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Abstract— The problem of reconstructing deformable 3D sur-
faces has been studied in the non-rigid structure from motion
context, where either tracked points over long sequences or an
initial 3D shape are required, and also with piecewise methods,
where the deformable surface is modeled as a triangulated
mesh, which is fitted to an initial estimation of the 3D surface
computed from correspondences in two views.

In this paper we present a new scheme to recon-
struct deformable surfaces by tracking relevant features that
parametrize such deformation. Assuming that an initial 3D
shape related to a reference frame is available, we initially
match the reference and current frames using visual infor-
mation. Then, these correspondences are clustered in patches
with geometric characteristics in the image domain and 3D
space. In order to reduce the number of parameters to be
estimated, we explain each cluster using thin-plate splines
(TPS) with a minimal number of control points. Then the 3D
coordinates of these control points in the deformed surface are
estimated using a non-linear least squares approach, deriving
on the reconstruction of the full deformed patches. We perform
experiments in synthetic and real data of monocular video
sequences to validate our approach.

I. INTRODUCTION

The reconstruction of deformable objects and the camera

pose from a monocular video sequence is an intrinsically ill-

posed problem. Several approaches have been developed to

deal with this problem. These approaches, known as non-

rigid structure from motion [1], [2], [3], [4], either require

an initial model of the 3D shape or tracked features along

the full video sequence. They assume that the shape of a

non-rigid object can be expressed in a compact way as a

linear combination of an unknown low-rank shape basis.

In sequential approaches the initial 3D shape is computed

from few frames of the video sequence using rigid structure

from motion approaches. After this shape the fixed low-

rank basis are computed. The successive deformed shapes

are represented as the sum of the shape at rest previously

computed and a linear combination of those basis. Moreover,

these approaches assume a simple orthographic projection

model. When the deformable object is actually a deformable

surface, a different type of methods called piecewise meth-

ods [5], [6], [7], have been developed. These approaches

parametrize the surface as a triangulated mesh and compute
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the initial reconstruction of the surface from at least two

views. This parametrization simplifies the degrees of freedom

of the mesh vertices and allows to represent the deformation

of the surface using much simpler local deformation models.

In this work we focus on scenarios where the following

challenges arise: i) the object of interest can occupy a small

portion of the image; ii) several objects are observed in a

single frame and they may overlap; iii) the projection model

is more complex than the orthographic one. Under these

conditions most of the previously approaches cannot be used.

In this paper we present a new approach that tracks the

deformation undergone by the surface in subsequent frames.

We assume that an initial shape at rest of the object of interest

is available. Similarly to piecewise approaches that simplify

the deformation expected by parameterizing the surface as a

triangulated mesh, we subdivide the deformable surface in

smaller patches using visual and depth information. Then, in

order to further reduce the number of points to represent the

surface, a minimum number of points are selected as control

points of thin-plate splines. These splines have been widely

used as warps of deformable surfaces [8], [9].

Our approach consists of two main steps: 1) From an initial

reconstruction of the object and image correspondences we

segment the image based on texture, 2D image geometry,

and depth; and 2) Estimation of the deformed surfaces using

thin-plate splines.

The main contributions of this paper are the following: 1)

Simplification of the 3D surfaces by subdivision in smaller

clusters that geometrically relate image correspondences; 2)

We do not require to compute a set of basis, the clusters are

represented using thin-plate splines; and 3) a full perspective

projection model is integrated in the problem formulation.

