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Abstract

Tele-immersion is a new medium that enables a user to
share a virtual space with remote participants. The user is
immersed in a rendered 3D-world that is transmitted from
a remote site. To acquire this 3D description we apply bi-
and trinocular stereo techniques. The challenge is to com-
pute dense stereo range data at high frame rates, since par-
ticipants cannot easily communicate if the processing cycle
or network latencies are long. Moreover, new views of the
received 3D-world must be as accurate as possible. We ad-
dress both issues of speed and accuracy and we propose a
method for combining motion and stereo in order to increase
speed and robustness.

1 Introduction

The power of today’s general purpose and graph-
ics processors and the high bandwidth of the recent
Internet generations, provide the necessary infrastruc-
ture for mixed reality systems which can augment the
user’s senses and create the sense of tele-presence. In
this paper we describe our contribution to the real-
ization of a new mixed reality medium called tele-
immersion. Tele-immersion enables users in physi-
cally remote spaces to collaborate in a shared space
that mixes the local with the remote realities. The con-
cept of tele-immersion involves all visual, aural, and
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haptic senses. To date, we have dealt only with the
visual part, and in collaboration with the University
of North Carolina (Henry Fuchs and co-workers) and
Advanced Network and Services (Jaron Lanier), we
have accomplished a significant step toward realiza-
tion of visual tele-immersion.

Figure 1. A user in Chapel Hill wearing polar-
ized glasses and an optical tracker commu-
nicates with two remote users from Philadel-
phia (left) and Armonk (right). The stereo-
scopically displayed remote 3D-scenes are
composed from incoming streams of textured
3D data depicting the users, and off-line ac-
quired static backgrounds.

Our accomplishment is best illustrated in Fig. 1
taken during the first full scale demonstration at the
University of North Carolina. A user wears passive
polarized glasses and an optical tracker [34, Hiball]
which captures the head’s pose. On the two walls
two realities, the Philadelphia, and the Armonk real-



ity, respectively, are stereoscopically displayed from
polarized pairs of projectors. The static parts of the
two scenes are view-independent 3D descriptions ac-
quired off-line. The 3D-descriptions of the persons in
the fore-ground are acquired in real-time at the remote
locations and transmitted over the network. The pro-
jections on the walls are dynamically rendered accord-
ing to the local user’s viewpoint, and updated by real-
time real-world reconstructions to increase the feeling
of sharing the same conference table. This world-wide
first presentation speaks to the feasibility of what Ray-
mond Kurzweil [9] predicts for the year 2019:

You can do virtually anything with
anyone regardless of physical proximity...
Phone calls routinely include high-resolution
three-dimensional images projected through
the direct-eye displays and auditory lenses.
Three-dimensional holography displays
have also emerged. In either case, users
feel as if they are physically near the other
person... Thus a person can be fooled as
to whether or not another person is physi-
cally present or is being projected through
electronic communication. The majority
of “meetings” do not require physical
proximity.

There is still a long way to go to achieve a com-
pelling “fooling” of the user’s senses. However, peo-
ple can already start testing this new medium for tele-
collaboration. Participants in the experiments felt that
the tele-immersive environment was superior to con-
ventional video-conferencing.

There are two alternative approaches in remote im-
mersion technologies we did not follow. The first in-
volves video-conferencing in the large: surround pro-
jection of 2D panoramic images. This requires only a
correct alignment of several views, but lacks the sense
of depth and practically forbids any 3D-interaction
with virtual/real objects. The second technology is
closer to ours [12] and uses 3D-graphical descriptions
of the remote participants (avatars). In the system de-
scription which follows, the reader will realize that
such a technique could be merged with our meth-
ods in the future if we extract models based on the
current raw depth points. This is just another view
of the model-free vs model-based extrema in the 3D-
descriptions of scenes or the bottom-up vs top-down
controversy. Assuming that we have to deal with
persons, highly detailed human models might be ap-
plied or extracted in the future. However, the state of
avatar-based tele-collaboration is still on the level of
cartoon-like representations.

