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Abstract— We propose a second order stochastic dynamical
model for generic articulated objects whose state space is a
Riemannian manifold naturally suggested by the articulation
constraints. We derive the equations of a Riemannian Extended
Kalman Filter to perform the structure estimation from an
image sequence captured by a perspective camera. In order
to theoretically validate our approach, we prove that the
proposed model is locally weakly observable. Finally, we report
quantitative results on both synthetic data and on real sequences
from the CMU Mocap dataset.

I. INTRODUCTION

Articulated motion reconstruction from a monocular video
sequence is a central problem of geometric computer vision
and robotics which has received an increasing amount of at-
tention during the last decade. It has widespread applications
in computer vision, robotics and graphics since many objects
such as robots and humans can be categorized as articulated
objects.

Articulated bodies are described by a graph structure,
usually a tree, termed the articulation graph, where each
node represents a joint and each edge between nodes in the
tree corresponds to a link between joints. Links have constant
length at all time instances. We refer to such a constant
distance constraint as an articulation constraint. Our goal
is to estimate the 3D trajectories of the joints from noisy
projections assuming a full perspective projection model.

The main challenge in this problem arises from the intrin-
sic ambiguity in monocular vision: a 3D point may lie at any
position along the ray connecting the camera center and the
2D projection in the image plane. Even with the articulation
constraint, there are two distinct solutions for the 3D position
of a node relative to its parent node at each time instance.

In this paper, we develop a sequential approach for artic-
ulated motion estimation from a monocular image sequence.
The proposed algorithm takes as input a sequence of noisy
projections of the joints of an articulated body and outputs
estimates of their 3D positions. We model the variation of
the angular velocity of a joint as a zero-mean Gaussian noise
process and propose a second order stochastic dynamical
model whose state space is a Riemannian manifold naturally
suggested by the articulation constraints.

Our contributions are mainly twofold: (1) We derive the
equations of a Riemannian Extended Kalman Filter (REKF)
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which is a non-trivial generalization of the standard Extended
Kalman Filter (EKF) [4]. Unlike most previous methods
assuming a weak perspective camera model, we use a full
perspective camera model. (2) We provide a theoretical anal-
ysis to show that the proposed model is locally observable
and explain the choice of second order dynamics.

The remainder of this paper is organized as follows. First,
we make a review of the prior art in Section II. Then, we
review preliminaries from differential and Riemannian geom-
etry in Section III. We present the proposed dynamical model
in Section IV. Next, we describe in detail the implementation
of the filter in Section V. Observability of the proposed
model is discussed in Section VI. Finally, we present the
experimental evaluation in Section VII.

II. RELATED WORK

There have been a few efforts towards articulated motion
estimation from a monocular image sequence. In their sem-
inal paper, Bregler and Malik [8] parametrized the human
body using the product of exponentials for kinematic chains
[23] and proposed a tracking algorithm for the case of
scaled orthographic projection model. Products of exponen-
tials for articulated motion reconstruction were also used
by Drummond and Cipolla [13] who efficiently solved an
inference problem by propagating the statistics between one
adjacent pair of links at a time. A serious drawback of this
approach is the potential error accumulation at the end of the
kinematic chain. In addition, none of the two above described
methods investigate the problem of multiple inverse kine-
matics solutions. Several methods of investigating alternative
solutions were proposed by Sminchisescu and Triggs [29],
[30]. Although the proposed methods are designed to avoid
getting stuck in the wrong local minimum forever, there are
no theoretical guarantees that they converge to the correct
minimum either. The latter techniques can be used on top of
a tracking system such as the one we propose in this work.
A detailed discussion on the ambiguities and singularities of
visual tracking of articulated objects can be found in [26].

