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Abstract—In this paper, we study the problem of distributed mo-5
tion coordination among a group of nonholonomic ground robots.6
We develop vision-based control laws for parallel and balanced cir-7
cular formations using a consensus approach. The proposed con-8
trol laws are distributed in the sense that they require information9
only from neighboring robots. Furthermore, the control laws are10
coordinate-free and do not rely on measurement or communica-11
tion of heading information among neighbors but instead require12
measurements of bearing, optical flow, and time to collision, all of13
which can be measured using vision. Collision-avoidance capabil-

Q1
14

ities are added to the team members, and the effectiveness of the15
control laws are demonstrated on a group of mobile robots.16

Index Terms—Cooperative control, distributed coordination,17
vision-based control.18

I. INTRODUCTION19

COOPERATIVE control of multiple autonomous agents20

has become a vibrant part of robotics and control theory21

research. The main underlying theme of this line of research is22

to analyze and/or synthesize spatially distributed control archi-23

tectures that can be used for motion coordination of large groups24

of autonomous vehicles. Some of this research focus on flocking25

and formation control [9], [14], [16], [22], [31], and synchro-26

nization [2], [39], while others focus on rendezvous, distributed27

coverage, and deployment [1], [5]. A key assumption implied inQ228

all of the previous references is that each vehicle or robot (here-29

after called an agent) communicates its position and/or velocity30

information to its neighbors.31

Inspired by the social aggregation phenomena in birds and32

fish [6], [30], researchers in robotics and control theory have33

developed tools, methods, and algorithms for distributed mo-34

Manuscript received February 23, 2008; revised January 31, 2009. This pa-
per was recommended for publication by Associate Editor Z.-W. Luo and Ed-
itor J.-P. Laumond upon evaluation of the reviewers’ comments. The work of
A. Jadbabaie was supported in part by the Army Research Office–
Multidisciplinary University Research Initiative (ARO/MURI) under Grant
W911NF-05-1-0381, in part by the Office of Naval Research (ONR)/Young In-
vestigator Program 542371, in part by ONR N000140610436, and in part under
Contract NSF-ECS-0347285. The work of K. Daniilidis was supported in part
under Contract NSF-IIS-0083209, in part under Contract NSF-IIS-0121293, in
part under Contract NSF-EIA-0324977, and in part under Contract ARO/MURI
DAAD19-02-1-0383.

N. Moshtagh was with the General Robotics, Automation, Sensing, and Per-
ception Laboratory, University of Pennsylvania, Philadelphia, PA 19104 USA.
He is now with Scientific Systems Company, Inc., Woburn, MA 01801 USA
(e-mail: nmoshtagh@ssci.com).

N. Michael, A. Jadbabaie, and K. Daniilidis are with the General Robotics,
Automation, Sensing, and Perception Laboratory, University of Pennsylva-
nia, Philadelphia, PA 19104 USA (e-mail: nmichael@grasp.upenn.edu; jad-
babai@grasp.upenn.edu; kostas@grasp.upenn.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2009.2022439