Comparing tele-immersion to classical augmented
reality we find that real-time head tracking and dis-
play refresh rate pose minor problems. The challeng-
ing difference is, first, that the display used is a spa-
tially augmented display [26] and not an HMD and,
second, that the mixed components are not pre-stored
perfect virtual objects, but on-line acquired real range
data. In addition these data are transmitted over the
network before displayed. Sense of presence really de-
pends on real-time responses and accurate depth esti-
mation with respect to the viewer. In this paper, we
will describe the real-time 3D acquisition of the dy-
namic parts of a scene which in Fig. 1 are the per-
sons in the foreground. The approach we chose to
follow is view-independent scene acquisition. Having
acquired a scene snapshot at a remote site we transmit
it represented with respect to a world coordinate sys-
tem. Display from a new point of view involves only
primitive transformations hard-wired in every graph-
ics processor. In addition to real time, we want the
new view to be error free so that the user does not ex-
perience wrong depths through her polarized stereo
glasses. The basic question is how to achieve a per-
ceptually best reconstruction in real-time. We have to
emphasize that these criteria are stricter than those in
navigation, for example. Navigational stereo targets
a convex-hull based representation whereas the user
here must be able to see features as detailed as a face
profile reconstructed from frontal views.

2 Related Acquisition Work

We will not review the huge number of existing pa-
pers (see the annual bibliographies by Azriel Rosen-
feld) on all aspects of stereo (the reader is referred to
a standard review [5]). Application of stereo to im-
age based rendering is very well discussed and re-
viewed in the recent paper by Narayanan and Kanade
[23]. Although terms like virtualized reality and aug-
mented reality are used in many reconstruction pa-
pers it should be emphasized that we address a reac-
tive telepresence problem whereas most image based
rendering approaches try to replace a static graphical
model with a real one off-line.

Stereo approaches may be classified with respect to
the matching as well as with respect to the reconstruc-
tion scheme. Regarding matching we differentiate be-
tween sparse feature based reconstructions (see trea-
tise in [6]) and dense depth reconstructions [25, 23].
Approaches such as [4, 31] address the probabilistic
nature of matching with particular emphasis on the
occlusion problem. Area-based approaches [15] are
based on correlation and emphasize the real-time re-



sponsiveness as we do. An approach with emphasis
on virtualized reality is [23]. This system captures the
action of a person from a dome of 51 cameras. Sur-
round camera clusters are also very suitable for voxel-
based techniques like space-carving [10, 29, 18]. The
processing is off-line and in this sense there is no indi-
cation of how it could be used in telepresence beyond
the off-line reconstruction of static structures.

With respect to reconstruction, recent approaches
can be classified as strongly or weakly (or self-
calibrated) approaches. Self-calibration approaches
[17] provide a metric reconstruction from multiple
views with an accuracy which is suitable only for re-
stricted augmented reality applications like video ma-
nipulation where the quality of depth is not relevant.
Weakly calibrated approaches [11] provide real time
performance and are suitable for augmenting scenes
only with synthetic objects.

Recently, gaining insight from the afore-mentioned
projective geometric work, the paradigm of view gen-
eration became popular. Instead of calibrating the
cameras with respect to a world coordinate system
the fundamental matrices of image pairs are com-
puted. Then the images are rectified and dense dispar-
ity maps are build. A new view can be computed by
constructing the fundamental matrices with respect to
each given view [8, 28]. We believe that besides cali-
bration there is no real gain in using fundamental in-
stead of projection matrices. The real bottleneck of es-
tablishing a depth disparity map exists in both. To al-
leviate the correspondence problem view-dependent
approaches were established which are calibrated but
rely on the silhouettes of objects [16].

3 System’s Overview and Architecture

A tele-immersion telecubicle is designed both to
acquire a 3D model of the local user and environ-
ment for rendering and interaction at remote sites,
and to provide an immersive experience for the lo-
cal user via head tracking and stereoscopic display
projected on large scale viewscreens. A typical setup
is depicted in Figure 2. The user moves freely in a
1 m workspace at his desk. Remote users are ren-
dered on 90cm�120cm screens by projector pairs. The
user wears lightweight polarized glasses and a head-
tracker to drive the stereo display function.