More recently, Park and Sheikh [25] proposed a prede-
fined trajectory basis approach in which they incorporate
articulation constraints. Given the 3D position of a node
in the articulation tree, the 2D projection of a child node
on the image plane and the distance between them in 3D,
then there are, in general, two distinct solutions for the 3D
position of the child node. To model this two-fold ambiguity,
they introduced a binary variable for each node in each
frame. The resulting problem is a combinatorial optimization
problem which is in general NP-hard to solve. They solve it



using branch-and-bound techniques which are in general of
exponential complexity. To address the computational bur-
den of the branch-and-bound optimization, Valmadre et al.
[34] proposed a dynamic programming approach combining
articulation constraints with temporal smoothness. But the
success of these methods rely on the representability of
the predefined basis shapes and unrealistically fast camera
motion. Moreover, they require that all frames are available
at once and not suited for sequential processing.

Apart from optimization-based approaches for articulated
motion estimation, there have been numerous probabilistic
ones. Brookshire and Teller [9] proposed a particle filtering
approach that takes into account the non-linear articulation
constraints. However, it is assumed that the state of the
articulated body can be uniquely determined by available
observations. This is not the case with perspective projection
observational model as we shall shortly explain. Particle
filtering approaches have been used in the past [11] for
the purpose of human motion tracking. Hauberg et al. [18]
proposed Gaussian priors for limb positions either on the
embedding space of the so-called pose manifold followed
by a projection operation or directly on the tangent space of
the pose manifold. Another line of works includes learning-
based techniques for human pose estimation [28], [32], [33].
However, most of the above mentioned approaches require
either 3D data as input or training data, whereas the proposed
method does not require any training apart from tuning the
filter and takes as input direct image data. More importantly,
we aim to develop a framework applicable to any articulated
objection instead of being specific to humans.

Finally, our work is relevant to a large body of literature
on nonrigid SFM. A non-exhaustive list of this body of work
includes approaches based on shape bases [7], trajectory
bases [3], probabilistic principal component analysis [31],
rank minimization [10], smoothness priors [24], trajectory
grouping [14] and sparse coding [35]. However, none of the
above methods incorporate articulation constraints.

III. PRELIMINARIES AND NOTATION

In this section, we briefly review several elementary facts
from Riemannian geometry. For a more detailed and rigorous
treatment, we refer the reader to [12], [15], [21].

A Riemannian manifold (M, g) is a manifold whose
tangent spaces are equipped with a smoothly varying inner
product, termed the Riemannian metric. We use g(ξ, ζ) to
denote the inner product of two vectors ξ, ζ in the tangent
space ofM at x, denoted by TxM. An affine connection ∇
generalizes the concept of usual directional differentiation
of vector fields. Given two vector fields ξ, ζ on M, the
covariant derivative ∇ξζ expresses the change of ζ in the
direction of ξ. The acceleration vector field D2

dt2 γ on γ is
defined by D2

dt2 γ(t)
.
= ∇γ̇(t)γ̇(t). A geodesic curve on M is

the generalization of a straight line, that is, a curve with zero
acceleration. We denote by γx,ξ(t) the geodesic emanating
from x in the direction of ξ ∈ TxM. The exponential
map expx : TxM → M is defined as expx(ξ)

.
= γx,ξ(1).

The logarithm map logx : M → TxM is the inverse of

the exponential map and is generally defined only in a
neighborhood of x.

A vector field ξ along a curve γ(t) is said to be parallel if
∇γ̇(t)ξγ(t) = 0 for every t. Given t0 ∈ R and ξ0 ∈ Tγ(t0)M
there is a unique parallel vector field ξ on γ such that
ξγ(t0) = ξ0. The mapping P t←t0γ ξ sending ξγ(t0) to ξγ(t) is
called parallel transport along γ. Given three vector fields ξ,
ζ, η on a Riemannian manifoldM, the Riemannian curvature
tensor R is defined by R(ξ, ζ)η = ∇ζ∇ξη − ∇ξ∇ζη +
∇[ξ,ζ]η.

