . In the first dataset, we generate N = 10

reference frames where two frames (which represent “cameras”) lie on the z = 10
plane and point downward while the remaining eight frames (which represent
“targets” with known structure) lie on the plane z = 0 and point upward. The x
and y coordinates of each frame are taken uniformly at random in a square with
side length L = 15. The graph is formed by connecting each camera with the
other and with each target. An example of this setup is depicted in Figure 1a.
This scenario is meant to represent two poses of a camera moving above targets
with known 3-D structure but unknown location. We generate each dispersion
matrix (for the rotation part) as ΓRRij = UΛ−1UT , where U ∈ R3×3 is drawn
uniformly at random from the space of orthonormal matrices and Λ ∈ R3×3

is a diagonal matrix whose elements are variances drawn uniformly at random
between 0.01 and 0.5 radiants (which are roughly equivalent to 0.5 and 30 degrees,
respectively). A similar approach is taken for the translation part ΓTTij , but with
variances drawn uniformly between 0.1 and 2. For the cross-covariance matrices
ΓRTij , each entry is taken from a Gaussian distribution with standard deviation

0.01. The measurement (R̃ij , T̃ij) for each edge is generated by corrupting the
true transformation according to the model in (8) and the generated covariances
{Γij}(i,j)∈E . We then run the minimization algorithm of §4 on the generated
dataset, first using the true covariance matrices {Γij}(i,j)∈E (“Covariances”),
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and then again with Γij ← tr(Γij)
6 I6 (“Weighted”) and Γij ← I6 (“Isotropic”)

for all (i, j) ∈ E. The last two configurations correspond, respectively, to just
using the variance information without considering any coupling between rotation
and translation, and to assuming that the errors are all isotropic and identically
distributed. We repeated this experiment 50 times and, for each edge, we computed
the angles between the relative rotations and between the relative translations
from the poses obtained with the minimization algorithms (including the spectral
initialization of §6.1) and those obtained from the ground truth. Figure 2 shows the
empirical distributions of these errors, while Table 1 contains the corresponding
mean and standard deviations. As a reference, we also include the same statistics
for the initialization described in §6.1 (“Spectral”).

From Figures 2a, 2b and Table 1a we can see that by averaging the measure-
ments across the graph the errors (especially for the translations) are greatly
reduced, both in mean and standard deviation. Also, by taking into account the
correct covariance matrices, we obtain around 40% reduction in the mean error
for the rotations and around 20% reduction for the translations. Intuitively, this
is because our algorithm uses the fact that different measurements have different
uncertainties in different directions.

Camera-Depth sensor-Targets (CDT) dataset . In the second dataset,
we simulate a camera-depth sensor extrinsic calibration task. We pose the problem
by using a plane with three targets on it and assume that each the camera can
independently measure the pose of each target, while the depth sensor can only
measure the normal and distance of the plane on which the targets reside. The
in-plane transformation between the targets is assumed unknown. We generate
20 random plane positions, and corrupt the corresponding measurements with an
isotropic noise with variance 0.05 for both rotation and translation in the pose
estimates, and both normal and distance in the plane estimates. We build the
graph for our algorithm with edges between the camera and each target (complete
poses), between each target and the depth sensor (incomplete poses) and between
targets belonging to the same plane (incomplete poses). An illustration of this
setup (with only three planes visualized) can be found in Figure 1b. We initialize

Rotations Translations

Mean Std Mean Std

Covariances 4.130 2.041 1.856 1.063
Weighted 6.259 4.061 2.315 1.429
Isotropic 6.369 4.079 2.306 1.421
Spectral 9.208 4.381 3.971 2.267

(a) CT dataset

Rotations Translations

Mean Std Mean Std

Covariances 1.019 0.538 1.114 0.686
Linear 1.070 0.491 1.544 1.055

(b) CDT dataset

Table 1: Mean and standard deviation for the errors after localization and for
the initial measurements. The errors are in degrees between ground truth and
estimated rotation axes. The same applies to the translation directions.
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our algorithm by fixing the camera frame at the origin, the targets’ frames at their
measured poses and the depth sensor frame at the solution given by the linear
algorithm of §6.2. We repeat the localization for 50 different plane configurations,
and measure the error on the rotation and translation direction for the pose of
the depth sensor with respect to the camera. Similarly to before, Figures 2c, 2d
and Table 1b show the cumulative distributions and the mean and standard
deviation of the errors. Again, our algorithm improves the localization results
with respect to the linear initialization, especially for the translation part.

7.2 Real Dataset

The dataset for this section has been obtained by collecting a sequence of 65
images of 6 AprilTags [16] (our targets) from a moving camera strapped onboard
a quadcopter. The ground truth pose of each tag has been collected using a
commercial VICON system, while the measurements of the relative pose between
each visible tag and the camera are obtained using the software of [16] followed by
a routine to minimize the reprojection error of the four corners of each tag. This
dataset is particularly challenging because we have only four points available for
pose estimation for each target and the dataset also contains a few mis-detections,
which introduce outliers.