A. Related work

number of approaches devoted to the reconstruction of

a single deformable object observed in a sequence of im-

ages is considerable. The underlying principle behind most

approaches is to model the time-varying shape as a linear

combination of an unknown low-rank shape basis. Such basis

can be estimated from an initial reconstruction of the object

at rest [1], [2], [3], [4] or learned from previously observed

examples [5], [10]. Depending on the number of frames

processed at a time these approaches can be classified in

either batch or sequential approaches. The batch methods

assume that a sequence of tracked points of the object is

available and process all this information at once [1], [2],

[11], [10], obtaining the 3D representation of the deformable

object at each frame. The sequential methods estimate a new



shape for each new acquired frame. These methods compute

an initial 3D representation of the object, using standard

structure from motion techniques, from which physical-

based basis [4] or simply a low-rank shape model basis

[3] are computed. Then the deformed shape is computed

for each new acquired frame. Both approaches, batch and

iterative assume that a single object is observed on the

scene and that enough correspondences are observed in

consecutive frames. In contrast to global non-rigid structure

from motion (NRSfM) approaches that either require 3D

points to be observed over a large number of frames or an

initial 3D shape, piecewise approaches are able to reconstruct

deformable surfaces from correspondences between pairs of

frames [6], [7]. This type of algorithms are more suitable

for deformable surfaces than those developed for generic

deformable objects. These methods represent the surface

as a predefined triangulated mesh, where the surface 3D

points, initially reconstructed from correspondences in two

views [12], are represented as its vertices. The goal is to

compute the deformation of the mesh that best fit the 3D

points. This local formulation allows the simplification of

the expected deformations, since local patches have fewer

degrees of freedom and can only undergo relatively small

deformations, making them easier to learn [5]. One key

aspect of these approaches is the partitioning of the mesh.

Instead of dealing with the deformable surface as a whole, it

is modeled as a combination of smaller patches with common

shared features to enforce global consistency. Our approach

has been inspired by these methods.

II. OUR APPROACH

In this section we present the proposed approach to

reconstruct patches of deformable surfaces. Given an initial

reconstruction of the deformable surface, our approach: 1)

segments the scene based on texture, 2D image geometry,

and depth; and 2) estimates of the camera motion and the

deformed surfaces using thin-plate splines.

A. Initial 3D Reconstruction

As an initial step we need to recover the 3D structure of the

environment. NRSfM approaches reconstruct the scene from

multiple frames using conventional SfM techniques while

piecewise approaches use planar homographies between two

views to recover this structure. Both of these approaches

compute sparse features and depend on a well texturized

environment. Another technique is shape from shading (SfS),

which do not require a well texturized environment and

provide a dense 3D reconstruction using a single calibrated

frame [13]. The main disadvantage of these techniques is

the computation time. In this paper we will explore different

reconstruction methods. In Fig. 1 we show examples of

reconstructions using SfS and stereo techniques

B. Image Segmentation Using Affinities and Depth

Assuming we have an initial reconstruction of the scene,

we subdivide the image into smaller patches based on

the correspondences between two consecutive frames and

depth information. We initially extract and match SIFT

(a) (b)

(c) (d)

Fig. 1. Examples of 3D reconstruction from laparoscopic images using
shape from shading and stereo techniques. (a) Color image of porcine wall.
(b) Reconstruction using SfS. (c) Front view of stereo reconstruction. (d)
Lateral view of stereo reconstruction.

features [14]. Since no global geometrical constraints can

be used due to the deformation of the tissue, an inlier

selection strategy is used to eliminate outliers. In particular,

we use an approximation to the maximum clique[15], where

the distance between matches and feature orientations are

used as consistency criteria. These inlier correspondences

are the input to our correspondence-based segmentation

algorithm, which is inspired by [16], with the difference that

our approach combines the local geometric information in

the image domain with depth information. Moreover, our

approach focuses on the cluster construction instead of the

matching, since an already outlier-free set of matches is pro-

vided. The main steps of our algorithm are the following. We

initially apply the Delaunay triangulation over the matched

features in the reference image. In the next step, we randomly

select a triangle for which we compute the corresponding

affine transformation using its three correspondences in the

current image. Then, we map the adjacent vertices of the

triangle from the reference to the current image using the

computed affine transformation. In order to include a match

as a member of a cluster we verify two criteria: i) the distance

between the mapped point and the actual match in the current

image is smaller that a threshold, and ii) the depth of the

adjacent vertex with respect to the cluster’s depth is inside

a predefined range. Every time a new match is added to the

cluster, the affine transformation is updated. This process

is repeated until no more adjacent vertices can be added.

Then, the whole process is repeated with a new randomly

selected triangle until the number of unclustered triangles

is smaller than the predefined cluster size. This algorithm is

easily implemented using recursion over a tree structure. The

output of our algorithm is a set of clusters, which represent

consistent elements in the image domain and 3D space.

Moreover, each cluster is assigned an affine transformation

that accurately (up to a predefined threshold) maps a point

contained in the reference cluster to its corresponding point

in the current image. The pseudo-code of this procedure is

depicted in Algorithm 1. In Fig. 2 we show an example of the



Algorithm 1: Correspondences clustering based on affine

transforms and depth information.