Let F : M → N be a smooth map between manifolds
M and N . The linear mapping DF (x) : TxM→ TF (x)M :
ξ 7→ DF (x)[ξ] is called the differential of F at x. For any
curve γ(t) on M we have DF (γ(t))[γ̇(t)] = dF (γ(t))/dt.
The Jacobian is the matrix representation of the differential
in local coordinates. Finally, since manifolds of interest have
a natural embedding in a Euclidean space, we write DF (x)
for the matrix representation of the differential of F at x, in
the coordinates of the embedding space.

In the context of this work, we heavily use the spherical
tangent bundle TSn−1 of the unit sphere Sn−1 of Rn. In
general, the tangent bundle of a manifold M is the set
TM = {(x, ξ) : x ∈ M, ξ ∈ TxM} and is a manifold
of double dimension. The vertical space V(x,ξ) is the linear
subspace of T(x,ξ)TM given by V(x,ξ) = ker(Dπ(x, ξ)),
where π is the canonical projection onto the first component.
The horizontal space is the orthogonal complement of V(x,ξ)
in T(x,ξ)TM. Intuitively, horizontal curves in the tangent
bundle TM, i.e. curves with horizontal tangents, correspond
to parallel vector fields onM and vertical curves correspond
to curves on TxM. Each tangent vector in T(x,ξ)TM can
be uniquely decomposed as the sum of its horizontal and
vertical components ζh + ηv where ζh, ηv are, respectively,
the horizontal and vertical lifts of ζ, η ∈ TxM. Therefore,
we represent a tangent vector ζh+ηv ∈ T(x,ξ)TM by a pair
(ζ, η) ∈ TxM×TxM. A metric for TSn−1 can be naturally
defined from the metric of Sn−1. A particular choice is the
so-called Sasaki metric [27]. For a rigorous treatment of the
geometry of tangent bundles, we refer the reader to [16].

IV. PROPOSED MODEL

In this section, we present a second order stochastic
dynamical model for articulated systems that enables us to
use tools from estimation theory and, in particular Kalman
filtering [20], to solve the estimation problem at hand. The
first issue one encounters is that the exact dynamics are
unknown. However, the angular velocity of joints does not
vary arbitrarily from frame to frame. We compensate for the
acceleration of joints by employing a statistical model. The
second obstacle is the non-linearity of the state space. Joint
positions and velocities do not lie on a linear space. To model
this nonlinearity, we parametrize the configuration space as
a properly chosen Riemannian manifold.

For simplicity, we present our proposed model for the
case of a single kinematic chain. Generalization for the
case of kinematic trees is straightforward. Consider the
articulated chain of Fig.1. The articulation graph is in this
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Fig. 1: Example of an articulation chain with three joints
with positions x1(t), x2(t) and x3(t).

case G = (V, E) = ({1, 2, 3}, {(1, 2), (2, 3)}). We assume
that the root position x1(t) can be measured directly with
some uncertainty1. We model x1(t) as noisy input and not
as part of the state vector. Moreover, we assume that the joint
lengths are known. These are standard assumptions which are
adopted by competitive methods, e.g. [25], [34] as well. The
articulation constraints read

‖xi(t)− xj(t)‖2 = lij = const. (1)

for all (i, j) ∈ E . We use the shorthand notation xij
.
=

xj−xi

‖xj−xi‖2 ∈ S2 for the orientation of the link between joints
i and j. Under our assumptions, the position of the second
joint x2(t) is uniquely determined by the orientation x12(t) ∈
S2. In addition, we include second order information in our
dynamical system to improve the accuracy of our model.
The velocity of the second joint can be readily computed
as ẋ2(t) = ẋ1(t) + l12v12(t), where v12(t)

.
= ẋ12(t). Thus,

the velocity of x2(t) is uniquely determined by the angular
velocity v12(t) ∈ Tx12(t)S2. Naturally, the state manifold for
a single link is TS2 and (TS2)n for the case of n links.