tion coordination of multivehicle systems. Two main collective 35

motions that are observed in nature are parallel motion and 36

circular motion [21]. One can interpret stabilizing the circular 37

formation as an example of activity consensus, i.e., individuals 38

are “moving around” together. Stabilizing the parallel forma- 39

tion is another form of activity consensus in which individuals 40

“move off” together [33]. Circular formations are observed in 41

fish schooling, which is a well-studied topic in ecology and 42

evolutionary biology [6]. 43

In this paper, we present a set of control laws for coordinated 44

motions, such as parallel and circular formations, for a group of 45

planar agents using purely local interactions. The control laws 46

are in terms of shape variables, such as the relative distances 47

and relative headings among the agents. However, these param- 48

eters are not readily measurable using simple and basic sensing 49

capabilities. This motivates the rewriting of the derived control 50

laws in terms of biologically measurable parameters. Each agent 51

is assumed to have only monocular vision and is also capable of 52

measuring basic visual quantities, such as bearing angle, opti- 53

cal flow (bearing derivative), and time to collision. Rewriting the 54

control inputs in terms of quantities that are locally measurable 55

is equivalent to expressing the inputs in the local body frame. 56

Such a change of coordinate system from a global frame to a 57

local frame provides us with a better intuition on how similar 58

behaviors are carried out in nature. 59

Verification of the theory through multirobot experiments 60

demonstrated the effectiveness of the vision-based control laws 61

to achieve the desired formations. Of course, in reality, any 62

formation control requires collision avoidance, and indeed, 63

collision avoidance cannot be done without range. In order 64

to improve the experimental results, we provided interagent- 65

collision-avoidance properties to the team members. In this 66

paper, we show that the two tasks of formation keeping and 67

collision avoidance can be done with decoupled additive terms 68

in the control law, where the terms for keeping parallel and 69

circular formations depend only on visual parameters. 70

This paper is organized as follows. In Section II, we review 71

a number of important related works. Some background infor- 72

mation on graph theory and other mathematical tools used in 73

this paper are provided in Section III. The problem statement 74

is given in Section IV. In Sections V and VI, we present the 75

controllers that stabilize a group of mobile agents into parallel 76

and balanced circular formations, respectively. In Section VII, 77

we derive the vision-based controllers that are in terms of the 78

visual measurements of the neighboring agents. In Section VIII, 79

collision-avoidance capabilities are added to the control laws, 80

and their effectiveness is tested on real robots. 81

1552-3098/$25.00 © 2009 IEEE
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II. RELATED WORK AND CONTRIBUTIONS82