A cluster of 7 firewire cameras are arranged on an
arc at 15� separation to ‘surround’ the user and pre-
vent any break presence due to a hard edge where
the reconstruction stops. In the current set-up none
of the participating sites has a full version of the tele-
cubicle. Instead, the display site is as illustrated and
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Figure 2. Tele-cubicle Camera configuration
            

Figure 3. Camera configuration, user view.

described in Figure 1 and the acquisition site con-
sists only of a camera cluster as illustrated in Fig-
ure 3. These cameras are used to calculate binocular or
trinocular stereo depth maps from overlapping pairs
or triples. For example the combined trinocular re-
construction illustrated in Figure 10, was computed
from 5 triples hC0; C1; C2i, hC1; C2; C3i, hC2; C3; C4i,
hC3; C4; C5i, and hC4; C5; C6i. The technical obstacle
to the combining of camera views, is that each recon-
struction is performed on a separate computer. Since
the digital firewire cable is not ‘splitable’ we are forced
to transmit images to neighbouring machines via Eth-
ernet/TCP/IP, adding about 130 ms to the overhead
of the system.

Both responsiveness and quality of depth data are
critical for immersive applications. In order improve
the frame rate of our system we have applied a num-
ber of techniques to reduce the weight of calculation,
particularly in the expensive correlation matching re-
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Figure 4. Parallelized system.

quired to generate dense depth maps. The simplest
technique for the developer of course, is to purchase
more and faster computers. We have built our system
on 5 quad PIII 550 MHz servers (one for each recon-
structed view) and parallelized our code accordingly.

The general parallel structure of the system is illus-
trated in Figure 4. One of the servers acts as a trig-
ger server for the firewire acquisition. When all of the
reconstructors are ready for the next frame the trig-
ger server triggers all of the cameras simultaneously.
Each computer grabs the image from 1 or 2 cam-
eras and transmits and receives the images needed
by its neighbours and itself. Within each quad ma-
chine the images are divided into 4 equal bands and
each processor is devoted to a particular band. The
thread for each processor rectifies, background sub-
tracts, matches and reconstructs points in its band of
the image. When all processors have completed pro-
cessing the texture and depth map are transmitted via
TCP/IP to a remote renderer. This data is encoded
as 3-(320�240) unsigned char image planes (RGB) of
texture, plus one unsigned short image plane where
1=z values have been scaled into unsigned short, and
background and unmatched foreground pixels are
flagged. The total is about 3 Mbits per view per frame.

3.1. Background Subtraction

Our expectation for tele-immersion is that the
workspace will contain a person in the foreground in-
teracting with remote users, and a background scene
which will remain more or less constant for the dura-
tion of a session. To obtain the speed and quality of
depth points our application requires, we reconstruct
the background scene in advance of the session and
transmit it once to the remote sites. While the user
moves in the foreground during a session, we need a
method to segment out the static parts of the scene.
We have chosen to implement the background sub-
traction method proposed by Martins et al. [14].                                    

Figure 5. Background image, foreground im-
age and subtracted result.

A sequence of N (2 or more) background images Bi
are acquired in advance of each session. From this set
we compute a pixelwise average background image
B = 1

N

P
iBi. We then compute the average pixelwise

difference between B and Bi, D = 1

N

P
i(B �Bi).

During a tele-immersion session each primary im-
age I is subtracted from the static mean background
ID = B � I , a binary image is formed via the com-
parison IB = ID > T � D where T is a configurable
threshold (generally we use T = 7). These thresh-
olded difference images are quite noisy. A series of
erosions and dilations are performed on IB in order
to sharpen the background mask. The morphologi-
cal operations are implemented by separable convo-
lutions with masks of ones of size W . For erosion, if a
pixel has a value less than W �W after convolution, it
is set to zero; for dilation, if a pixel has a value greater
than zero it is set to one. The sequence is as follows:
erode W = 3, dilate W = 7, erode W = 17, dilate
W = 9. Typical results are illustrated in Figure 5.