It remains to write the dynamics of the system. Since the
angular velocity of a joint does not change arbitrarily from
frame to frame and the exact dynamics are unknown, we
employ a statistical model for its time derivative, that is

(xij(t+1), vij(t+1)) = exp(xij(t),vij(t))(vij(t), wij(t)) (2)

for all (i, j) ∈ E , where exp denotes the exponential map
of TS2, (xij , vij) ∈ TS2 and wij(t) ∈ Txij(t) is zero-mean
isotropic Gaussian noise. Intuitively, when wij(t) = 0, xij
travels on a geodesic of the sphere and vij(t) is a parallel
vector field along xij . In general, the exponential map of TS2
has no closed form expression. However, in the noiseless
case, i.e. when wij(t) = 0, it is given by

xij(t+ 1) = expxij(t)(vij(t))

vij(t+ 1) = P t+1←t
xij

vij(t)
(3)

for all (i, j) ∈ E . In other words, the the exponential
map of TS2 for the case of zero vertical component, can
be computed from the exponential map and the parallel
transport along geodesics of S2 which both have closed form
expressions (see Appendix B).

1For example, the root position for a human skeleton can be estimated by
structure from motion algorithms assuming that the torso is rigid, and the
root position for a robot arm can be measured offline if the base is fixed.

Finally, the measurement model for the set of joints,
excluding the root of the articulation chain, is given by the
standard perspective projection model

yi(t) = π(xi(t)) + ηi(t), i ∈ V \ {1} (4)

where ηi(t) is a zero-mean isotropic Gaussian noise process
modeling the uncertainty of the joint localization and π(x)
is the standard perspective function π : R3 → R2. For the
measurement of the root, we assume isotropic zero-mean
Gaussian noise as well.

V. RIEMANNIAN EXTENDED KALMAN FILTER
In this section, we derive the equations for the Riemannian

Extended Kalman Filter (REKF), which, as we shall shortly
see, is a generalization of the widely used Extended Kalman
Filter (EKF) [4]. Extended Kalman Filters for Riemannian
manifold possessing a Lie group structure have been de-
scribed in [5], [6]. Unfortunately, they are not applicable in
the current setting because the state manifold does not have a
Lie group structure. For arbitrary Riemannian manifolds, the
Uscented Kalman Filter (UKF) was introduced by Hauberg
et al. [17]. In theory, the UKF of Hauberg et al. [17] is
applicable in our case. However, in practice, the logarithm
computation for TS2 requires to globally solve an optimiza-
tion problem on TS2 for all sigma points at every UKF
iteration, which would make our approach computationally
inefficient and impractical.

Intuitively, we linearize the dynamical model at the tangent
space of the current estimate. The measurement update
takes place on the tangent space of the current estimate
and then, we use the exponential map to obtain the update
on the manifold. The covariance of the estimation error is
propagated by parallel transporting its eigenvectors from the
tangent space of the predicted estimate to the tangent space of
the updated estimate. To achieve this procedure, we develop
a numerical method for computing the exponential map of
TS2 and the parallel transport of a tangent vector along the
corresponding geodesic of TS2.

Unfortunately, geodesics of TS2 do not have a closed form
expression. Therefore, an one step Euler integration method,
proposed by Muralidharan and Fletcher [22], is employed.
We generalize it, in order to compute the parallel transport
of a tangent vector along the same geodesic.

