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Abstract— We present PennCOSYVIO, a new challenging
Visual Inertial Odometry (VIO) benchmark with synchronized
data from a VI-sensor (stereo camera and IMU), two Project
Tango hand-held devices, and three GoPro Hero 4 cameras.
Recorded at UPenn’s Singh center, the 150m long path of the
hand-held rig crosses from outdoors to indoors and includes
rapid rotations, thereby testing the abilities of VIO and Simulta-
neous Localization and Mapping (SLAM) algorithms to handle
changes in lighting, different textures, repetitive structures,
and large glass surfaces. All sensors are synchronized and
intrinsically and extrinsically calibrated. We demonstrate the
accuracy with which ground-truth poses can be obtained via
optic localization off of fiducial markers. The data set can be
found at https://daniilidis-group.github.io/penncosyvio/.

I. INTRODUCTION

In this paper we present a new, challenging data set aimed
at benchmarking and supporting the development of new
Visual Inertial Odometry (VIO) algorithms.

Originating from the Greek words “odos” (way) and
“metron” (measure), odometry is the art and science of
estimating traveled distances based on sensor readings. A
wide variety of different sensors can be used for this purpose,
including global positioning system (GPS) receivers, laser
range finders, radio frequency (RF) receivers, sonar, cameras
and Inertial Measurement Units (IMUs), with VIO being
based on the latter two. The key challenge lies in developing
algorithms that efficiently fuse multi-sensory data [1] [2]
and estimate the device’s motion as quickly and precisely
as possible, often also simultaneously building a map of the
environment (SLAM) [3]. A great amount of research has
been done in this area, lately motivated by the race to build
autonomous cars [4] [5] and aerial vehicles [6] [7].

Most recently, augmented reality is coming to cell phones
[8], hand-held devices such as Google’s Project Tango [9],
and head-mounted displays, creating urgent demand for
extraordinarily accurate odometry and head tracking in order
for augmented reality objects to remain stationary when users
move. Pure visual odometry [10] [11] [12] [13] [14] has
enjoyed considerable success, but at the moment, VIO based
on the fusion of camera (to eliminate drift and establish loop
closure) and IMU data (for rapid rotations) [15] [16] [17]
appears to be the most promising approach.

In this context we present a VIO benchmark for which we
simultaneously record a number of different camera and IMU
streams, including data from two hand-held Google Project
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Fig. 1. Outside the Singh center, as seen through GoPro camera C2.

Fig. 2. Inside the Singh center, recorded by the Bottom Tango RGB camera.

Tango devices. Our data set comes with an accurate reference
(ground truth) position, which is important for benchmarking
VIO algorithms. As an immediate application, this allows
us to quantitatively assess the reliability of the Tango’s
proprietary on-device VIO software. Because our method of
obtaining ground truth positions via fiducial markers can be
used in other contexts as well, we describe it here in detail.

The present work advances the state of the art by con-
taining data from a unique mix of cameras and IMUs,
being recorded from a hand-held platform, and by providing
accurate ground truth over a relatively large roaming area
in the presence of glass surfaces that make localization by
other means such as laser range finders difficult.

II. RELATED WORK

Intense work on SLAM algorithms has produced a large
number of related data sets, to which links can be found on
sites like OpenSLAM [18] or Radish [19]. The vast majority
of them uses ground vehicles as carriers and employs laser



range finders to facilitate localization and mapping. For
brevity we discuss only a few popular and representative
benchmarks that we consider most closely related to our
work. Table I gives an overview of their characteristics.

The very popular KITTI [5] odometry benchmark stands
in for several similar data sets [23] [24] [25] [26] geared to-
wards autonomous navigation, where the sensors are carried
by a ground vehicle. As all KITTI sequences are recorded
outdoors, the authors can use a highly precise GPS/IMU
combination to establish a six degree of freedom (6 DOF)
ground truth trajectory. The camera frame rate of 10Hz
suffices to capture a car’s motion, but is fairly low for a
hand-held device.

For indoor micro aerial vehicle (MAV) operations, the Eu-
RoC data set [7] has set a high bar by carefully synchronizing
the stereo camera and IMU data recorded by a VI-sensor
to ground truth pose information provided by an external
localization system, either a Vicon Motion Capture (MoCap)
system, or, when roaming in the much larger machine hall, a
Leica MS 50 laser tracker. While the ground truth is highly
precise, the recording is strictly indoors, and for the larger
roaming area does not provide full 6 DOF information.