3.2. Bi- and Trinocular Matching

In our efforts to maintain speed and quality in
dense stereo depth maps we have examined a number



of correlation correspondence techniques. In particu-
lar we have focussed on Sum of Absolute Differences
(SAD), because of the speed provided by hardware
specific operations, and Modified Normalized Cross
Correlation (MNCC), which we have found produces
superior depth maps in the binocular case. We have
also tested trinocular SAD and MNCC for our system,
which is slightly more challenging in a surround cam-
era configuration such as ours.

3.2.1 Correlation Methods

The reconstruction algorithm begins by grabbing im-
ages from 2 or 3 strongly calibrated cameras. The sys-
tem rectifies the images so that their epipolar lines lie
along the horizontal image rows to reduce the search
space for correspondences, and so that corresponding
points lie on the same image lines.

The calculation of SAD as a correlation metric is
facilitated on Intel/MMX machines by the assembler
operation psadbw which can calculate the sum of ab-
solute differences between two registers containing 8
char values each, in a single cycle. In general the SAD
calculation is:

corrSAD(IL; IR) =
X
W

jIL � IRj (1)

for a window W in rectified images IL and IR. The
disparity d determines the relative window position
in the right and left images.

A better correspondence metric is modified nor-
malized cross-correlation (MNCC),

corrMNCC(IL; IR) =
2 cov(IL; IR)

�2(IL) + �2(IR)
: (2)

where IL and IR are the left and right rectified images
over the selected correlation windows.

For each pixel (u; v) in the left image, the metrics
above produce a correlation profile c(u; v; d) where
disparity d ranges over acceptable integer values. Se-
lected matches are maxima (for MNCC) or minima
(for SAD) in this profile.

3.2.2 Non-parallel Trinocular Configurations

The trinocular epipolar constraint is a well known
technique to refine or verify correspondences and im-
prove the quality of stereo range data. It is based on
the fact that for a hypothesized match [u; v; d] in a pair
of images, there is a unique location we can predict in
the third camera image where we expect to find ev-
idence of the same world point [5]. A hypothesis is
correct if the epipolar lines for the original point [u; v]
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Figure 6. Trinocular camera triple.

and the hypothesized match [u� d; v], intersect in the
third camera image. The most common scheme for ex-
ploiting this constraint is to arrange the camera triple
in a right angle, allowing matching along the rows and
columns of the reference image [24, 1, 7, 21]. Our tele-
cubicle configuration, illustrated in Figure 2, does not
allow us to arrange or rectify triples of camera image
planes such that they are coplanar, and therefore it is
more expensive for us to exploit the trinocular con-
straint.

Following Okutomi and Kanade’s observation [25],
we optimize over the sum of correlation values with
respect to the true depth value rather than disparity.
Essentially we treat the camera triple hL;C;Ri as two
independent stereo pairs hL;CLi and hCR; Ri. Fig-
ure 6 illustrates the general premise: any disparity for
the reference pair hCR; Ri, represents a surface of con-
stant depth (with respect to that pair) in the world,
however for the left pair hL;CLi this surface involves
a range of distances and therefore disparities.

In previous work [20] we explored two approaches
to exploiting the trinocular constraint in surround
camera configurations. The first method we used pre-
computed correlation images for ranges of disparity
in the left camera pair, then the computed correlation
for each tested [uR; vR; dR] was added to that precom-
puted for the corresponding [uL; vL; dL]. This results
in large correlation lookup tables for the left image
pair.

The second method was an attempt to avoid large
lookup tables by independently finding the best N ex-
trema in the correlation surfaces for both image pairs.
These sorted hypotheses were then cross checked to
determine whether a common depth point gave rise
to the scores for any pair. Valid hypothesis pairs with
the best score were retained. This method required
less lookup table space, but had considerable added
overhead to maintain the sorted hypotheses.