Input : Ω = {(p1,q1), . . . , (pn,qn)} (correspondences)

S̄ (Initial shape)

Output: A = {A1, . . . ,Am} (Set of affine clusters)

/*Compute Delaunay Triangulation*/

triangles ← Delaunay(Ω)
triangle ← random(triangles) /*Select random triangle*/

/*Define maximum cluster depth*/

thrDepth ← max cluster depth
thrDist ← max affine error
while triangles.size() > min cluster size do

T i
affine ← ComputeAffinity(triangle, Ω)

Ai ← InitializeCluster( Taffine, triangle)

nodeID ← 1 /*New tree has only root node*/

Ai ← ExpandCluster(Ai, nodeID, Ω, S̄)

triangles ← RemoveUsedTriangles(triangles)

i← i+ 1
triangle ← random(triangles)

return A
end

Function ExpandCluster(Ai, nodeID, Ω ,S̄)

leafNode ← Ai(nodeID).isLeaf

if leafNode == false then

[Ai, adjNodes ] ←GetAdjNodes(Ai, nodeID, S̄)

if isEmpty(adjNodes) then

Ai(nodeID).isLeaf ← true

else

numAdjNodes ← adjNodes.size()

for j ← 1 to numAdjNodes do

nodeID ← adjNodes(j).ID

valDepth←VerifyDepth(nodeID)

affDist ← CalcDistance(T i
aff ,

nodeID)

if valDepth and affDist < thrDist then

Ai ← AddNode(nodeID)

T i
aff ← UpdateAff( T i

aff ,nodeID)

end

Ai ← ExpandCluster(Ai, nodeID, S̄)
end

end

end

return Ai

end

segmentation using our approach. The scene presents drastic

illumination changes and considerable camera motion. We

observe that the clusters represent consistent structures in

the image and 3D domain.

C. Modeling Patches Deformation

In this work we model the patches deformation using thin-

plate spline mappings. These mappings can be seen as a

combination of a linear part (affine transformation) and the

superimposition of principal warps [17], which are basis for

(a)

(b)

(c) (d)

Fig. 2. Image segmentation based on correspondences. (a) SIFT features
are matched in two consecutive frames. (b) Inlier selection using maximum
clique approximation. (c) Matches are classified into clusters based on
geometric and depth information. (d) Convex hull of clusters in current
image.

the representation of shape change. More formally, a thin-

plate mapping f : R2 → R for a point x = (x, y), is defined

by a radial base function (RBF) U(s) = s2 log(s2), a 3-

vector r = (r1, r2, r3) (affine transformation) and a n-vector

t = (w1, . . . , wn) defining non-affine transformations, which

are associated to a set of n control points c = (x̄, ȳ), such

that f(x) = r1+ r2x+ r3y+
∑n

i=1
wiU(‖ci−x‖). In order

to consider a three dimensional mapping W : R2 → R
3, we

stack three RBFs fx, fy and fz sharing their control points
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with ci = (sx̄, sȳ, s) and x = (sx, sy, s) in homogeneous

coordinates. The parameters that define fx, fy and fz can be

estimated by solving a linear system that relates the control

points c and their correspondences c′ = W(c). Let Pc and

P′
c be the stacked correspondences of the control points in

normalized coordinates in the reference and current image,

respectively. We compute the thin-plate parameters using
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where Uij = U(‖cj−ci‖) and 0 is a 3×3 zero matrix. The

principal wraps of this mapping are given by the eigenvectors

of the bending energy matrix L−1

n UL−1

n , with L−1

n the upper

left n× n sub-block of L−1.

In order to map features from the reference to the current

frame we use the feature driven parametrization of TPS. The



(a) (b) (c) (d)

Fig. 3. (a) RMSE of the reconstructed point cloud as a function of noise in the pixel coordinates in the reference and current images. (b) RMSE of the
reconstructed point cloud as a function of noise in the initial point cloud. (c) RMSE of the reconstructed point cloud as a function of noise on the initial
3D coordinates using patches. (d) RMSE of the reconstructed point cloud as a function of noise on the initial point cloud including 10% of outliers.

mapped points x′ = (x′, y′) of the reference image can be

calculated as a function of control point correspondences

c′ = (x̄′, ȳ′) on the current image. The m transformed

pixel coordinates x′
j can be stacked in a matrix P′

x such

that P′
x = [x′

1
,x2, . . . ,xm]

T

P
′
x = [V W]L∗P

′
c, (3)

where Vij = U(‖xj − ci‖), Wj = (1, xj , yj) and L∗ is the

(n+ 3)× n sub-matrix of L. Notice that the matrices V, W

and L∗ only depend on pixels coordinates in the reference

image.

