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Two Efficient Solutions for Visual Odometry
Using Directional Correspondence
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Abstract—
This paper presents two new, efficient solutions to the two-view, relative pose problem from three image point correspondences and
one common reference direction. This three-plus-one problem can be used either as a substitute for the classic five-point algorithm
using a vanishing point for the reference direction, or to make use of an inertial measurement unit commonly available on robots and
mobile devices, where the gravity vector becomes the reference direction. We provide a simple closed-form solution and a solution
based on techniques from algebraic geometry and investigate numerical and computational advantages of each approach. In a set of
real experiments, we demonstrate the power of our approach by comparing it to the five-point method in a hypothesize-and-test visual
odometry setting.

Index Terms—computer vision, structure from motion, visual odometry, minimal problems, Groebner basis
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1 INTRODUCTION

DATA association has been identified as one of the
two main challenges in visual odometry next to

observation noise. Cluttered environments with inde-
pendently moving objects yield many erroneous feature
correspondences which have to be detected as outliers.
Random Sample Consensus (RANSAC) provides a stable
framework for the treatment of outliers in monocular
visual odometry [1]. For RANSAC, it is highly desirable
to have a hypothesis generator that uses the minimal
number of data points to generate a finite set of solu-
tions, since this minimizes the probability of choosing
an outlier as part of the data. In this paper we propose a
new minimal method, the ”three-plus-one” method, for
computing relative pose for monocular visual odometry
that uses three image correspondences and a common
direction in the two camera coordinate frames, which
we call a ”directional correspondence”. We thus enable
visual odometry using RANSAC with only a four-point
minimal solver, as long as the fourth point is sufficiently
far away.

The main contribution of this paper is the introduction
of two new, efficient algorithms for the three-plus-one
problem. After formulating the relative pose problem
as a system of four polynomial equations in Section 3,
we present a direct, closed-form solution, leading to a
quartic polynomial of one variable in Section 4. Our
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second method based on action matrix method from
Byrod et al. [3], is presented in Section 5.

The second contribution of this paper threefold: we
provide a detailed computational analysis of both solu-
tions in Section 7, highlight the differences in numerical
properties in Section 8, and show that the three-plus-one
method can be used in place of the widely used five-
point method in real-world visual odometry applications
in Section 9.1. When used with RANSAC, our visual
odometry does not require any knowledge about which
points are at infinity, because we simply let RANSAC
choose the inlier hypothesis from all available image
correspondences. In Section 9.2, in order to demonstrate
the potential of our method for vision-inertial fusion, we
present the results of a real experiment where we use the
IMU to provide a directional constraint.

2 RELATED WORK

Minimal solvers were first introduced by Nister [4]
with his famous five-point algorithm for structure from
motion. Since then, minimal solutions have been found
for a number of problems in geometric vision, including
the solutions to the autocalibration of radial distortion
[5], [6], pose with unknown focal length [7], infinitesimal
camera motion problem [8] and others. The trend in this
field has been to use algebraic geometry techniques to
analyze problem structure and construct solvers. This
body of work was initially based on Gröbner bases tech-
niques [9], but recently started to include other related
methods for finding solutions to algebraic systems in
order to improve speed and accuracy [10], [3].

It has been known [2] and it is straightforward to
deduce that the knowledge of the directional corre-
spondence reduces the number of rotation unknowns
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to oneThere have been three previous papers dedicated
to solving the three-plus-one problem. However, all of
them fall short of providing either efficient or closed-
form solutions. The formulation from Kalantari et al.
[11] requires three variables for the translation and uses
the tangent half-angle formula to create a polynomial
system. They solve the system using the action matrix
method, leading to 12 solutions and a singularity at the
rotation of 180 degrees.

Our formulation improves on this method by taking
advantage of the fact that one of the translation compo-
nents is non-zero, leading to a smaller system, which has
only four solutions and avoids the rotation instability.

In a recent work by Fraundorfer et al. [12], a differ-
ent formulation is used to obtain a system with only
4 solutions. Their method follows the method used
by Nister for the five-point algorithm [4], except the
solution subspace is now three-dimensional instead of
four-dimensional. This formulation leads to a 4th-order
polynomial, and the minimum number of solutions.
However, this solution requires null-space extraction and
a Gauss-Jordan elimination of a dense 10 × 6 matrix
to obtain the coefficients. While our formulation also
leads to 4th order polynomial, the coefficients of our
polynomial are computed faster and in closed form.