From the TU Munich comes another strictly indoors data
set aimed at RGB-D SLAM benchmarking [20], recording
RGB and depth information with a Microsoft Kinect sensor.
Although the paths traveled are rather long, ground truth is
provided only in the relatively small area covered by the
MoCap system.

The Rawseeds [21] data set is recorded on a ground
robot, comes with ground truth and covers both indoors and
outdoors environments. Indoor ground truth however is not
provided for the mixed indoor/outdoor situations, the indoors
poses only include 2D location and heading direction, and the
GPS-based outdoor ground truth does not contain orientation
information. The authors also use fiducial markers (AR tags),
but attach them to the robot and mount cameras in various
places of the room to triangulate the position much like a
MoCap system does. In contrast, we attach cameras to the
sensor rig, and place static tags as landmarks, which scales
better with area size.

The NCLT data set [22] is the only other work we
are aware of with accurate ground truth and some in-
doors/outdoors transitions. Collected at the University of
Michigan using a Segway as carrier, its focus is on au-
tonomous systems and seasonal changes over a whole year.
The omnidirectional camera (Pointgrey Ladybug3) records
images at 5Hz, which is sufficient for VIO on ground
vehicles, but is at the lower end for hand-held devices
targeted by our data set.

III. DATA SET CHARACTERISTICS

A. Location

We chose the University of Pennsylvania’s Singh Center
of Nanotechnology as the site for recording the data set for
several reasons. It has a long outdoors path, extended glass
walls on the outside as well as inside, and features many
repetitive patterns (see Figures 1 and 2) that will stress test

visual odometry algorithms. The indoor lighting is a mix
of artificial and natural daylight, bright enough to capture
sufficiently sharp images of the AprilTag fiducial markers
[27] employed. Because the Singh center was built very
recently (2013), we are able to source accurate architectural
CAD drawings and elevation charts for indoors and outdoors
that we use to eliminate error accumulation from our own
tape-measured distances. We spot checked several of the
dimensions in the CAD file with the measuring tape and
even for distances of more than 10m the discrepancies were
less than 2cm. This is owed due to the highly accurate laser
equipment employed in the construction of modern buildings.

B. Sensor Platform

Fig. 3. Sensor rig with orientations of all ten sensors. The Tango Top
records IMU data and fisheye camera video, the Tango Bottom records IMU,
RGB video, and pose estimates from Google’s proprietary VIO algorithm.
The three GoPro cameras C1/C2/C3 record HD video of fiducial markers to
establish ground truth. The VI-sensor at the bottom captures synchronized
monochrome stereo video and IMU data. Extrinsic calibration is provided
with the data set.

All devices are attached to a rig (Figure 3) constructed
from laser cut MDF board and spacers. A list of sensors
and their characteristics can be found in Table II. A Intel
NUC5i7RYH (square shaped box at the bottom of the
platform) is connected via USB 3.0 to the forward-facing
VI-sensors above it, and stores the incoming data to a ROS
bag. The flat slab next to the NUC is a 32Ah Li-Ion battery
providing power to NUC and VI-sensor.

Precise synchronization was a design goal of the VI-
sensor. The two cameras and IMU are hardware synchro-
nized, and the sensor timestamps (not recording timestamps!)
contained in the ROS bag must be used to recover full
quality. These are also the timestamps we use for synchro-
nization. Since this data is targeted at stereo-based algo-