When revising our system design to parallelize and
improve its speed, we discovered that by using fore-



ground segmentation we need consider only one half
to one third of the pixels in the reference image CR.
This makes it feasible to calculate the entire correla-
tion profile for each pixel one at a time. To calculate
the sum of correlation scores we precompute a lookup
table of the location in CL corresponding the current
pixel in CR (based on the right-left rectification rela-
tionship). We also compute a linear approximation for
the disparitycdL =M(uCR ; vCR)� dR + b(uCR ; vCR) at
[uCL ; vCL ] which arises from the same depth point as
[uCR ; vCR ; dR]. As we calculate the correlation score
corrR(uCR ; vCR ; dR), we look up the corresponding
[uCL ; vCL ] and compute cdL, then calculate the correla-
tion score corrL(uCL ; vCL ;cdL). We select the disparity
dR which optimizes

corrT = corrL(uCL ; vCL ;cdL) + corrR(uCR ; vCR ; dR)

The method can be summarized as follows:

Pixelwise Trinocular Stereo
Step 1: Precompute lookup table for CL locations

corresponding to CR locations, and approxi-
mation lookup tables M and b

Step 2: Acquire image triple hL;C;Ri

Step 3: Rectify hL;CLi and hCR; Ri independently.

Step 4: Calculate foreground mask for CR
Step 5: for every foreground pixel

Step I: corrbest = INVALID,
dbest = INVALID

Step II: for every disparity dR 2 Dr

Step i: compute corrR(uCR ; vCR ; dR)
Step ii: lookup [uCL ; vCL ]

Step iii: compute cdL = M(uCR ; vCR) �
dR + b(uCR ; vCR)

Step iv: compute corrL(uCL ; vCL ;cdL)
Step v: corrT = corrL + corrR
Step vi: if corrT better than corrbest

corrbest = corrT
dbest = dR

Step 6: Goto 2

4. Performance and Results

As one would expect methods exploiting SAD were
faster than MNCC based implementations. All imple-
mentations ran on a quad-PIII 550 MHz server in 1
second or less, including image acquisition and trans-
fer and transmission of reconstructions to the ren-
derer. Timings for the various systems are presented
in Table 1.

Step SAD MNCC Tri-SAD Tri-MNCC
Rectify 49 50 49 48
Background 18 18 18 18
Matching 182 261 390 791
Reconstruct 6 6 7 6
Total 446 ms 520 ms 662 ms 1067 ms
fps 2.2 1.9 1.5 0.9

Table 1. Timings for online implementations
of correlation methods. Frames per second
(fps) values include 160 ms capture time and
6 ms network transmission overhead.

Figure 7. Trinocular triple.

For tele-immersion we are further interested in the
quality and density of depth points. Although the
computation times were greater, the high quality of
trinocular depth maps makes them a desirable alter-
native to faster but noisier SAD range images. Fig-
ure 7 illustrates a trinocular triple and Figure 8 (a)
and (b) the resulting rendered depth maps for binoc-
ular MNCC (right pair) and trinocular MNCC respec-
tively. The improvement in depth map from use of
the trinocular constraint is evident in the reduction of
noise speckle and refinement in profile detail.

An added challenge with our seven camera cluster
is the combination of multiple reconstructions into a
single rendered view. We currently depend on the ac-
curacy of our calibration to a common reference frame
for all cameras. Figure 9 shows a full set of cam-
era views for a single frame in the current telecubicle
camera cluster. From this image set 5 reconstructed

                        

a. b.

Figure 8. Rendered reconstructions, profile
view. (a) Binocular MNCC; (b) trinocular
MNCC.



                                                                                    

Figure 9. Seven camera views.
            

Figure 10. Five trinocular reconstructions
combined and rendered, rotated view.

views are calculated for overlapping triples. Figure 10
shows a profile rotation of the total set of 164,000
depth points calculated using trinocular MNCC for
the frame in Figure 9.

5. Motion-based Enhancements

The dominant cost in stereo reconstruction is that
of the correlation match itself, in general proportional
to N �M �D for images of size N �M and D tested
disparity values. By using background subtraction in
our application we have reduced the number of pixels
considered by the search to one half to one third of
the total N �M . To reduce the matching costs further,
we would like to reduce D, the number of disparities
considered for each of the remaining pixels.