For both datasets, we use the method described in §5 to compute the covari-
ance matrices for each estimate and run the same algorithms as in §7.1. For the
evaluation, we consider only the nodes of the graph corresponding to the targets.
Since we are interested in the error on the absolute pose, we align the result of
each optimization to the ground truth using a Procrustes analysis. We record the
root mean square error of the translations and the angle between the rotations.
The results are reported in Table 2. the result using full covariance matrices
(“Covariances”) is strictly better than the result using equally weighted isotropic
covariances (“Isotropic”). Using only the trace of the covariances (“Weighted”)
gives mixed results, with better translations but significantly worse rotations.
We believe this might be due to the fact that, from only four points, the estimate
of the covariance matrices is less indicative of the true covariance, and using
only the trace might give better results. Finally, in both cases the initialization
with the algorithm of [2] gives better rotation estimates but worse translation

Rotations [deg] Translations [cm]

Covariances 2.066 2.378
Weighted 3.293 1.853
Isotropic 2.331 2.670
Spectral 1.559 2.563

Table 2: Errors on the pose of the tags (average angle for rotations, and root
mean squared error for translations) with respect to ground truth for the Tag
dataset.
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(a) Rotation errors – CT dataset
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(c) Rotation errors – CDT dataset
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Fig. 2: Empirical cumulative distributions and box plots of the errors after
localization. The various lines correspond to the estimation with exact, weighted
and isotropic covariances and to the spectral initialization.

Fig. 3: Some of the images in the Tag dataset.

estimates. This might due to the fact that the datasets contain outliers due to
wildly incorrect pose estimations, and the Frobenious-norm distance used for the
rotations in [2] is slightly more robust to outliers than the Riemannian distance
used here.

8 Conclusions and Future Work

In this paper we proposed an optimization method for averaging poses along
a graph with non-istropic and incomplete measurements. Our technique can
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be seen as the extension of weighted least squares to this problem. We have
also examined a method for analytically estimating the necessary covariance
matrices in the case of pose estimation from objects with known geometry or
with partial plane-pose constraints. We plan to expand this work by considering
noise models with outliers and other kinds of ambiguities in the measurements,
possibly combining it with other recent approaches such as [6, 21].

9 Appendix

This appendix contains the proof of Proposition 2. The proofs for the other results
can be found in the additional material. In general, we will need to compute
the gradient of some function f defined on SE(3). The approach we use is as

follows. First, we define the curves (Ri(t), Ti(t)) such that d
dt

(
Ri(t), Ti(t)

)∣∣∣
t=0

=(
Ṙi(0), Ṫi(0)

)
= ( ˆvRi, vTi) = v. Then, we compute the directional derivative at

t = 0 of the function along such curves, which we will denote as ḟ(v) (where v
indicates the direction of the derivative). The result for the gradient will then
follow from the definition in (7). Note that, in order to avoid clutter, we will
omit, in the following, the explicit dependency of Ri, Ti, etc., on the variable t.

9.1 Proof of Proposition 2

We will need the following derivatives. We will use the fact that Rv̂RT = (Rv)∧

for R ∈ SO(3).

d

dt
R̃ijR

T
i Rj = RijṘ

T
i Rj + R̃ijR

T
i Ṙj = R̃ij v̂

T
RiR

T
i Rj +RijR

T
i Rj v̂Rj

= R̃ijR
T
i Rj(−RTj Riv̂RiRTi Rj + v̂Rj) = R̃ijR

T
i Rj(−RTj RivRi + vRj)

∧ (42)

d

dt
vTij = −v̂TRiRTi (Tj−Ti)−RTi (vTj−vTi) =

(
RTi (Ti−Tj)

)∧
vRi+R

T
i (vTi−vTj)

(43)
d

dt
vRij = DLog(R̃ijR

T
i Rj)(−RTj Rivi + vj) (44)

We can now take the derivative of the negative log-likelihood.

d

dt
l({gi}i∈V ) =

d

dt

1

2

∑
(i,j)∈E

(vTRijΓRRijvRij + 2vTRijΓRTijvTij + vTTijΓTTijvTij)

=
∑

(i,j)∈E

(
(vTRijΓRRij + vTTijΓ

T
RTij)Dij(−RTj RivRi + vRj)

− (vTRijΓRTij + vTTijΓTTij)
(
RTi (Tj − Ti)

)∧
vRi

− (vTRijΓRTij + vTTijΓTTij)R
T
i (vTj − vTi) (45)

where Dij = DLog(RTijR
T
i Rj). The expressions in Proposition 2 follow from (45)

and the definition of gradient.
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