PennCOSYVIO KITTI [5] EuRoC [7] RGBD-SLAM [20] Rawseeds [21] NCLT [22]
year 2016 2012 2016 2012 2009 2016
focus hand-held VIO self-driving car MAV VIO RGB-D SLAM SLAM long term SLAM
environ. in/outdoors outdoors indoors indoors in/outdoors in/outdoors
carrier hand held car hexacopter ground robot/hand

held
ground robot Segway

≈ dist. 150m per sequence 39km total up to 131m up to 40m up to 1.9km [23] up to 7.5km

cameras

- 4 RGB: 1920x1080
@30Hz

- 1 stereo gray:
2x752x480 @20Hz

- 1 fisheye gray:
640x480 @30Hz

- 1 stereo RGB:
2x1392x512 @10Hz

- 1 stereo gray:
2x1392x512 @10Hz

- 1 stereo
gray:
2x768x480
@20Hz

- 1 RBG-D:
640x400 @30Hz

- 1 trinocular gray:
3x640x480 @15Hz

- 1 RGB: 640x480
@30Hz

- 1 fisheye RGB:
640x640 @15Hz

- 1 omnidirectional
color: 6x1600x1200
@5Hz

IMUs
- 2 accel. @128Hz
- 2 gyros @100Hz
- 1 acc/gyro @200Hz

- 1 accel/gyro @10Hz
(OXTS RT 3003)

- 1 accel/gyro
@200Hz

none - 1 accel/gyro
@128Hz

- 1 accel/gyro @100Hz
- 1 fiber gyro @100Hz

GPS none - 1 OXTS RT 3003
@10Hz

none none - 1 RTK GPS @5Hz - 1 GPS @5Hz
- 1 RTK GPS @1Hz

Laser none - 3D: Velodyne
HDL-64E @10Hz

- 3D: Leica
MS 50
(stationary)
@20Hz

none
- 2D: 2 Hokuyo

@10Hz
- 2D: 2 SICK @75Hz

- 3D: Velodyne
HDL-32E @ 10Hz

- 2D: Hokuyo @40Hz
- 2D: Hokuyo @10Hz

3D point
cloud

no yes yes yes no yes

ground
truth

6DOF (visual tags) 6DOF (GPS/IMU)

- 6DOF
(MoCap)

- 3D (laser
tracker)

6DOF (MoCap)
- 3D (GPS)
- 2D+heading (visual

tags/laser)

6DOF
(GPS/IMU/laser)

≈ accur. 15cm 10cm 1mm 1mm few cm/m 10cm

TABLE I
OVERVIEW OF RELATED DATA SETS AND BENCHMARKS

rithms, and given storage space constraints while recording
the sequence, we provide rectified images only.

Mounted above the GoPro cameras are two Google Project
Tango 7in “Yellowstone” tablets. The top one (Tango Top)
records video from the fisheye camera and IMU data,
whereas Tango Bottom collects RGB camera, IMU, and VIO
pose information.

IV. DATA SET CONTENT

The PennCOSYVIO benchmark consists of four sequences
that follow a path similar to the one shown in Figure 4. It
starts outdoors at the south west end of the walkway, goes
up a slight slope (1m elevation difference) for about 30m,
and enters through the left main door into the lobby. Once
inside it heads east, does a 360◦ rotation, then continues on
until a 180◦ left turn leads back the same path and out to
the starting point. The 360◦ turn gauges the ability of VIO
algorithms to handle rotations in the yaw direction.

Of the four sequences listed in Table III, two (A-S and A-
F) are for training and come with ground truth provided,
the other two are for testing. Test trajectories should be
submitted as directed on the benchmark web site, and will be
evaluated against the ground truth using the metrics described
in Section VIII. For all sequences the raw data as recorded
is provided, except that the time stamps are shifted for
synchronization (Section VI-C) and expressed in seconds
uniformly. The mp4 files recorded by the GoPro cameras
C1/C2/C3 and on Tango Bottom/Top are cut on key frames
without re-encoding, and are accompanied by text files with
time stamps for each frame. For convenience we also deliver

decoded frames in png format for all cameras. The VIO
poses from the Tango Bottom are only given for the training
sequences.

Aside from the actual VIO sequences, the data set contains
text files with the results of our intrinsic and extrinsic
calibration, and the corresponding calibration images.

V. COORDINATE SYSTEMS AND NOTATION

In this paper, and for further documentation provided with
the data set, vector coordinates are left-superscripted with
W (world), B (body, the camera rig to which all sensors
are rigidly attached), or the label of the sensor depending
on the coordinate basis. The notation for transformations
between coordinate systems follows a similar pattern, e.g.
TB

C1 transforms coordinates X from camera C1 to the body
system:

XB = TB
C1 XC1 . (1)

Symbols without indicators are assumed to be in the world
(W) coordinate system.