A related problem was solved in the work of Lobo
and Dias [13] who use a general formulation of a given
reference direction (vertical in their case) to solve several
geometric vision problems by using vanishing points or
inertial measurements.

In addition, compared to the three papers above, we
provide a more elaborate experimental analysis, includ-
ing real-world situations and a detailed discussion of the
degenerate configurations.

3 PROBLEM FORMULATION AND NOTATION

Given image point correspondences q and q′ in two
calibrated views, it is known that the “essential matrix”
constraint relating them is q′>Eq = 0, where E ≡ t̂S
where the rotation matrix S ∈ SO(3) and t̂ is a 3 × 3
skew-symmetric matrix corresponding to the translation
vector t, which is known only up to scale. The essential
matrix thus has five parameters.

We will now define and formulate the three-plus-
one problem. We are given three image correspondences
qi ↔ q′i, i = 1, .., 3 from calibrated cameras, and a
single directional correspondence in the form of two unit
vectors d ↔ d′. Our goal is to find the essential matrix E
which relates the two cameras, and thus find the rigid
transformation between them up to a scale factor. We
will first show that this problem is equivalent to finding
the translation vector t̂ and a rotation angle θ around an
arbitrary rotation axis.

Let us choose the arbitrary rotation axis to be e2 =
[0, 1, 0]>. We can now compute the rotation matrices R
and R′ that coincide d and d′ with e2, and apply them
to the respective image points, yielding pi = Rqi and

pi
′ = R′qi

′ for each i = 1, .., 3. This operation aligns
the directional correspondence in the two views with
e2. Once the axis is chosen, we only need to estimate
the rotation angle around it and the translation vector
in order to reconstruct the essential matrix.

After taking the directional constraint into account,
from the initial five parameters in the essential ma-
trix, we now only have to estimate three. This three-
parameter essential matrix Ẽ relates the points p and p′

as follows:
p′i

T
Ẽpi = 0, (1)

Since the rotation is known to be around e2, we can use
the axis-angle parameterization of a rotation matrix to
parametrize Ẽ as follows:

Ẽ = ˆ̃t(I + sin θê2 + (1− cos θ)ê2
2), (2)

where t̃ = R′t.
Each image point correspondence gives us one such

equation of the form (1), for a total of three equations
in four unknowns (elements of t̃ and θ). To create a
polynomial system, we set s = sin θ and c = cos θ, and
add the trigonometric constraint s2 + c2 − 1 = 0, for a
total of four equations in five unknowns. In order to
reduce the number of unknowns and take care of the
scale ambiguity in Ẽ, we choose the direction of the
epipole by assuming that the translation vector t̃ has
the form [x, y, 1]>. This means that for each t̃ that we
recover, −t̃ will also need to be considered as a possible
solution.

Once we substitute for Ẽ in equation (1), the resulting
system of four polynomial equations has the following
form. For i = 1, .., 3,

ai1xs + ai2xc + ai3ys + ai4yc+
ai5x− ai2s + ai1c + ai6 = 0 (3)

s2 + c2 − 1 = 0. (4)

We will refer to these equations as F =
{fi(x, y, s, c), i = 1, ..., 4} in the rest of the paper.
The coefficients aij are expressed in terms of image
correspondences as follows:

ai1 = p′iypix, ai2 = −p′iy, ai3 = −p′ixpix − 1,

ai4 = p′ix − pix, ai5 = piy, ai6 = −p′ixpiy,
(5)

such that pi = [px, py, 1]> and p′i = [p′x, p′y, 1]>. In the
next section we will analyze and solve this system in
closed form and show that it has up to four solutions.
The total number of possible pose matrices arising from
our formulation is therefore at most 8, when we take
into account the fact that we have to consider the sign
ambiguity in t̃. When the motion of the camera in the
z direction (after the rotation by R and R′) is extremely
small, the parametrization t̃ = [x, y, 1]> is numerically
unstable. We can deal with this rare instability by for-
mulating and solving a system for the parametrizations
t̃ = [x, 1, z]> and t̃ = [1, y, z]>, which can be easily done
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using the methods we describe below, but omitted for
the purposes of this presentation. However, when used
with RANSAC, the different directional correspondences
give rise to different t̃ (though still the same t), making
the probability of z being close to zero very small. Thus
the reformulations are unnecessary in practice.