The primary contribution of this paper is the presentation of83

simple control laws to achieve parallel and circular formations84

that require only visual sensing, i.e., the inputs are in terms85

of quantities that do not require communication among nearest86

neighbors. In contrast with the work of Justh and Krishnaprasad87

[17], Moshtagh and Jadbabaie [27], Paley et al. [32], [33], and88

Sepulchre et al. [35], where it is assumed that each agent has89

access to the values of its neighbors’ positions and velocities,90

we design distributed control laws that use only visual clues91

from nearest neighbors to achieve motion coordination.92

Our approach on deriving the vision-based control laws can93

be classified as an image-based visual seroving [41]. In image-94

based visual servoing, features are extracted from images, and95

then the control input is computed as a function of the image96

features. In [8], [12], and [38], authors use omnidirectional cam-97

eras as the only sensor for robots. In [8] and [38], input–output98

feedback linearization is used to design control laws for leader-99

following and obstacle avoidance. However, they assume that100

a specific vertical pose of an omnidirectional camera allows101

the computation of both bearing and distance. In the work of102

Prattichizzo et al. [12], the distance measurement is not used;103

however, the leader uses extended Kalman filtering to localize104

its followers, and computes the control inputs and guides the105

formation in a centralized fashion. In our paper, the control ar-106

chitecture is distributed, and we design the formation controllers107

based on the local interaction among the agents similar to that108

of [14] and [22]. Furthermore, for our vision-based controllers,109

no distance measurement is required.110

In [25] and [34], circular formations of a multivehicle sys-111

tem under cyclic pursuit is studied. Their proposed strategy is112

distributed and simple because each agent needs to measure113

the relative information from only one other agent. It is also114

shown that the formation equilibria of the multiagent system115

are generalized polygons. In contrast to [25], our control law is116

a nonlinear function of the bearing angles, and as a result, our117

system converges to a different set of stable equilibria.118

III. BACKGROUND119

In this section, we briefly review a number of important con-120

cepts regarding graph theory and regular polygons that we use121

throughout this paper.122

A. Graph Theory123

An (undirected) graph G consists of a vertex setV and an edge124

set E , where an edge is an unordered pair of distinct vertices inG.125

If x, y ∈ V and (x, y) ∈ E , then x and y are said to be adjacent,126

or neighbors, and we denote this by writing x ∼ y. The number127

of neighbors of each vertex is its degree. A path of length r from128

vertex x to vertex y is a sequence of r + 1 distinct vertices that129

start with x and end with y such that consecutive vertices are130

adjacent. If there is a path between any two vertices of a graph131

G, then G is said to be connected.132

The adjacency matrix A(G) = [aij ] of an (undirected) graph133

G is a symmetric matrix with rows and columns indexed by134

the vertices of G, such that aij = 1 if vertex i and vertex j are 135

neighbors, and aij = 0 otherwise. We also assume that aii = 0 136

for all i. The degree matrix D(G) of a graph G is a diagonal 137

matrix with rows and columns indexed by V , in which the (i, i)- 138

entry is the degree of vertex i. 139

The symmetric singular matrix defined as 140

L(G) = D(G) − A(G)

is called the Laplacian of G. The Laplacian matrix captures 141

many topological properties of the graph. The Laplacian L is 142

a positive-semidefinite matrix, and the algebraic multiplicity of 143

its zero eigenvalue (i.e., the dimension of its kernel) is equal 144

to the number of connected components in the graph. The n- 145

dimensional eigenvector associated with the zero eigenvalue is 146

the vector of ones, 1n = [1, . . . , 1]T . For more information on 147

graph theory, see [13]. 148

B. Regular Polygons 149

Let d < n be a positive integer, and define p = n/d. Let y1 150

be a point on the unit circle. Let Rα be clockwise rotation by 151

the angle α = 2π/p. The generalized regular polygon {p} is 152

given by the points yi+1 = Rαyi and edges between points i 153

and i + 1. 154

When d = 1, the polygon {p} is called an ordinary regular 155

polygon, and its edges do not intersect. If d > 1 and n and d are 156

coprime, then the edges intersect, and the polygon is a star. If n 157

and d have a common factor l > 1, then the polygon consists of l 158

traversals of the same polygon with {n/l} vertices and edges. If 159

d = n, the polygon {n/n} corresponds to all points at the same 160

location. If d = n/2 (with n even), then the polygon consists of 161

two endpoints and a line between them, with points having an 162

even index on one end and points having an odd index on the 163

other. For more information on regular graphs, see [7]. 164

IV. PROBLEM STATEMENT 165

Consider a group of n unit-speed planar agents. Each agent is 166

capable of sensing information from its neighbors. The neigh- 167

borhood set of agent i, that is, Ni , is the set of agents that can 168

be “seen” by agent i. The precise meaning of “seeing” will be 169

clarified later. The size of the neighborhood depends on the char- 170

acteristics of the sensors. The neighboring relationship between 171

agents can be conveniently described by a connectivity graph 172

G = (V, E ,W). 173

Definition 1 (Connectivity graph): The connectivity graph 174

G = (V, E ,W) is a graph consisting of 175

1) a set of vertices V indexed by the set of mobile agents; 176

2) a set of edges E = {(i, j)|i, j ∈ V, and i ∼ j}; 177

3) a set of positive edge weights for each edge (i, j). 178

The neighborhood of agent i is defined by 179

Ni
.= {j|i ∼ j} ⊆ V\{i}.

Let ri represent the position of agent i, and let vi be its 180

velocity vector. The kinematics of each unit-speed agent is
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Fig. 1. Trajectory of each agent is represented by a planar Frenet frame.

given by181

ṙi = vi

v̇i = ωiv⊥
i

v̇⊥
i = −ωivi (1)