Consider the diagram of a verged camera pair in
Figure 11. To maintain a seamless immersive expe-
rience, we cannot greatly restrict the motion of sub-
jects in the stereo workspace. For a workspace depth
w = 1 m, the disparity ranges from d = �61 pixels at
point A, 75 cm from the cameras to d = 87 pixels at
B, 175 cm from the cameras. Clearly a disparity range
of 87 � (�61) = 148 is prohibitive for an exhaustive
correspondence search in real-time applications.

B
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L R
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θ
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Figure 11. Verged Stereo pair configuration
for work volume w.

A further observation regarding online stereo re-
construction is that for high frame rates there will
be considerable similarity between successive images.
We can exploit this temporal coherence in order to fur-
ther optimize our online calculations. We propose a
simple segmentation of the image, based on finding
regions of the disparity image which contain only a
narrow range of disparity values. Using a per region
optical flow calculation we can estimate the location
of the region in future frames, and bound its disparity
search range Di.

The complimentary nature of optical flow and
stereo calculations is well known. Stereo correspon-
dence suffers from the combinatorics of searching
across a range of disparities, and from occlusion and
surface discontinuities. Structure from motion cal-
culations are generally second order and sensitive to
noise, as well as being unable to resolve a scale fac-
tor. Exploiting the temporal coherence of depth and
flow measurements can take two forms: it can be used
to improve the quality or accuracy of computed val-
ues of depth and 3D motion [22, 33, 2] or, as in our
case, can be used as means of optimizing computa-
tions to achieve real-time performance. Obviously ap-



proaches which compute accurate 3D models, using
iterative approaches such as linear programming are
unlikely to be useful for real-time applications such
as ours. Other proposed methods for autonomous
robots, restrict or otherwise depend on relative mo-
tion [3, 30] which cannot be controlled for a freely
moving human subject.

Our method for integrating disparity segmentation
and optical flow can be summarized in the following
steps:

Step 1: Bootstrap by calculating a full disparity
map for the first stereo pair of the sequence.

Step 2: Use flood-fill to segment the disparity
map into rectangular windows containing a
narrow range of disparities.

Step 3: Calculate optical flow per window for
left and right smoothed, rectified image se-
quences of intervening frames.

Step 4: Adjust disparity window positions, and
disparity ranges according to estimated
flow.

Step 5: Search windows for correspondence us-
ing assigned disparity range, selecting ’best’
correlation value over all windows and dis-
parities associated with each pixel location.

Step 6: Goto Step 2.

Most time critical systems using correlation match-
ing will benefit from this approach as long as the ex-
pense of propagating the windows via optical flow
calculations is less than the resulting savings over the
full image/full disparity match calculation.

Flood-fill Segmentation. Restricting the change in
disparity per window essentially divides the under-
lying surfaces into patches where depth is nearly con-
stant. The image of a curved surface for example will
be broken into a number of adjacent windows, as will
a flat surface angled steeply away from the cameras.
Essentially these windows are small quasi-frontal pla-
nar patches on the surface.

We use a threshold on the maximum absolute dif-
ference in disparity as the constraint defining regions,
and we allow regions to overlap. Only rectangular
image windows are maintained, rather than a convex
hull or more complicated structure, because it is gen-
erally faster to apply operations to a larger rectangu-
lar window than to manage a more complicated re-
gion structure. Regions are extracted using flood fill
or seed fill [27, pp. 137-141], a simple polygon filling
algorithm from computer graphics. We have imple-
mented a scan-line version which pops a seed pixel

            

a. b.

Figure 12. Frame 12 (left) of stereo sequence
(a), and computed disparity image (b).

location inside a polygon to be filled, then finds the
right and left connected boundary pixels on the cur-
rent scan line, ‘filling’ those pixels between. Pixels in
the same x-range in the lines above and below are then
examined. The rightmost pixel in any unfilled, non-
boundary span on these lines in this range, is pushed
on the seed stack and the loop is repeated. When the
stack is empty the polygon is filled.