In order to find the pose matrices from solutions to
the system F , we first recover the rotation as Re2 =
exp(atan2(s, c)ê2), and translation as t̃ = ±[x, y, 1]>.
Finally, we reconstruct each pose as follows:

P =
[

S | t
]

=
[

R′>Re2R | R′>t̃
]
. (6)

Point triangulation and chirality checks are used to
eliminate some of the false solutions. Since this solution
method is designed to be used in robust estimation
frameworks (such as RANSAC), any remaining false
hypotheses can be eliminated by triangulating an ad-
ditional point and choosing the P with the minimum
reprojection error.

4 CLOSED-FORM SOLUTION
We hereafter show that the system F has four solutions,
and that it can be solved analytically by elimination
and back-substitution. Specifically, we first present an
elimination procedure to obtain a 4th-order univariate
polynomial in c, which can be solved in closed-form.
Subsequently, we determine the remaining three vari-
ables by back-substitution, where each solution of c
returns exactly one solution for the other three variables.
Therefore, we have a total of 4 solutions for the relative
rotation matrix and translation vector.

The main steps of the elimination procedure are listed
below.

1) Solve for x and y as a function of c and s using
the first two equations in (3). The variables x and
y can be expressed as quadratic functions of c and
s.

2) Substitute x and y in the third equation in (3).
This yields again a cubic polynomial in c and s,
which is reduced into a quadratic by exploiting
the relationship between its coefficients and the
trigonometric constraint.

3) Finally, using the Sylvester resultant (see Chapter 3,
§5 in [14] ), we can eliminate one of the remaining
two unknowns, say s, and obtain a 4th-order poly-
nomial in c.

Now, we describe the details of our approach. Rewrite
the first two equations in (3) as linear functions of c and
s as follows:[
a11s + a12c + a15 a13s + a14c
a21s + a22c + a25 a23s + a24c

][
x
y

]
=

[
a12s− a11c− a16

a22s− a21c− a26

]
(7)

and solve the above linear system for x and y:[
x
y

]
=

1
d

[
a23s + a24c −(a13s + a14c)

−(a21s + a22c + a25) a11s + a12c + a15

]
·

·
[
a12s− a11c− a16

a22s− a21c− a26

]
, (8)

where the determinant

d = (a11s + a12c + a15)(a23s + a24c)−
− (a21s + a22c + a25)(a13s + a14c). (9)

Substituting the expression for x and y into the third
equation in (3) and multiplying both sides of the equa-
tion by d, yields a cubic equation in s and c:

g1s
3+g2cs

2+g1sc
2+g2c

3+g3s
2+g4sc+g5c

2+g6s+g7c = 0.
(10)

The coefficients gi for i = 1, ..., 6 are derived symbolically
and are found in Appendix A, equation (14). By using the
fact that s2 + c2 = 1, and exploiting the relation between
the coefficients of the first four terms, we can reduce this
equation to the following quadratic

g1s + g2c + g3s
2 + g4sc + g5c

2 + g6s + g7c = 0. (11)

In the final step, we employ the Sylvester resultant to
eliminate one of the two remaining variables from equa-
tions (4) and (11). The resultant of the two polynomials
is the determinant of the Sylvester matrix

g3 g4c + g1 + g6 g5c
2 + g2c + g7c 0

0 g3 g4c + g1 + g6 g5c
2 + g2c + g7c

1 0 c2 − 1 0
0 1 0 c2 − 1

 ,

(12)
which leads to a 4th-order polynomial equation∑4

i=0 hic
i = 0, with coefficients hi given in Appendix

A, equation (15). This shows that in general, the system
has four solutions for c. Back-substituting the solutions
of c into equation (11), we compute the corresponding
solutions for s. Note that each solution for c corresponds
to one solution for s because we can reduce the order of
equation (11) to linear in s, once c is known, by replacing
the quadratic terms s2 with 1 − c2. After s and c are
determined, we compute the corresponding solutions for
x and y using (8) for a total of four solutions. We will
describe how to recover the pose matrix from x, y, s and
c in Section 3.