where v⊥
i is the unit vector perpendicular to the velocity vector182

vi (see Fig. 1). The orthogonal pair {vi ,v⊥
i } forms a body frame183

for agent i. We represent the stack vector of all the velocities by184

v = [vT
1 , . . . ,vT

n ]T ∈ R
2n×1 .185

The control input for each agent is the angular velocity ωi .186

Since it is assumed that the agents move with constant unit187

speed, the force applied to each agent must be perpendicular to188

its velocity vector, i.e., the force on each agent is a gyroscopic189

force, and it does not change its speed (and hence, its kinetic190

energy). Thus, ωi serves as a steering control [16] for each agent.191

Let us formally define the formations that we are going to192

consider.193

Definition 2 (Parallel formation): The configuration in which194

the headings of all agents are the same and velocity vectors are195

aligned is called the parallel formation.196

Note that in this definition, we do not consider the value of197

the agreed upon velocity but just the fact that the agreement has198

been reached. At the equilibrium, the relative distances of the199

agents determine the shape of the formation. Another interesting200

family of formations is the balanced circular formation.201

Definition 3 (Balanced circular formation): The configuration202

where the agents are moving on the same circular trajectory203

and the geometric center of the agents is fixed is called the204

balanced circular formation. The shape of such a formation can205

be represented by an appropriate regular polygon.206

In the following sections, we study each formation and design207

its corresponding distributed control law.208

V. PARALLEL FORMATIONS209

Our goal in this section is to design a control law for each210

agent so that the headings of the mobile agents reach an agree-211

ment, i.e., their velocity vectors are aligned, thus resulting in a212

swarm-like pattern. For an arbitrary connectivity graph G, con-213

sider the Laplacian matrix L. We, therefore, define a measure214

of misalignment as follows [27], [35]:215

w(v) =
1
2

∑
i∼j

|vi − vj |2 =
1
2
〈v, L̄v〉 (2)

where the summation is over all the pairs (i, j) ∈ E , and L̄ = 216

L ⊗ I2 ∈ R
2n×2n , with I2 being the 2 × 2 identity matrix. The 217

time derivative of w(v) is given by 218

ẇ(v) =
n∑

i=1

〈v̇i , (L̄v)i〉 =
n∑

i=1

ωi〈v⊥
i , (L̄v)i〉

where (L̄v)i ∈ R
2 is the subvector of L̄v associated with the 219

ith agent. Thus, the following gradient control law guarantees 220

that the potential w(v) decreases monotonically: 221

ωi = κ〈v⊥
i , (L̄v)i〉 = −κ

∑
j∈Ni

〈v⊥
i ,vij 〉 (3)

where κ < 0 is the gain, and vij = vj − vi . 222

Remark 1: Let θi represent the heading of agent i as measured 223

in a fixed world frame (see Fig. 1). The unit velocity vector vi 224

and its orthogonal vector v⊥
i are given by vi = [cos θi sin θi ]T 225

and v⊥
i = [− sin θi cos θi ]T . Thus, the control input (3) becomes 226

ωi = κ
∑
j∈Ni

sin(θi − θj ), κ < 0. (4)

It is worth noting that the proposed controller is the one used in 227

the synchronization of the Kuramoto model of coupled nonlinear 228

oscillators, which has been extensively studied in mathematical 229

physics as well as control communities [15], [19], [36]. The 230

same model has also been used for phase regulation of cyclic 231

robotic systems [18]. 232

We have the following theorem [27] that provides a sufficient 233

condition to obtain a parallel formation. 234

Theorem 1: Consider a system of n unit-speed agents with 235

dynamics (1). If the underlying connectivity graph remains 236

fixed and connected, then by applying control input (4), the 237

system converges to the equilibria of ω = [ω1 · · ·ωn ]T = 0. 238

Furthermore, the velocity consensus set is locally attractive if 239

θi ∈ (−π/2, π/2). 240

Proof 1: See [27] for the proof. � 241

The velocity consensus set is the set of states where all the 242

agents have the same velocity vectors, and it corresponds to 243

the parallel formation, which is defined in Definition 2. Note 244

that θi ∈ (−π/2, π/2)∀i = {1, . . . , n} is the sufficient condi- 245

tion that restricts the initial headings to a half-circle. The results 246

can be extended to graphs with switching topology, as shown 247

in [27]. 248

VI. BALANCED CIRCULAR FORMATIONS 249

The circular formation is a circular relative equilibrium in 250

which all the agents travel around the same circle. We are in- 251

terested in balanced circular formations, which are defined in 252

Definition 3. At the equilibrium, the relative headings and the 253

relative distances of the agents determine the shape of the for- 254

mation, which can be easily described by a regular polygon. 255

Let ci represent the position of the center of the ith circle 256

with radius 1/ωo , as shown in Fig. 2; thus 257

ci = ri +
(

1
ωo

)
v⊥

i .
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Fig. 2. Center of the circular trajectory is defined as ci = ri + (1/ω0 )v⊥
i .