We have modified this process slightly so that
the boundary is defined by whether the current
pixel/disparity value falls within a threshold (+=� 5)
of the first seeded pixel. We start with a mask of
valid disparity locations in the disparity image. For
our purposes filling is marking locations in the mask
which have been included in some disparity region,
and updating the upper left and lower right pixel co-
ordinates of the current window bounding box. When
there are no more pixels adjacent to the current region
which fall within the disparity range of the original
seed, the next unfilled pixel from the mask is used to
seed a new window. Once all of the pixel locations in
the mask are set the segmentation is complete.

As a final step small regions are attributed to noise
and deleted. Nearby or overlapping windows are
merged when the difference between the region mean
disparities is small. Figures 12 and 13 illustrate an im-
age, its disparity map and the rectangular regions ex-
tracted via flood-fill.

Flow per Window Optical flow calculations approx-
imate the motion field of objects moving relative to the
cameras, based on the familiar image brightness con-
stancy equation: Ixvx+Iyvy+It = 0, where I is the im-
age brightness and Ix, Iy and It are the partial deriva-
tives of I with respect to x, y and t, and v = [vx; vy] is
the image velocity. We use a standard local weighted
least square algorithm [13, 32] to calculate values for v
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Figure 13. Extracted windows of similar dis-
parity (a) and calculated flow per window (b).

based on minimizing

e =
X
Wi

(Ixvx + Iyvy + It)
2

for the pixels in the current window Wi. For each dis-
parity window we assume the motion field is constant
across the region Wi, and calculate a single value for
the centre pixel. Figure 13 b. illustrates the optical
flow values calculated on a per window basis.

Given image regions, we must now adjust their lo-
cation according to our estimated flow for the right
and left images. Basically we force the window to ex-
pand rather than actually moving it, if the left coordi-
nate of the window is predicted to move up or left by
the right or left flow, then the window is enlarged to
the left. If the right coordinate is predicted to move
down or right the window is enlarged accordingly.

Since the windows have moved as a consequence
of objects moving in depth, we must also adjust the
disparity range D(t) = [dmin; dmax] for each window
using the estimated flow velocities:

D(t+ dt) = [min (dmin + vxldt� vxrdt; dmin);
max (dmax + vxldt� vxrdt; dmax)]:

Windowed Correspondence. Window based corre-
spondence proceeds in much the same way as de-
scribed in Section 3.2.1. In the case of our disparity
windows, each window can be of arbitrary size, but
will have relatively few disparities to check. Because
our images are rectified to align the epipolar lines with
the scanlines, the windows will have the same y coor-
dinates in the right and left images. Given the dispar-
ity range we can extract the desired window from the
right image given xr = xl � d. Correlation matching
and assigning valid matches to the disparity map pro-
ceeds as usual.

Figure 14 illustrates the result of propagating the
disparity windows from frame 12 to frame 18 of a

            

a. b.

Figure 14. Frame 18 of sequence (a) and re-
gion based disparity map (b).

stereo image sequence. The subject is translating and
rotating from right to left in the image. In [19] we have
examined the quality and complexity tradeoffs of this
approach in detail. The complexity of stereo corre-
spondence on our proposed window system is about
half that for full images, depending on the number of
frames in time used to estimate optical flow. We have
demonstrated experimentally that our window-based
reconstructions compare favourably to those gener-
ated by correlation over the full image, even after sev-
eral frames of propagation via estimated optical flow.
The observed mean differences in computed dispari-
ties were less than 1 pixel and the maximum standard
deviation was 4.4 pixels.

6 Conclusion

We presented the scene acquisition part of a first
testbed for visual tele-immersion. We decided to pur-
sue a view-independent approach and constructed a
3D description with respect to a world-coordinate sys-
tem. We achieved a surround view with a throughput
of almost 2fps. We are looking forward into achieving
10fps without sacrificing depth quality. To eliminate
outliers we will address both problems of highlights
and occlusions in the near future. Our ultimate goal
is to perform systematic experiments and study the
sense of presence and the nuances of communication
during collaboration tasks.
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