5 ACTION MATRIX SOLUTION

In this section, we will present a method for solving the
system F via eigendecomposition of an action matrix.
The elimination template was constructed using sym-
bolic mathematics software Maple. We present only the
steps required for implementation of the method and
refer the reader to [3], [15], [16] for details. Below we
list the steps required to construct this action matrix and
read off the solutions from its eigenvectors.

1) Construct the 21× 25, sparse elimination template
matrix C using the coefficients aij , as described in
Appendix B.

2) Perform Gaussian elimination with partial pivoting
or LU decomposition of C. Let U be the resulting
upper trapezoidal matrix.

3) Extract two sub-matrices A = U19..21,19..21 and B =
U19..21,22..25. Compute D = A−1B.
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4) Construct the 4 × 4 action matrix Mc as follows:
Mc1..3,1..4 = D and Mc4,1..4 = [0, 1, 0, 0]. The
columns of Mc correspond to monomials [y, c, s, 1].

5) Compute the real eigenvectors of Mc, and divide
each by its last element.

6) The values of y, c and s in that order are the first
three entries of each of the normalized eigenvec-
tors.

7) For each set of values for y, c and s, compute the
value for x by solving the Equation (3), which is
linear in x.

These values can be once again used to extract the pose
matrices, as described in Section 3.

6 DEGENERATE CONFIGURATIONS

It was pointed out in [12] that the three-plus-one algo-
rithm is not degenerate for collinear world points, except
for the line parallel to the translation direction. There
exist two additional degenerate configurations.

The first one occurs when all world points lie on the
horopter [17], i.e. their projections are the same in the
first and second images. This configuration causes the
coefficients ai4 from (5) to vanish, removing the terms of
the form ai4yc from the system. The resulting polynomial
system does not generate a zero-dimensional ideal, and
thus has an infinite number of solutions. This fact was
verified using Maple.

The second degenerate configuration occurs when
the determinant d in (8) is zero. When this occurs,
the translation t̃ cannot be estimated from the point
correspondences using the equation (8). We can derive
the geometric condition that causes the determinant to
vanish as follows. After projecting two generic 3D points
xi = [Xi, Yi, Zi]> for i = 1, 2 into the camera frames,
we get pi = xi and p′i = Re2xi + t̃. We compute the
corresponding coefficients (5), and substitute them into
equation (9). After using the fact that s2 + c2 = 1, the
determinant condition becomes

(Z2Y1 − Z1Y2)(cx− s) + (Z1X2 −X1Z2)y+
+ (X1Y2 −X2Y1)(sx + c) = 0, (13)

which we can rewrite as (−R>
e2

t̃)>x̂1x2 = 0. This condi-
tion means that the second camera’s center of projection,
expressed in the first camera’s coordinate system, is
orthogonal to the vector formed by the cross product of
the world points. In other words, the degeneracy occurs
when the world points are coplanar with the translation
vector. This is a more general case than the three points
parallel to the translation direction discussed in [12].

7 COMPUTATIONAL CONSIDERATIONS

When using RANSAC, we can estimate the probability
of success in getting an outlier-free hypothesis based
on the number of elements in the minimal data set.
When we estimate the epipolar geometry using image
correspondences only, there are two sets of inliers: the

set that can be used as a directional correspondences and
a set that can be used as a point correspondences. Both
inlier ratios have to be taken into account when com-
puting the RANSAC stopping criterion. If the number
of distant points is sufficiently large (such as in outdoor
scenes), we can realize a significant performance gain
with our method since fewer hypotheses will need to be
considered [18] due to smaller model size.

Since the hypothesis generator will run hundreds of
times per frame in RANSAC-based visual odometry
schemes, it is important to compare the computational
requirements for the five point algorithm with the pro-
posed methods. Computing the coefficients aij requires
9 multiplications. The closed-form solution requires 125
multiplications before arriving at the quartic polynomial.
The real roots of the 4th degree polynomial can be ex-
tracted in closed form by computing and solving the de-
pressed quartic and two quadratics for a total of about 40
operations and six square roots. The computation of the
remaining variables takes additional 144 operations. The
main computational step of the action matrix algorithm
is Gaussian elimination (LU decomposition) of a 21× 25
matrix. While theoretically taking O(2n3/3), or about
9000 operations, the elimination of our sparse matrix
only requires about 500 multiplications. The eigenvalue
decomposition of a 4 × 4 matrix is done by solving a
quartic equation and eigenvectors are extracted with an
inverse power iteration, which costs 88 multiplications.