Fig. 3. By a change of coordinate zi = ωo (ri − ci ) = −v⊥
i , the problem of

generating circular motion in the plane reduces to the problem of balancing the
agents on a circle.

The shape controls for driving agents to a circular formation258

depend on the shape variables vij = vj − vi and rij = rj − ri .259

The relative equilibria of the balanced formation are character-260

ized by
∑n

i=1 vi = 0 and ci = co ∈ R
2 for all i ∈ {1, . . . , n},261

where co is the fixed geometric center of the agents.262

The control input for each agent has two components, which263

are given by264

ωi = ωo + ui.

The constant angular velocity ωo takes the agents into a cir-265

cular motion, and ui sets the agents into a balanced state. In266

order to design ui , we express the system in a rotating frame,267

which greatly simplifies the analysis. By the change of variable268

zi = ωo(ri − ci) = −v⊥
i

the problem reduces to balancing the agents on a unit circle, as269

shown in Fig. 3. The new coordinate system rotates with angular270

velocity ωo . The dynamics in the rotating frame are given by271

żi = viui

v̇i = −ziui , i = 1, . . . , n. (5)

Unit vector zi is normal to the velocity vector. However, in272

the rotating frame, zi represents the position of agent i on the273

unit circle, which is moving with speed ui (see Fig. 3).274

Let us define zij = zj − zi and qij = zij /|zij | as the unit275

vector along the new relative position vector zij . At the bal-276

anced state, the velocity of each agent is perpendicular to277

q̄i =
∑

j∈Ni
qij , which is a vector along the average of the278

relative position vectors incident to agent i. Thus, the quantity279

〈vi , q̄i〉 vanishes at the balanced state. Hence, we propose the280

following control law for the balanced circular formation: 281

ui = −κ〈vi , q̄i〉 = −κ
∑
j∈Ni

〈vi ,qij 〉, κ > 0. (6)