Proposition 5.1: The differential equations of a geodesic
curve on TS2, equipped with the Sasaki metric, emanating
from (x, ξ) ∈ TS2 in the direction of (ζ, η) ∈ T(x,ξ)TS2
read

∇ζζ = −R(ξ, η)ζ (5)
∇ζη = 0 (6)

where ∇ is the connection of S2 compatible with its standard
metric. The differential equations for parallel transport of a
tangent vector (µ, ν) along the same geodesic read

∇ζµ = −1

2
R(ξ, ν)ζ − 1

2
R(ξ, η)µ (7)

∇ζν =
1

2
R(ζ, µ)ξ (8)



Detailed proof of Proposition 5.1 is included in Appendix
C. Based on Proposition 5.1, we compute the geodesic
and the parallel transport using one step Euler integration.
Specifically, exp(x0,ξ0)(ζ0, η0) and the parallel transport of
(µ0, ν0) ∈ T(x0,ξ0)S2 from (x0, ξ0) to exp(x0,ξ0)(ζ0, η0)
along the corresponding geodesic are computed using the
following iterative scheme for k = 0, 1, . . . , N − 1

xk+1 = expxk
εζk (9)

ξk+1 = P k+1←k
x ξk + εηk (10)

ζk+1 = P k+1←k
x ζk − εR(ξk, ηk)ζk (11)

ηk+1 = P k+1←k
x ηk (12)

µk+1 = P k+1←k
x µk −

ε

2
(R(ξk, νk)ζk +R(ξk, ηk)µk) (13)

νk+1 = P k+1←k
x νk +

ε

2
R(ζk, µk)ξk (14)

where ε = 1/N . Note that the exponential map, the parallel
transport and the Riemannian curvature tensor in the above
equations are all operations of S2 with closed form expres-
sions [2], [22].

Finally, the following proposition from [17] provides us
with a method of parallel transporting covariances along
geodesics of a Riemannian manifold M:

Proposition 5.2: Let γx(t) be a geodesic of the Rieman-
nian manifold M with γx(0) = x. Let {v1, . . . , vm} is an
orthonormal basis for the tangent space TxM. If vi(t)

.
=

P t←0
γx vi, then the parallel transport of the symmetric bilinear

form with eigendecomposition A =
∑m
i=1 λiviv

T
i is given

by P t←0
γx A

.
=
∑m
i=1 λivi(t)vi(t)

T .
In the context of this work, we consider discrete time

dynamical systems which evolve on a Riemannian manifold
M and are of the form

x(t+ 1) = expx(t)

(
logx(t)(f(x(t))) + w(t)

)
y(t) = h(x(t), u(t) + ν(t)) + η(t)

(15)

where f : M→M corresponds to the dynamical model in
the absence of process noise, w(t) is the process noise on
the tangent space Tx(t)M, η(t) is the measurement noise
and ν(t) is the additive noise of the (unknown) input u(t).
The Riemannian Extended Kalman Filter equations follow:
• Linearization:

F (t) = Df(x̂(t|t))
C(t) = Dxh(x̂(t|t− 1), u(t) + ν(t))

D(t) = Duh(x̂(t|t− 1), u(t) + ν(t))

(16)

• Update:

x̂(t|t) = expx̂(t|t−1) L(t)(y(t)− ŷ(t))

Ω(t) = C(t)Σ(t|t− 1)C(t)T

+D(t)Σν(t)D(t)T + Ση(t)

L(t) = Σ(t|t− 1)C(t)TΩ(t)−1

Σ(t|t) = P t←t−1x̂(t|·) (I − L(t)C(t))Σ(t|t− 1)

(17)

• Prediction:{
x̂(t+ 1|t) = f(x̂(t|t))
Σ(t+ 1|t) = F (t)Σ(t|t)F (t)T + Σw(t+ 1)

(18)

VI. OBSERVABILITY ANALYSIS

In this section, we discuss the observability of the pro-
posed model. The observability problem refers to whether
the initial condition of a dynamical system is uniquely
determined by a sequence of measurements. Observability
concepts have been extensively used for analyzing the perfor-
mance of Kalman filters. In the first subsection, we show that
the proposed model is locally weakly observable and in the
second subsection, we discuss the limitations of a first order
model. We present analysis for the case of an articulation
chain with two joints. Generalizing the following results for
more than two joints can be trivially done in a recursive
fashion.