On the other hand, the main computational steps in
the classic five-point algorithm [4] are: extraction of
the null space of a dense 5 × 9 matrix, requiring 280
operations, Gauss-Jordan elimination of a dense 10× 20
matrix, requiring about 1300 operations, and real root
isolation of a 10th degree polynomial, which can be
accomplished as eigenvalue decomposition of a 10× 10
sparse companion matrix or as an iterative root isolation
and refinement process. From these observations we can
conclude that both the closed-form and the action-matrix
forms of the three-plus-one algorithm are significantly
more efficient than the five-point algorithm. In real
experiments, the performance of the C implementation
of the closed-form algorithm outperformed a highly
optimized implementation of the five-point method, on
average, by a factor of 5 (2.6µs compared to 13.0µs on a
3GHz laptop).

8 SIMULATION RESULTS
In this section we establish the expected performance
level of our algorithms in noise-free and noisy condi-
tions, comparing them first to each other and then to the
five-point relative pose estimation algorithm. We study
both single and double precision arithmetic implementa-
tions for the action-matrix and closed-form algorithms,
and look for numerical differences between them, as well
as the differences between the five-point method and the
more constrained three-plus-one method.

The input data was generated as follows. The pose of
the first camera was defined to be the identity pose [I|0],
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Fig. 1. Distribution of numerical errors in recovered poses
for 104 random configurations with single and double precision
implementations. The error measured is the Frobenius norm of
the difference between the true and estimated pose matrices.
The median errors for double precision are 3.9 · 10−14 for
the action matrix and 3.1 · 10−13 for the closed form method.
For single precision the errors are 9.3 · 10−6 and 3.5 · 10−5,
respectively.

and the reference direction was generated as a random
unit vector. The pose of the second camera was gener-
ated uniformly at random as a unit translation vector t
and three Euler angles corresponding to roll, pitch and
yaw of the second camera within the limits specified
by the experiment. Sets of five three dimensional world
points were generated within a spatial volume defined
by the parameters of the experiment, so as to be visible
by both cameras. The world points were then projected
into the image planes of the two cameras (with identical
intrinsic calibration defined by the experiment) to form
image correspondences, and contaminated with Gaus-
sian noise with standard deviation in pixels defined by
the experiment. The second camera’s reference direction
was then computed, and the directional correspondence
vectors were contaminated by Gaussian rotational noise
with standard deviation in degrees defined by the exper-
iment. The sets of image and directional correspondences
were then used to compute pose with the three-plus-one
and the five-point algorithms. Each method produces
a set of pose hypotheses for each input set. The error
reported for each input set is the minimum error for all
hypotheses. All comparisons between algorithms were
run on identical input data.

8.1 Numerical Stability with Noise-free Data
First, we establish the correctness and numerical stability
of our algorithms. In these experiments, the pose was
allowed to vary over the entire range of rotations, and
the translation and directional correspondence vectors
were generated uniformly at random and normalized
to length 1. Figure 1 shows errors in pose recovery on
perfect, simulated data. The noise metric is the minimum
Frobenius norm of the differences between the true pose
matrix and each computed pose matrix (up to eight
per instance). The error distribution shows that both
algorithms perform as expected, with the action matrix
method exhibiting better numerical stability. The numer-
ical stability of the closed-form method can be improved
by solving the problem three times, using different pairs
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Fig. 2. Median translation and rotation errors for the sideways
and forward motion of the baseline camera against noise stan-
dard deviation for the double precision implementation of the
closed-form method. The directional correspondence noise (Dir)
is in degrees, and the image noise (Pix) is in pixels. As with
other motion estimation methods, the sideways motion gives
significantly worse performance than forward motion on the
same data.

of points in Equation (7), but the computational cost of
computing and then scoring the additional hypothesis
makes this impractical, as we saw in Section 7.