VI. POST PROCESSING

A. Intrinsic Calibration

To facilitate intrinsic calibration, we record video footage
of a large 7x8 checker board pattern with a square size of
108mm, and cut out a sufficient number of frames from
different points of view. For the Tango Bottom (RGB) and the
VI-sensor cameras we use the MATLAB calibration toolbox
with two radial distortion coefficients. The GoPro and Tango
Top fisheye lenses are calibrated with the OCamCalib [29]



Sensor Characteristics

C1,C2,C3

- GoPro Hero 4 Black
- RGB 1920x1080@30fps on “W” (wide) setting
- rolling shutter
- FOV: 69.5◦ vert., 118.2◦ horiz.

VI-Sensor
[28]

- Skybotix integrated VI-sensor
- stereo camera: 2 Aptina MT9V034
- gray 2x752x480 @ 20fps (rectified), global shutter
- FOV: 57◦ vert., 2 x 80◦ horiz.
- IMU: ADIS16488 @200Hz

Tango
Bottom

- Google Project Tango “Yellowstone” 7in tablet
- RGB 1920x1080@30fps, rolling shutter
- FOV: 31◦ vert., 52◦ horiz.
- proprietary VIO pose estimation
- accelerometer @128Hz
- gyroscope @100Hz

Tango
Top

- Google Project Tango “Yellowstone” 7in tablet
- gray 640x480@30fps, global shutter
- FOV: 100◦ vert., 132◦ horiz.
- accelerometer @128Hz
- gyroscope @100Hz

TABLE II
LIST OF DEPLOYED SENSORS AND THEIR CHARACTERISTICS

sequence purpose pace distance time ground
truth

A-S training slow 149.2m 155s yes
A-F training fast 148.8m 96s yes
B-S test slow similar 167s hidden
B-F test fast similar 101s hidden

TABLE III
THE FOUR SEQUENCES PROVIDED WITH THE DATA SET

toolbox, using a four-parameter imaging function which
performs significantly better than the radial distortion model
implemented in the MATLAB toolbox. For the GoPros we
obtain well less than one pixel average reprojection error on
the test images. We use the imaging function to undistort the
GoPro frames into equivalent perspective camera images so
the fiducial markers can readily be detected by the AprilTag
library, and the corner points can subsequently processed
by our extrinsic calibration and localization code base. We
crop the outer regions of the undistorted image such that all
pixels are valid and up-sample the inner region to preserve
the original image format. The required MATLAB scripts for
this process are included with the data set.

B. Extrinsic Calibration

First the direction of the optical axes of all cameras
are determined by recording video of a calibration target
consisting of AprilTags placed at well-known locations on a
wall. From the video footage 16 synchronized frames are cut
and corner points extracted from each tag in the images. With
the intrinsic calibration parameters, the pixel coordinates of
the corner points, and the 3D positions of the tag corners
known, the extrinsic calibration can then be determined by
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Fig. 4. Visualization of sequence A-S. The yellow squares (enlarged
three times for visibility) are the AprilTag markers used for ground truth
measurement (green trajectory). Also shown is the pose given by the Tango’s
proprietary VIO algorithm. Axis units are meters.

minimizing the reprojection error over all camera and rig
poses.

To deal with non-overlapping camera views and with
cameras sometimes having no view of the calibration target at
all, a pose graph optimizer based on the GTSAM [30] library
(v 3.2.1) is used. For illustration, Figure 5 shows a subgraph
of the full factor graph used for extrinsic calibration. Circles
represent hidden variables to be optimized, solid squares
represent factors connecting one or more variables, and free
labels next to factors denote the measured data used.

At the bottom of the graph a Prior factor [30] with
a narrow Gaussian of σ = 25 mm pins the 3D coordinates
Xi, i = 1 . . . 4 of a single tag’s four corners to their measured
locations Mi. Thus the optimizer is allowed to move the
corner points on the order of a few centimeters, accounting
for some inaccuracy in tag placement.