A. Local weak observability of articulated motion

Given a nonlinear continuous time dynamical system with
state vector x ∈ Rn, two initial conditions are indistinguish-
able if they produce the same output for all time instances
and inputs. A system is observable at x0 ∈ Rn if x0 is
not indistinguishable from any other point. This type of
observability is sometimes referred to as global observability.
However, for nonlinear systems global observability is too
much to ask for and hard to prove in general. For this reason,
the notion of local weak observability was introduced in [19].
A system is locally weakly observable at a point x0 ∈ Rn
if there exists a neighborhood U of x0 such that x0 is not
indistinguishable from any of its neighbors in U .

At this point, we state the main result of this section
regarding the observability of the proposed model.

Theorem 6.1: The dynamical model (3) with observa-
tional model (4) is locally weakly observable at a configura-
tion (x12(0), v12(0)) ∈ TS2 when the ray from the camera
center to the second joint is not tangential to the sphere
centered at the first joint and having radius l12. If the ray is
tangential, then x12(0) has a unique global solution but the
initial velocity v12(0) is not uniquely determined from the
projection of the second joint and its time derivative (optical
flow) at t = 0.

A detailed proof of Theorem 6.1 can be found in Appendix
A. The results of the theorem hold for any dynamical
model including both link orientations and angular velocities.
If a model makes further assumptions, e.g. zero angular
acceleration as in our case, then the model can be proved to
be locally weakly observable everywhere. Since observability
is a property of a model not of the underlying physical
system, we keep the conditions of Theorem 6.1 as general
as possible.

B. The two-fold ambiguity

One natural question is whether the model is globally
observable apart from locally observable. However, it is clear
that global observability is too much to ask for since, in
general, there are two distinct solutions for the 3D position
of a node relative to its parent node in the articulation tree
at each time instance

The two-fold ambiguity has been well recognized in the
computer vision community [30], [26], [25], [34]. Recently,
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Fig. 2: Illustration of the two-fold ambiguity. A unique solution
exists when the ray from the camera to x2 is tangential to the sphere
of radius l12 centered at x1.

temporal smoothness was proposed to resolve this ambiguity
[25], [34]. However, there is no guarantee that the true 3D
trajectory of a joint is the smoothest among all trajectories
having identical image projections. For sequential estimation,
the temporal smoothness prior corresponds to a first order
dynamical model. In practice, we have observed that 3D
trajectories of joints producing identical image projections
may eventually intersect at some time instance. Even with
accurate initialization, it would impossible to disambiguate
near the time instances of intersection and tracking would
possibly fail for the case of a first order model. However,
augmenting the state space to include higher order informa-
tion resolves the problem, in general, since the trajectories of
the augmented system no longer intersect. Finally, in the pro-
posed framework, all articulation constraints are considered
at once, rather than in a recursive fashion as in [13], [25],
[34], which has the advantage of significantly reducing the
number of possible trajectories and the error accumulation
at the end of an articulated chain.

VII. EXPERIMENTS

A. Experiments on synthetic data

We use synthetic data to demonstrate the convergence rate
of our filter and to test its robustness against input noise
(error of the root position in 3D) and measurement noise
(error of the joint position in 2D). We use an articulation
chain consisting of three joints and of unit length links. The
root joint is static at position (0, 0, 5). To show convergence,
we perturb the initial orientations of the links around their
true values by an angle value sampled from a zero-mean
Gaussian distribution with standard deviation equal to 45o

and uniform direction. We repeat the experiment 200 times.
Results are presented in Fig. 3. Convergence is achieved
in less than 5 iterations even for very rough initialization.
Robustness against input noise, i.e. error in the position of
the root, and against measurement noise (projection error) is
presented, respectively, in Fig. 4 and Fig. 5. The experiment