8.2 Image and Directional Correspondence Noise
In the rest of this section, we will simulate a 640x480
camera with a 60◦ FOV, where structure points are
found between 10 and 40 baselines away, where one
baseline is the distance between camera centers. We
will first consider only pixel noise, and deal with di-
rectional correspondence noise later. Figure 2 compares
performance for forward and sideways motion of the
camera under different pixel noise and directional cor-
respondence noise conditions. It comes as no surprise
that forward motion is generally better numerically, and
that the rotation estimate (1DOF) is significantly better
than the estimate of the epipole. The plots also conclu-
sively demonstrate numerical stability of both single and
double precision implementations. Further experiments
described in the technical report demonstrate that in
these noisy conditions, the performance of the single and
double precision action matrix method and the single
precision closed-form method are almost identical.

The directional noise was simulated as a rotation
of the direction vector around a random axis with an
angle magnitude drawn from a normal distribution. The
standard deviation of the noise is plotted on the x-axis.

8.3 Comparison with the Five-point Method
We also compare the three-plus-one method to the classic
five-point method. While they are not equivalent (since
the five-point method does not require a specific point
to be at infinity), they can be used interchangeably in
some real situations, as described in the next section.

Since both closed-form and action-matrix-based algo-
rithms exhibit similar performance, we only compare
the double precision implementations of our closed-
form algorithm and the five-point algorithm. Figure 3
demonstrates the effect of the field of view on the
algorithms. The rotation estimation is generally better
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Fig. 3. Median translation and rotation errors for varying fields
of view of the baseline camera and random poses. In the legend,
the three-plus-one algorithm is labeled ”3p1”, and the five-point
algorithm is ”5p”. The number after the algorithm name indicates
the standard deviation of pixel and directional (for three-plus-
one method only) error standard deviations levels in pixels and
degrees. The colors also correspond to noise levels: red is 0.1
pixel and 0.1◦, red is 0.5 pixel and 0.5◦, and green is 1.0 pixel
and 1.0◦.

with the three-plus-one algorithm, while translation er-
ror does not decrease as quickly with the field of view
in the three-plus-one case as in the five-point case. In
Figure 4 we plot errors for several levels of directional
noise, while varying the pixels noise. It is clear from
the graphs that the three plus one algorithm is better at
estimating rotations than the five point algorithm, even
under significant error in the directional correspondence,
but the five-point method is better at estimating side-
ways translation, even in the cases of small error in the
directional correspondence.

In real experiments, we will used our method to com-
pute vision-only relative pose, when points at infinity
are present. But first, we compare the performance of
the five-point and the three-plus-one methods in this
scenario in simulation. The directional correspondence
in this case is generated as a projection of a point
at infinity, contaminated with noise and made unit-
length. The directional correspondence noise can now be
measured in pixels, putting the two methods on equal
footing. The results are shown in Figure 5. From this
graph we conclude that our method outperforms the
five-point method, while using only four image points,
in estimating rotation in forward and sideways motion,
and translation in forward motion. Our method does a
slightly worse job estimating translation in the sideways
motion.

9 EXPERIMENTS WITH REAL DATA

In the introduction we specified as one of the main goals
of this work the demonstration of monocular, RANSAC-
based visual odometry with a four-correspondence hy-
pothesis generator. We used our C++, double-precision
implementation of the action-matrix-based method to
test the algorithm in this context. We used a hand-held,
640 × 480 pixel, black and white camera with a 50◦

field of view lens to record an 825-frame, outdoor video
sequence for comparison with the five-point algorithm
(see sample images in Figure 6 (a)). The second data set
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Fig. 4. Comparison of the median errors of the three-plus-one
algorithm with the five-point algorithm for the cases of forward
and sideways motion for different directional noise levels. In the
legend, the three-plus-one algorithm is labeled ”3p1”, and the
five-point algorithm is labeled ”5p”. The number after algorithm
name indicates the standard deviation of the directional noise in
degrees. The green sequence with ’x’ marker corresponds are
the median errors in the five-point algorithm.
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Fig. 5. Comparison of the three-plus-one algorithm with the
five-point algorithm in the case when the directional constraints
are derived from image points at infinity. The plots show median
errors in pose estimation. The green sequences with the ’x’
marker show performance of the five-point algorithm and the
blue sequences with the ’*’ marker correspond to the three-plus-
one algorithm. The directional correspondences are derived
from points at infinity and contaminated with the same pixel
noise as the other image points. This graph shows the superior
performance of the three-plus-one method in rotation estimation
for forward and sideways motion, as well as translation estima-
tion in forward motion.

was recorded with a similar camera from a mobile robot
platform and included high accuracy ground truth (see
Figure 7).