The following two theorems [28] present the results when 282

balanced circular formations are attained for a group of unit- 283

speed agents with fixed connectivity graphs. Theorem 2 is for 284

the case when G is a complete graph, and Theorem 3 is for the 285

ring graph. 286

Theorem 2: Consider a system of n agents with kinematics 287

(5). Given a complete connectivity graph G and applying control 288

law (6), the n-agent system (almost) globally asymptotically 289

converges to a balanced circular formation, which is defined in 290

Definition 3. 291

Proof: See [28] for the proof. � 292

The reason for “almost global” stability of the set of bal- 293

anced states is that there is a measure-zero set of states where 294

the equilibrium is unstable. This set is characterized by those 295

configurations that m agents are at antipodal position from the 296

other n − m agents, where 1 ≤ m < n/2. Next, we consider the 297

situation that the connectivity graph has a ring topology Gring . 298

Theorem 3: Consider a system of n agents with kinematics 299

(5). Suppose the connectivity graph has the ring topology Gring 300

and that each agent applies the balancing control law (6). Then, 301

the relative headings will converge to the same angle φo . If 302

φo ∈ (π/2, 3π/2), the balanced state is locally exponentially 303

stable. 304

Proof: See [28] for the proof. � 305

At the equilibrium, the final configuration for Gring is a reg- 306

ular polygon {n/d} in which the relative angle between two 307

connected nodes is φo = 2πd/n. From Theorem 3, if this an- 308

gle satisfies φo ∈ (π/2, 3π/2), then the balanced state is stable. 309

Thus, the stable configuration corresponds to a polygon with 310

d ∈ (n/4, 3n/4). 311

For example, for n = 5, the stable formations are polygons 312

{5/3} and {5/4}, which are the same polygons as obtained with 313

reverse ordering of the nodes. For n = 4, the stable formation is 314

{4/2}. Actually, simulations suggest that the largest region of 315

attraction for n even belongs to a polygon {n/d}, with d = n/2, 316

and for n odd, it is a star polygon {n/d}, with d = (n ± 1)/2. 317

VII. VISION-BASED CONTROL LAWS 318

Note that the control inputs (4) and (6) for parallel and cir- 319

cular formations depend on the shape variables, i.e., relative 320

headings and positions, which are not directly measurable using 321

visual sensors, such as a single camera on a robot, because es- 322

timation of the relative position and motion requires binocular 323

vision. This motivates us to rewrite inputs (4) and (6) in terms 324

of parameters that are entirely measurable using a simple visual 325

sensor. Next, we define the visual parameters that we will use 326

to derive the vision-based control laws. 327

Bearing angle—Let ri = [xiyi ]T be the location of agent i in 328

a fixed world frame, and let vi = [ẋi ẏi ]T be its velocity vector. 329

The heading or orientation of agent i is then given by 330

θi = atan2(ẏi , ẋi). (7)
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Fig. 4. Bearing angle βij is measured as the angle between the velocity vector
(along body x-axis) and vector rij , which connects the two neighboring agents.

Fig. 5. Optical flow β̇ij and loom 1/τij can be written in terms of the scaled
relative velocity.

As per the earlier definitions and knowing that agents have331

unit speed, dynamic model (1) becomes the unicycle model:332

ẋi = cos θi

ẏi = sin θi

θ̇i = ωi (8)

where ωi is the angular velocity of agent i. The bearing angle βij ,333

which is defined as the relative angle between qij = rij /|rij |334

and vi , is given by (see Fig. 4)335

βij
.= atan2(yi − yj , xi − xj ) − θi. (9)

336

Optical flow is the rate of change of the bearing βij , which337

corresponds to the relative motion of agents i and j, as seen338

by agent i. One can see from Fig. 5 that β̇ij is equal to the339

projection of the scaled relative velocity vector ṙij /lij , which is340

perpendicular to the unit bearing vector qij = [cos βij sin βij ]T .341

More precisely342

β̇ij =
〈

ṙij

lij
,q⊥

ij

〉
(10)

where lij = |rij |. Note that only one optical flow measurement343

per agent is taken, thus making it impossible to rely on structure344

from motion algorithms. Regarding optical flow, see [3].345

Time to collision τij can be estimated from the ratio of area346

change to area or from the divergence of the optical flow [4].347

Incidentally, experimental evidence suggests that several animal 348

species, including pigeons and flies, are capable of estimating 349

time to collision [10], [20], [40], or the inverse of time to colli- 350

sion, known as loom [23]. Actually “loom” is the parameter that 351

we need, which is given by 352

1
τij

=
ȧij

aij
=

l̇ij
lij

=
〈

ṙij

lij
,qij

〉
(11)

where the last equality can be deduced from Fig. 5. Note that the 353

measurement of time to collision τij (or loom) is not equivalent 354

to the measurement of the relative distance between the agents 355

as is usually the case in visual motion problems. This is due to 356

the fact that time to collision can only recover the distance up 357

to an unknown factor, which, in our case, is different for every 358

neighboring agent. 359

Thus, to formally define sensing, we assume that each agent 360

i can measure 361

1) βij as the bearing angle; 362

2) β̇ij as the optical flow; 363

3) τij as time to collision; 364

for any agent j in the set of neighbors Ni . In the following, we 365

show how to write the control inputs (4) and (6) in terms of the 366

measurable quantities defined before. 367

A. Parallel Formation 368

In this section, we derive a vision-based control law for gener- 369

ating parallel formations within a group of nonholonomic agents 370

that does not require the direct communication of the heading 371

information [unlike input (4)]. In order to derive such a vision- 372

based control law, we normalized each term in (4) by the relative 373

distance lij , because the normalized relative velocity vector can 374

be written in terms of the measurable quantities of optical flow 375

and time to collision, as shown in Fig. 5. Consider the following 376

modified version of the control law (4) with κ < 0: 377

ωi =
∑
j∈Ni

−κ

|rij |
〈v⊥

i ,vij 〉 =
∑
j∈Ni

κ

lij
sin(θi − θj ). (12)