is repeated 50 times for each value of σ2
ν in m2 and σ2

η in
square focal length units. The implemented filter produces
accurate results for root position error up to the order of
centimeters and for projection error up to a few pixels or
equivalently up to 10−6 to 10−5 square focal length units.
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Fig. 3: 3D Error in meters of the second joint (left) and the third
joint. Noise parameters: σ2
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Fig. 4: 3D Error in meters of the second joint (left) and the third
joint as a function of input noise (root measurement) variance. Other
noise parameters include σ2
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Fig. 5: 3D Error in meters of the second joint (left) and the third
joint as a function of measurement noise variance. Other noise
parameters include σ2

w = 10−6 , σ2
ν = 10−6.

B. Human pose reconstruction

We validate our method with the CMU motion capture
datasets [1] and compare it with the alternative method [25].
The 2D observations are synthesized by projecting 3D joints
to 2D with a perspective camera model. Similar to previous
work [25], [34], the camera parameters and trajectories of
the rigid body (marker set {1, 2, 5, 8, 10, 13}, see Fig. 7)
are provided to the algorithms. We measure the 3D error in
meters for the non-rigid part of the human body, i.e. maker
set {3, 4, 6, 7, 11, 12, 14, 15}. We use 10 sequences of 500
frames in total. Specifically we use sequences #2-#11 of
subject #15 [1] which include a variety of actions such
as walking, dancing, hand signals. We perturb the ground
truth using isotropic zero-mean Gaussian noise with large
standard deviation, i.e. 10cm, to initialize our filter. Our
method significantly outperforms the state of the art method
[25] in all sequences. The achieved frame rate is about 10
frames per second for this dataset.
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Fig. 7: Human model of CMU Mocap databaset.

VIII. CONCLUSIONS

In this paper, we presented a second order stochastic
dynamical model for articulated motion. We demonstrated
the usefulness of including second order information and
we proved the local observability of the proposed model.
Finally, we derived the equations of a REKF and verified
experimentally its performance compared to a state of the
art method.

APPENDIX

A. Proof of Theorem 6.1

We prove Theorem 6.1 for the case of two joints. Let
x1(t) ∈ R3 denote the trajectory of the root joint, which
is modeled as an input to the proposed dynamical model,
and (x12(t), v12(t)) ∈ TS2 denote the state vector. The
projection of the second joint y2(0), its time derivative ẏ2(0)
and the implicit constraints defining TS2 as a subset of R6

read

x12(0)Tx12(0)− 1 = 0 (19)

x12(0)T v12(0) = 0 (20)
π(x1(0) + l12x12(0))− y2(0) = 0 (21)

dπ(x1(t) + l12x12(t))

dt

∣∣∣∣
t=0

− ẏ2(0) = 0 (22)

The above constraints define a map Θ: R6 → R6. To
show that the model is locally weakly observable at a point
(x12(0), v12(0)), it suffices to show that Θ is locally invert-
ible (locally a diffeomorphism). By properly rearranging the

constraints, it is not hard to see that the Jacobian O .
= DΘ ∈

R6×6 is lower block triangular of the form

O =

[
O1 03×3
O2 O1

]
(23)

with

O1 =

 2x12(0)T

∂π(x1(0) + l12x12(0))

∂x12(0)

 ∈ R3×3 (24)

Matrix O has full rank if and only if the submatrix O1 ∈
R3×3 has full rank since det(O) = det(O1)2. But A is
rank deficient if and only if the nullspace of x12(0) and
∂π(x1(0)+l12x12(0))

∂x12(0)
have a non-trivial intersection, i.e.

x12(0)⊥ ∩ span{x1(0) + l12x12(0)} = {0} (25)

or equivalently if the ray from the camera to the second
joint is not contained in the plane tangent to the sphere of
radius l12 centered at the first joint. In this case, Θ is a local
diffeomorphism.