This feature driven mapping allows us to represent the

control point correspondences as projections of the 3D points

X as P′
c = KX using the 3× 4 perspective projection matrix

K. We exploit this representation to define the warping

ω(xi,Xi,K) = [sxi syi s] = MiL∗KXi, (4)

where Mi is the i−row of the matrix M corresponding to xi.

1) Mapping Patches: A patch Ai is defined by a set of

correspondences q↔ q′, which represent points in the refer-

ence and current image, respectively. These correspondences

are the projections of 3D points Xr and Xc, respectively.

Using the previously defined warp, the correspondences in

the current frame can be defined as

q′ = ω(q,Xc,K). (5)

In order to compute the deformed point cloud that projects

the image correspondences q′ we minimize the following

cost function

minimize
X

∑

q∈Ai

‖ω(q,X,K)− q′‖2 + λ · ‖Xp − X‖2, (6)

where λ is a regularizer that penalizes strong 3D point

variations. Since all patches A1, . . . ,AN , share the same

projection matrix we define the overall cost function as

minimize
X1,...,Xnp

=

N
∑

i=1

∑

q∈Ai

‖ω(q,Xi,K)− q′‖2 + λ · ‖Xpi − Xi‖
2

(7)
To solve the minimization problem above we use the

Levenberg-Marquardt algorithm. Notice that we minimize

the reprojection error of the control points X, which are a

subset of the points contained in all clusters. The reprojection

error reported on the experiments is computed using all the

points contained in the clusters.

D. Selection of Control Points

The control points of thin-plate splines define the accuracy

of the surface reconstruction. We found that ∼ 30% of the

points contained in each cluster are enough to have a fair

reconstruction of the surface’s patches. If the patches share

points, the common points are selected as control points

automatically in order to keep the patches together.

III. EXPERIMENTS

We apply the previous approach in simulated and real

environments to analyze the performance of our approach.

In particular we are interested in the advantages that the

cluster segmentation provides to the estimation of the surface

deformation.

A. Synthetic Data

We analyze the sensitivity of our approach to noise and

the impact of the number of control points on the accuracy

of the deformed surface. We create a mesh of 20cm×20cm
with 121 vertices, which depth is defined by a third order

polynomial on their (X,Y ) coordinates. We compute the

deformed surface Xdef as Xdef = ∆ · X + Γ,where ∆
contains scale factors and Γ contains translation vectors for

each element in the point cloud X. We apply a scale factor

up to ten percent to the X and Y coordinates (∆x,∆y) and

up to two percent to the Z coordinate (∆z). We also add a

random translation (Γx,Γy,Γz) also up to ten percent. We

generate the reference and current images after these two

surfaces using a perspective projection. We add Gaussian

noise, characterized by its standard deviation σ, to the pixel

coordinates of the control points in both, reference and

current images. We repeat the experiments 30 times in order

to avoid particular cases due to random noise. In Fig. 3(a)

we see the root mean square error (RMSE) of the 3D points

as a function of noise.

In the next experiment we analyze the sensitivity of our

approach to a bad initial estimation of the point cloud.

We randomly perturbed the initial estimation of the point

cloud by scaling and translating the 3D coordinates. The

percentages considered are P = (0.0, 0.01, 0.03, 0.05, 0.10)
for ∆x, ∆y and Γ, and P/5 for ∆z . Pixel coordinate noise

of σ = 1 is added to the feature correspondences. In Fig.

3(b) we observe that the our approach is robust up to ten

percent of noise with less than 1cm error.

As commented previously our approach reconstructs small

patches. This characteristic makes our algorithm less sen-

sitive to noise and robust to outliers. In the following

experiment we divide the surface into four patches with

similar area. We reconstruct the full surface and each in-

dividual patch using sixteen control points with feature

correspondence error of σ = 1. In Fig. 3(c) we observe
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Fig. 4. Reconstruction of deformable surface by tracking relevant features. First row, paper sequence. Second row, t-shirt sequence. Third row, laparoscopic
sequence (a,d) Matches after inlier selection. (b,e) Computed clusters based on geometric information and affine transformations. (c,f) Reconstruction by
tracking, first plot shows ground truth and second plot shows our reconstruction.

the reconstruction error for different amounts of noise in the

initial point cloud. In Fig. 3(d) we observe the impact of

outliers on the surface reconstruction. We used the same

configuration as the previous experiment and we add ten

percent of outliers to the control points used for the full

reconstruction of the surface and to the control points of a

single patch (Patch 4).