The tag corner points are viewed in the first (p = 1, left
side of the graph) and second (p = 2, right side) rig position
extracted from the video. The corresponding unknown rig
transformations and 3D points in the body system B(p) are
related by Xi = TB(p) X

B(p)
i, which is modeled [30] by a

ReferenceFrameFactor with σ = 1 mm.
Finally, the image-level 2D pixel coordinates

{ u
C1(p)

i, u
C2(p)

i} serve as input data to a
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Fig. 5. Example factor graph for a two-camera calibration, viewing the four corners of an AprilTag from two different rig positions. Circles are hidden
variables to be optimized, solid squares are factors connecting them and labels next to factors denote the measured data used. A transform T

B(p)
dependent

on rig-position p relates the tag corner points Xi to their body-system coordinates X
B(p)

i. Measured data are the 3D tag corner point locations Mi

and the pixel locations u
C(1,2)(p)

i of their projection onto the camera sensor. The measured data, combined with location priors EC1 and 1 ultimately
constrains the extrinsic calibration transforms TB

C1 and TB
C2 (top of graph).

GenericProjectionFactor (σ = 2 pixels) relating the
body-frame coordinates X

B(p)
i to the sought-for extrinsic

calibration transforms { TB
C1, TB

C2}. Since introducing
the rig transformation adds an additional degree of freedom,
we can now choose one of the camera’s extrinsic calibration
freely. We pick the forward-facing camera C2 as the rig
center by connecting it to the identity transform with a tight
(σ = 1 nm) Prior factor. On top of that, we constrain
the location (not orientation!) of the cameras with a prior
(σ = 1 µm) to their positions E as measured manually with
a ruler and triangulation. Especially for the fisheye lenses
with low resolution this improves accuracy, although fixing
the locations makes little difference in practice, and moves
the camera positions by at most 30mm (Tango Top).

In addition, since the VI-sensor already provides the
extrinsic calibration of its IMU and two stereo cameras, we
only fix the optical axis of its left camera to match with
the pose graph optimizer’s results, then position the IMU
and right camera according to the sensor-provided relative
poses.

Once the camera positions are established, the IMU po-
sitions follow from their known displacement with respect
to the camera. In the case of the VI-sensor the full extrinsic
calibration between cameras and IMU is directly provided
in the ROS bag, and for the Tangos it can be obtained via
Android’s API.

C. Synchronization

Among the devices on the rig, the VI-sensor stands out
due to the built-in hardware synchronization between camera
shutters and IMU [7] [28], thereby establishing a solid
relationship between optical and inertial data which we
leverage to synchronize the other sensors.

To aid with synchronizing the cameras, before the start
and after the end of each sequence we perform multiple hand

claps in locations where the views of the cameras overlap.
Using these visual markers we can see in post-processing
analysis that cameras C1, C2, and C3 run at such constant
and equal rate that clock drift is negligible during the short
time it takes to record a sequence, and further validate the
accuracy of the time stamps embedded in the mp4 files of
both Tangos and in the VI-sensor’s ROS bag.

Based on the hand claps we align all camera footage to
within half a frame (25ms) of the VI-sensor’s camera and
trim excess footage to leave just the benchmark sequence.
Trimming of mp4 files is done with the ffmpeg tool, cutting
on key frames to avoid potential quality loss associated with
re-coding. Note however that caution is necessary when
basing VIO on the C1/C2/C3 video, first because of the
rolling shutter and second because of a relatively large
uncertainty in the synchronization to the IMU.

Next, the IMUs of Tango Top and Bottom are synchro-
nized to the VI-sensor’s IMU by first using the extrinsic
calibration to express the yaw-axis angular velocity of all
sensors in the rig frame. Then the time series are aligned by
finding the peak in the correlation function. Since logging
of accelerometer and gyroscope data occurs off of the same
system clock, this simultaneously yields synchronization
offsets for the acceleration data as well, and in the case of
Tango Bottom, the VIO poses.

Finally, the cameras are synchronized to the inertial data.
We start by extracting the ground truth poses from the frame-
accuracy aligned footage of cameras C1, C2, and C3 as
explained in Section VII. Using the same method, we also
compute the poses of cameras C1, C2, C3, Tango Top, and
Tango Bottom, from which the yaw angular velocities are
calculated and synchronized against the VI-sensors IMU data
via maximum correlation as before.