For both data sets we used the monocular scheme
as described in [1]. The experiments consisted of using
the correspondences to estimate camera motion with
the standard five-point algorithm and the new three-
plus-one algorithm. We computed 200 hypotheses for
each image pair. The correspondences themselves, the
number of hypotheses and the other system parameters
remained the same, and only the pose hypothesis gener-
ator was changed between experiments. The directional
correspondence was simply a unitized image point cor-
respondence.

9.1 Structure from Motion Results
In Figure 6 (b) we stitched together the poses and
highlighted the places where breaks in the path occurred.
Since we know that we have enough points to track,
the failures are due to RANSAC-based pose estimation
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Fig. 6. (a) Sample images from our hand-held data set. (b)
Estimated camera trajectories for the outdoor data set using
our three-plus-one method (blue) and the five-point algorithm
(green). The red squares and circles indicate places where
scale was lost, and trajectory was manually stitched together.
Overall, the poses recovered with each method are very similar
up to scale. The scale was not reset after stitching, so each
piece of the trajectory has a different scale. Since the translation
is up to scale, the translation units are set arbitrarily. The total
length of the track in the real world was about 430m, of which
we were able to travel about 230m before the first break under
challenging imaging conditions.

or RANSAC-based scale estimation, and is a result of
a failure to choose an inlier subset. It is interesting to
note that the failures happened in different places with
different algorithms due to randomness of sampling. We
expect more robust results (fewer breaks) from the three-
plus-one method, and we found it to be the case due to
the limited number of hypothesis.

To further demonstrate the real-world performance,
we collected a 2582-frame video from a mobile robot,
where the position of the robot was tracked with a
Topcon tracking total station. The resulting trajectory is
plotted in Figure 7.

9.2 Structure from Motion Results with a Camera
and an IMU

We investigated using our algorithm to combine visual
and inertial data by introducing the gravity vector in
the camera coordinate system as the directional cor-
respondence. For this data collection, the camera was
rigidly mounted on a rig with a Microstrain 3DM-
GX1 IMU, and data was synchronously acquired from
both devices. We collected an indoor data set and used
the visual odometry setup described above to compare
the five-point method with our three-points-plus-gravity
method. The results are presented in Figure 8. In this
data set, RANSAC with the five-point hypothesis gen-
erator generally performed similarly to our method, but
failed to accurately recover relative pose for one of the
frames, resulting in a jump near the bottom left of the
trajectory, and failure to close the loop.
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Fig. 7. (a) Sample images from the 2582-frame mobile robot
data set. (b) Trajectories obtained using visual odometry with the
proposed hypothesis generator and the ground truth collected
using a Topcon tracking total station. The three-plus-one visual
odometry (solid red) was manually scaled and aligned with the
ground truth (dashed blue). The results demonstrate that the
algorithm performs correctly in outdoor scenes.
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Fig. 8. Camera trajectories from a short segment of an indoor
dataset where the reference direction was provided by the
IMU. The red solid lines and dashed blue lines connect the
centers of projection determined with our method, the five-point
method, respectively. The coordinate axes attached to each
point show the rig’s relative orientation in space. The motion was
approximately a loop, produced by hand, while exercising all six
degrees of freedom, as seen by the orientation of the coordinate
axis.

10 CONCLUSIONS

We presented two efficient algorithms to determine rel-
ative pose from three image point correspondences and
a directional correspondence. From our analysis and
experiments we learned that

• The more constrained three-plus-one method does a
better job of estimating rotations than the five-point
method.

• Both the closed-form and action-matrix implementa-
tions are faster than the five-point method, making
them attractive for real-time applications.

• The action matrix method yields a solution with bet-
ter numerical performance than the simpler, closed-
form algorithm, but the differences are not signifi-
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cant in realistic settings.
• Since the action matrix method can perform better

in single precision implementation, it should be
considered for processors with 32-bit floating-point
arithmetic where extra precision is required.