The following observations arise from the experiments:

• Our approach has a low sensitivity to noise in the pixel

coordinates of the detected control points.

• Using only eight control points, the estimation error of

the whole deformed surface is very close to the one

using four times more control

• Single patch reconstruction errors are lower than the full

reconstruction error for small amounts of noise in the

image coordinates.

• Outliers have a bigger impact on smaller patch areas.

• The use of patches provides a way to isolate outliers.

B. Real data

In the next experiments we test the performance of our

approach using three sequences of real data. Two of these

sequences were acquired with an RGB-D sensor providing

ground truth [18]. The first sequence corresponds to a paper

observing different amounts of bending and contains 193

frames. The second sequence contains 313 frames and corre-

sponds to a T-shirt, which observes a more complex deforma-

tion. The third sequence used is a stereo laparoscopic video1.

The image resolution of all sequences is 640 × 480. We

track the deformation of the surface between two consecutive

frames. We assume that the initial reference surface is known.

We compute and match SIFT features using VLFeat Matlab

implementation [19]. Then we compute an approximation

to the maximum clique, using the distance and orientation

between matches as consistency criteria, as an inlier selection

[15]. These inliers along with the initial reconstruction are

the input to our algorithm. The number of control points of

the TSP depend on the total number of features contained in

each patch.

1http://hamlyn.doc.ic.ac.uk/vision/

TABLE I

STATISTIC INFORMATION OF SINGLE FRAME RECONSTRUCTION

Sequence Matches Clusters Points per cluster Error

Paper 324 6 [41,66,166,15,26,12] 2.5mm

T-shirt 364 13
[67,25,54,20,15,17,

2.8mm
14,36,18,36,12,24,26]

Laparoscopy1 828 8
[84,163,384,53,133,62,

1.5%
81,32]

Laparoscopy2 828 8
[219,94,250,100,132,]

1.2%
82,40,99]

Fig. 5. Error distribution in millimeters for the two reconstructed frames
presented in Fig. 4.

1) RGB-D Sequences: In Fig. 4 we present results for

single frames of the RGB-D sequences. The initial matches

after the inlier selection step are shown in Fig. 4(a,d). The

computed clusters using 2D and 3D information are shown

in Fig. 4(b,e). We clearly observe how clusters capture

areas of the image where local affine transforms relate

features in the reference and current images, as well as

the impact of the depth information on the bending areas.

In Fig. 4(b) the biggest cluster occupies an almost flat

area with similar depth. Adjacent clusters are thinner since

the change in depth, due to the bending of the paper, is

more drastic. In Fig. 4(c,f) we show the reconstruction of

the deformed surface computed by our approach. The first

surface corresponds to the ground truth and the second one is

the reconstructed surface. We observe that the shared points

connecting contiguous clusters enforce a smooth transition



Fig. 6. 3D reconstruction error of the first 190 frames of the
RGB-D sequences.

(a) (b)

Fig. 7. Surface smoothness. (a) T-shirt surface has abrupt changes
between adjacent nodes. (b) Paper surface is smoother than t-shirt
surface.

Fig. 8. 3D reconstruction error with respect to the average pixel distance
between feature matches using all frames in the sequences.

between clusters. The reconstruction error is 2.5mm and

3.5mm, in the paper and the T-shirt examples, respectively.

In Fig. 5 we show the error distribution for both examples.

We observe that most reconstructed points have errors of one

and two millimeters. Notice that since we do not parametrize

the surface as a triangular mesh, the error is computed as

the Euclidean distance between the reconstructed 3D points

contained in the clusters and the ground truth 3D points. In

Table I we observe that the number of points used to track

the deformation of the surface is reduced by the use of TPS.