VII. GROUND TRUTH

A. Method

Our ground truth poses are obtained by recording images
of fiducial markers with cameras C1, C2, and C3. The GoPro
cameras’ optical axes are all in the horizontal plane, and are
offset by an angle of about 75◦ about the vertical axis (see
Figure 3), resulting in a combined horizontal field of view
of almost 270◦ (vertical FOV of 69.5◦) when recording in
“W” (wide) mode at full HD (1920x1080). The wide FOV
(along with a bubble level on the rig to keep it approximately
horizontal) ensures that a sufficient number of tags are visible
at any one point in time.

As fiducial markers we use AprilTags [27] of size 36h11,
printed on letter size paper, and backed by 1/4in MDF board
where necessary. A total of 170 tags are placed as shown
in Figure 4. Attention must be paid to place the tags such
that they form triangles of sufficient height. For instance,
placing tags just along the bottom of the stone wall at the
walkway is not sufficient. Additional tags must be placed at
different elevations, i.e. on the lamp posts, to yield accurate
altitude via triangulation. After placement, we measure the
exact position of each tag with a measure tape and record it,
along with its orientation. That many tags are placed along
precisely built walls expedites this process. Placing all tags,
measuring and noting their locations, and recording the video
sequence can be accomplished by two persons in a single 10h
day.

After the sequence is recorded, the mp4 video files are
downloaded from the cameras and synchronized (see Section
VI-C). With the help of the AprilTag library [27] we extract
for all three cameras k ∈ {C1,C2,C3} the pixel coordinates

u
k(p) j

i of the four corner points i = 1 . . . 4 belonging to tag
j in each frame p, and via the tag identity relate them to the
measured 3D corner coordinates Mj

i in the world reference
frame.

We can now determine the ground truth poses of the rig
via maximum likelihood estimation over a pose graph using
the GTSAM [30] library in a similar fashion as for the
extrinsic calibration in Section VI-B. An example of the
graph structure is shown in Figure 6. For simplicity, only
a single tag is visible here, allowing us to drop the tag index
j. At the bottom of the graph, a narrow PriorFactor
[30] of σ = 25 mm constrains the 3D corner coordinates Xi

of a single tag to their physically measured values Mi. The
corresponding observed 2D pixel coordinates u

k(p)
i in frame

p then impose constraints via a ProjectionFactor (σ =
2 pixels) on the pose Tk(p) of the observing camera, which
in turn establishes the rig pose TB(p) through the known ex-
trinsic calibration transforms TB

k with uncertainties chosen
to be σrot = 3◦ (rotation) and σtrans = 10 mm (translation).

The rig poses TB(p) are interconnected with an identity
transform (σrot = 11◦, σtrans = 50 mm) that smooths
between frames and fills in rig poses in the rare occasion
when none of the three cameras observes a tag.

B. Accuracy Tests

Because the camera path includes outdoors scenes, and
due to the large area covered, using a MoCap system for
ground truth verification as in reference [7] is not possible.
Instead, similar to [21] we conducted experiments to estimate
the accuracy of our ground truth. For this purpose, the camera
rig was placed on a dolly that was guided along a 2 m long
rail at three different places (one outdoors and two indoors),
traveling parallel to walls so the orientation of the test path
was well established. After rotating and shifting the ground
truth to align with the starting point of the test path, the
ground truth motion should be strictly in the longitudinal x
direction, with no movement in y and z. Figure 7 shows
the observed error in the horizontal y direction and the
elevation z (upper graph), and an indicator of visible tags
(lower graph). The peak-to-peak error observed for outdoors
is ∆y = 50 mm and ∆z = 17 mm. Notice the fluctuation
of the y error caused by the presence or absence of close-by
tag #90. For the same experiment conducted at two different
indoors locations along the path we find ∆y = 31 mm,
∆z = 16 mm (open lobby, near display) and ∆y = 16 mm,
∆z = 9 mm (near location of 360◦ turn).

To put these errors into perspective, Figure 7 also plots
the errors in the position estimate of the Google Tango as
obtained from its proprietary VIO algorithm. The errors are
generally about four times larger than for the ground truth,
and until loop closure occurs, are expected to show some
accumulation.