In the opposite case, we have a unique global solution for
x12(0) which can be computed from the point of tangency.
However, velocity v12(0) is not uniquely determined since
any velocity of the form v12(0) + cx2(0) for some scalar c
yields the same optical flow of the second joint.

B. Linearization of the model

Before proceeding to the linearization of the dynamical
model, we need a remark concerning the representation of
tangent vectors of TS2 in a computer program. Let zh(t) =
(x(t), P t←0

x v(0)) ∈ TS2 any horizontal curve on the tangent
bundle TS2. Its time derivative at t = 0 is given by

żh(0) = (ẋ(0),−x(0)v(0)T ẋ(0)) = ẋ(0)h (26)

where we used the analytic expression for the parallel
transport along geodesics of the sphere (see [2]). Now, let
zv(t) = (x(0), u(t)) ∈ TS2 any vertical curve. We have that

żv(0) = (0, u̇(0)) = u̇(0)v (27)

Thus, any vector (ẋ(0), v̇(0)) ∈ TS2 tangent to a curve
(x(t), v(t)) ∈ TS2 has the form[

ẋ(0)
v̇(0)

]
=

[
I 0

−x(0)v(0)T I

] [
ẋ(0)
u̇(0)

]
(28)

where u̇(0) is the component of v̇(0) in Tx(0)S2. In a com-
puter program, we do not use (ẋ(0), v̇(0)) but (ẋ(0), u̇(0))
which are both in TxS2.

Now, let the map f : TS2 → TS2 defined by[
x
v

]
7→
[

cos(‖v‖)x+ sinc(‖v‖)v
−‖v‖ sin(‖v‖)x+ cos(‖v‖)v

]
(29)

which is the proposed dynamical model in the absence of
noise. By taking the time derivative of f(x(t), v(t)) at t = 0,
where (x(t), v(t)) ∈ TS2 is a smooth curve, one can easily
compute the matrix A(x(0), v(0)) such that

df(x(t), v(t))

dt

∣∣∣∣
t=0

= A(x(0), v(0))

[
ẋ(0)
v̇(0)

]
(30)



Based on the previous discussion, the matrix representation
of the differential of f at a point (x, v) ∈ TS2 is

Df(x, v) =

[
I 0
xvT I

]
A(x, v)

[
I 0
−xvT I

]
(31)

C. Proof of Proposition 5.1

First, we need the following proposition from [16].
Proposition 8.1: Let (M, g) be a Riemannian manifold

with Riemannian curvature tensor R and ∇ denote the Levi-
Civita connection of the tangent bundle (TM, g) equipped
with the Sasaki metric. Then, for all ζ, η ∈ X(M) we have
the following

(∇ζhηh)(x,ξ) = (∇ζη)h(x,ξ) −
1

2
(R(ζ, η)ξ)v

(∇ζhηv)(x,ξ) = (∇ζη)v(x,ξ) +
1

2
(R(ξ, η)ζ)h

(∇ζvηh)(x,ξ) =
1

2
(R(ξ, ζ)η)h

(∇ζvηv)(x,ξ) = 0.

(32)

At this point, we can proceed to the main proof using
Proposition 8.1. The differential equation for the geodesics
of TS2 is ∇ζh+ηv (ζh+ηv) = 0 and for the parallel transport
∇ζh+ηv (µh + νv) = 0 . By linearity of the connection and
Proposition 8.1, we get

∇ζh+ηv (ζh + ηv) = ∇ζhζh +∇ζhηv +∇ηvζh +∇ηvηv

= (∇ζζ +R(ξ, η)ζ)h + (∇ζη)v

which proves the first claim. Moreover, we have

∇ζh+ηv (µh + νv) = ∇ζhµh +∇ζhνv +∇ηvµh +∇ηvνv

= (∇ζµ+
1

2
R(ξ, ν)ζ +

1

2
R(ξ, η)µ)h

+ (∇ζν −
1

2
R(ζ, µ)ξ)v

which proves the second claim.
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