In Fig. 6 we present the reconstruction error for the first

150 frames contained in both sequences. We observe that the

errors on the T-shirt sequence are much bigger than those of

the paper sequence. This behavior is explained due to the

different smoothness of the surfaces (see Fig. 7). Another

factor that affects the surface reconstruction is the feature

displacement in the image domain. In order to analyze this

impact we group the matched images according to their fea-

ture displacement. In Fig. 8 we show the 3D reconstruction

error as a function of the features displacement. In both

sequences we clearly observe that the reconstruction error

is strongly related to the feature displacement from frame to

frame.

2) Laparoscopic Sequence: In this experiment we use

a video sequence acquired with a stereo laparoscope. We

reconstruct the scene using two algorithms as shown if Fig.

1. The first algorithm is shape from shading provided by [13]

and requires a single calibrated image. This reconstruction

is dense, smooth and up to scale. The second reconstruction

(a) (b)

(c)

Fig. 9. Surface tracking using the SfS reconstruction. (a) Features matches
after inlier selection. (b) Computed clusters. (c) 3D tracked surface.

is performed using the semiglobal block matching (SGBM)

algorithm included in OpenCV and provides a less dense

reconstruction than the SfS algorithm (see Fig. 1). The

baseline of the system constrains the distance to which the

scene can be reconstructed using SGBM.

Shape from shading reconstruction. In Fig. 9 we show

the reconstruction of a single frame using the SfS recon-

struction. Since the reconstruction provided by this approach

is up to scale we compute the error relative to the size of

the 3D structure. The numerical results of the experiment

are presented in the third row of Table I. Notice that the

reconstruction error is only 1.5% with a feature match

displacement of 0.8 pixels. Similarly to the experiments with

the RGB-D images, we observe that the error increases as the

distances between matches increases. For instance, a feature

match displacement of 2.5 pixels increases the reconstruction

error to 7%.

Stereo reconstruction. In Fig. 10 we present the es-

timation of the deformation of a single frame, using as

initial reconstruction the stereo reconstruction given by the

SGBM algorithm. We observe that this reconstruction is

more realistic that the one provided by SfS, which impacts

on the cluster computation (see Fig. 10(b)). The accuracy

using this reconstruction is similar to the one using SfS,

1.2% error with the same feature displacement 0.8 pixels.

The complete information of this experiment is shown in

the last row of Table I. A particular observation of this

experiment is related to the reconstruction of the membrane



(a) (b)

(c)

Fig. 10. Surface tracking using the SGBM reconstruction. (a) Features
matches after inlier selection. (b) Computed clusters. (c) 3D tracked surface.

(see the middle of the image). Notice that there is no cluster

capturing this membrane, even though there are matches and

depth information available. This behavior is explained due

to that the membrane is almost parallel to the optical axis and

its structure cannot be explained with affine transformations.

We have observed that our approach as any NRSfM

approach depends on the initial surface reconstruction. More-

over, this surface should be smooth in order to be represented

correctly using thin-plate splines with a minimum number

of control points. An example of this situation can be

observed in the T-shirt sequence, where abrupt changes

between adjacent neighbors are present, making difficult to

represent the surface patches using thin-plate splines. We

have also shown the impact of the feature displacement

on the reconstruction accuracy (see Fig. 8). Our approach

requires this displacement to be small, since it computes a

local optima, where the initial solution is the reconstruction

at the previous step.

C. Conclusions and Future Work

In this paper we present a yet simple but efficient scheme

to track deformable surfaces. We assume that an initial

reconstruction of the object/surface of interest, associated

to a reference image frame, is available. Dense structure

from motion as well as shape from shading algorithms can

be used to generate this initial shape. At first, we extract

and match scale invariant features between the reference

and current frames. The outlier matches are filtered using an

approximation to the maximum clique technique using the

distance between matches and the scale information from

the detected features as consistency criteria. Secondly, this

outlier-free set of matches is subdivided into clusters using

local geometric information in the image domain and depth

information from the available initial reconstruction. The

number of elements of each cluster is further reduced using

a thin-plate spline parametrization. Then, the parameters

representing the deformed surface, which correspond to the

control points of the thin-plate splines, are estimated using a

non-linear optimization algorithm that minimizes the repro-

jection error of all the features matched in the current image.

We finally perform experiments in simulated and real data to

validate the performance of our approach. We observe that

our approach tracks the deformable surface with millimeter

accuracy with a considerable small number of control points.

Moreover, it is robust to noise in the image coordinates of

the matched features. We also observed that the cluster-based

formulation allows us to easily discard corrupted patches.
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