Without exhaustive tests along the whole path it is difficult
to put a strict bound on the accuracy of the ground truth rig
poses. The covariances from the pose graph estimator yield a
mean error of 2.5 cm for the position and 3.5◦ for the angle.
We estimate that our ground truth position is accurate to
better than 10 cm along most of the path, with inaccuracies
possibly rising to 15 cm near the beginning and end of the
path, where tags are spread more sparsely.

VIII. EVALUATION METRIC

There are several different ways [5] [20] [31] to evaluate
the quality of a trajectory with respect to the ground truth.
Closely following reference [20] we adopt two of them, the
Absolute Trajectory Error (ATE), and the Relative Pose Error
(RPE). While they are qualitatively often similar [20], they
measure accuracy at different length scales. ATE is the more
intuitive variant and more relevant for e.g. augmented reality
applications because it measures the ability to follow the
entire length of the path without drift or rotational errors,
making successful loop closure a necessity. RPE on the
other hand measures the drift of the trajectory over some
length scale, and is used most prominently for the KITTI
VO benchmark [5]. We will discuss both metrics below.

In general an odometry algorithm will produce an esti-
mated trajectory P1:N that is a sequence of transformations
Pi := TW′

B(i), describing the transition from body (rig)
coordinate system B to an arbitrarily chosen world system
W ′ for a given frame i. This is to be compared to the
corresponding ground truth poses Qi := TW ref

B(i).
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Fig. 6. Example factor graph for a two-camera localization off of a single tag across three frames. The tag’s 3D corner points Xi, i = 1 . . . 4 are at
physically measured locations Mi. They are observed in frame 1 at image locations u

C1(1)
i by camera C1, and later in frame 3 by camera C2 at locations

u
C2(3)

i. These sensor measurements constrain the corresponding camera poses T
C1(1)

and T
C2(3)

. Together with the known extrinsic calibrations TB
C1

and TB
C2 this determines the rig poses T

B(1)
and T

B(3)
, and via the smoothing identity transforms interconnecting frames, fills in the rig pose T

B(2)
where neither camera observes the tag.

The ATE error evaluation starts by using Horn’s method
[32] to find the global transform S := TW

W′ that aligns
P1:N and Q1:N in a least square sense, possibly scaling it
as well for trajectories generated by purely visual algorithms
that have no scale reference. Then the pose errors Fi :=
Q−1

i SPi are computed, and the root mean square error
(RMSE) of their translational component is taken, weighted
by the time ∆ti between a pose and its predecessor,

ATE(F1:N ) :=

(
1

T

N∑
i=1

∆ti||trans(Fi)||2
)1/2

, (2)

normalized by the total time T =
∑N

i=1 ∆ti.
In contrast to ATE, RPE focuses on errors between relative

poses
Ei :=

(
Q−1

i Qi+∆

)−1 (
P−1

i Pi+∆

)
(3)

between time ti and a future time ti+∆, i.e. how well the
change Q−1

i Qi+∆ in ground truth pose is reproduced. The
RPE then follows by taking the RMSE:

RPE(E1:N ) :=

(
1

T

N∑
i=1

∆ti||trans(Ei)||2
)1/2

. (4)

This leaves the question of how to pick the time horizon
τ = ti+∆ − ti. One can either average over several τ [20]
[5] or match the time scale over which the benchmarked
algorithm can reasonably be expected to track. We proceed
by first selecting a length scale of l = 20 m, which is
comparable to the dimensions of the outdoors pathways and
the lobby hallway, and then compute τ = (l/L)T from the

total trajectory length L and travel time T . We observe that
for the Tango trajectories, picking τ this way leads to ATE
and RPE of similar magnitude.

Our data set comes with the source code for both evalua-
tion metrics, with and without scaling, and decomposing the
errors in x, y and z directions for testing trajectories provided
by pure 2D approaches. This should make the benchmark
accessible to a wide variety of algorithms. For RPE, we
express errors in percentages by dividing all distances with
the average path length l, similar to the KITTI benchmark
[5]. The identical program will be run to measure the
accuracy of trajectories for the test sequences with hidden
ground truth.

IX. CONCLUSION

We present PennCOSYVIO, a new challenging in-
door/outdoor VIO data set for hand held devices that covers
both indoors and outdoors environments and comes with
ground truth trajectories for benchmarking. For more details
please visit https://daniilidis-group.github.io/penncosyvio/.
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