• When used with RANSAC, smaller minimal data set
can lead to improved robustness.

• The three-plus-one algorithm can provide accurate
and robust results in real-world settings when used
with RANSAC and bundle adjustment, and can be
used to perform visual odometry for outdoor scenes
with or without aid from an IMU.

We believe that the real power of this algorithm is that it
can be used as a complement to the five-point algorithm
to increase the reliability and speed of visual navigation
systems.
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APPENDIX A
CLOSED-FORM COEFFICIENTS

In this appendix we list the coefficients for the closed-
form solution presented in Section 4. The coefficients
aij are found in equation (5). The coefficients gi in the
polynomial (11) are as follows:

g1 = −a11a23a32 + a13a21a32 − a12a21a33 + a11a22a33+
+ a23a12a31 − a13a22a31,

g2 = −a24a11a32 + a14a21a32 − a12a21a34 + a11a22a34+
+ a12a24a31 − a14a22a31

g3 = −a23a16a31 + a13a26a31 + a23a12a35 − a13a22a35−
− a11a26a33 + a15a22a33 + a21a16a33 − a25a12a33−
− a15a23a32 + a13a25a32 + a11a23a36 − a13a21a36

g4 = −a23a16a32 − a24a16a31 + a13a26a32 + a14a26a31−
− a11a23a35 + a12a24a35 + a13a21a35 − a14a22a35−
− a11a26a34 − a12a26a33 + a15a22a34 − a15a21a33+
+ a21a16a34 + a22a16a33 − a25a12a34 + a25a11a33+
+ a15a23a31 − a15a24a32 − a13a25a31 + a14a25a32+
+ a24a11a36 + a23a12a36 − a13a22a36 − a14a21a36

g5 = −a24a16a32 + a14a26a32 − a24a11a35 + a14a21a35−
− a12a26a34 − a15a21a34 + a22a16a34 + a25a11a34+
+ a15a24a31 − a14a25a31 + a12a24a36 − a14a22a36

g6 = −a23a16a35 + a13a26a35 − a15a26a33 + a25a16a33+
+ a15a23a36 − a13a25a36

g7 = −a24a16a35 + a14a26a35 − a15a26a34 + a25a16a34+
+ a15a24a36 − a14a25a36,

(14)

where aij come from (5). The coefficients of the quartic
polynomial in c are

h0 = −g2
1 − 2g1g6 − g2

6 + g2
3

h1 = 2g3g2 − 2g4g6 + 2g3g7 − 2g4g1

h2 = −g2
4 + g2

1 + g2
6 + g2

2 + g2
7 − 2g2

3 + 2g1g6 + 2g2g7 + 2g3g5

h3 = 2g4g1 + 2g4g6 + 2g5g2 + 2g5g7 − 2g3g2 − 2g3g7

h4 = g2
4 + g2

5 + g2
3 − 2g3g5.

(15)

The quartic equation built from the coefficients hi yields
the solution for c.

APPENDIX B
ELIMINATION TEMPLATE MATRIX

In this appendix we give the structure of the 21 × 25
coefficient matrix C used in Section 5. The coefficients
aij are found in equation (5). From each of the five
vectors listed in (16) we create three rows of C when
we substitute the coefficients aij for i = 1, 2, 3. These
rows come from the coefficients of equation (3).

The last six rows C16..21,1..25 come from the coefficients
of equation (4) and are shown in equation (17).
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[
ai4 ai3 0 0 0 0 ai5 0 ai1 0 0 −ai2 0 0 0 0 0 0 0 0 ai6 0 0 0 0

][
0 ai4 ai1 ai3 0 0 0 0 0 ai5 0 ai1 −ai2 0 0 0 ai6 0 0 0 0 0 0 0 0

][
0 0 0 0 ai2 ai4 ai1 ai3 0 0 0 0 0 ai5 0 0 0 0 0 ai1 −ai2 0 ai6 0 0

][
0 0 0 0 0 0 ai2 ai4 0 ai1 ai3 0 0 0 ai5 0 −ai2 0 0 0 ai1 0 0 ai6 0

][
0 0 0 0 0 0 0 0 0 0 0 0 0 ai2 ai1 ai3 0 ai5 ai4 0 0 0 ai1 −ai2 ai6

]
(16)


1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 −1

 (17)