Now, we derive the vision-based control law for the parallel 378

formation that is equivalent to (12). The equation that describes 379

the relative motion of agents i and j is given by 380

ṙij = −ωi × rij + vij (13)

where ωi is the body angular velocity vector of agent i, and all 381

vectors in this equation are expressed in the body frame of agent 382

i. We normalize the optical flow equation (13) by dividing it by 383

lij to get 384

ṙij

lij
= −ωi × qij +

vij

lij
∀j ∈ Ni . (14)

Equation (14) holds for all the agents that are in Ni . Thus, we 385

sum (14) over all j ∈ Ni to get 386

∑
j∈Ni

ṙij

lij
= −

∑
j∈Ni

ωi × qij +
∑
j∈Ni

vij

lij
. (15)
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Note that all the parameters in (15) are expressed in the body387

frame of agent i. The goal is to solve (15) for input ωi so that it388

is only a function of the measurable quantities defined earlier.389

Let us use the following notation:390

mi =
∑
j∈Ni

ṙij

lij
, qi =

∑
j∈Ni

qij .

It is easy to show that mi is a measurable vector. To see this,391

we differentiate rij = lijqij , and we get ṙij = l̇ijqij + lij q̇ij .392

Therefore,393

mi =
∑
j∈Ni

ṙij

lij
=

∑
j∈Ni

(
qij

τij
+ q̇ij

)
. (16)

The bearing vector qij and the optical flow vector q̇ij in the394

body frame of agent i are given by395

qij =
[

cos βij

sin βij

]
, q̇ij = β̇ij

[
− sin βij

cos βij

]
= β̇ijq⊥

ij .

Therefore, mi is measurable (see Fig. 5).396

Given that the velocity of agent i is along the x-axis of its397

body frame, then vectors vi and vj can be expressed in the ith398

body frame as399

vi =
[

1
0

]
, vj =

[
cos(θj − θi)
sin(θj − θi)

]
=

[
cos(θi − θj )
− sin(θi − θj )

]
.

By substituting for ωi and vij in (15), we get400

mi = −
[

0 −ωi

ωi 0

]
qi +

∑
j∈Ni

1
lij

[
cos(θi − θj ) − 1
− sin(θi − θj )

]
.

This relation gives us two sets of linear equations. The second401

equation is402

(mi)y = −ωi(qi)x −
∑
j∈Ni

1
lij

sin(θi − θj ) (17)

where (·)x and (·)y are the x and y components of a vector. We403

can see that the last term on the right-hand side is actually the404

input given by (12) that is scaled by factor 1/κ. Hence, (17)405

becomes406

(mi)y = −ωi(qi)x +
1
κ

ωi

which can be solved for ωi . After substituting for (mi)y and407

(qi)x , we get408

ωi =
−κ

∑
j∈Ni

(
(1/τij ) sin βij + β̇ij cos βij

)
1 + κ

∑
j∈Ni

cos βij
, κ < 0.

(18)
This is the vision-based control law that is equivalent to (4)409

and takes a group of kinematic agents to a parallel formation.410

See Section VIII for the experimental verification of the results.411

B. Balanced Circular Formation412

As we will see shortly, the only visual parameter that is re-413

quired to generate a balanced circular formation is the bearing414

angle βij . It is remarkable that we can generate interesting global415

patterns using only a single measurement of the bearing angle.416

Fig. 6. Scarab is a small robot with a differential drive axle. LED markers are
placed on top of each Scarab for pose estimation.

Fig. 7. Artificial potential function fij = (d0 /|rij |) + log |rij |, where d0
is the desired distance between the neighboring agents. The variable µij is the
norm of its gradient.

Note that the inner product of two vectors is independent of 417

the coordinate system in which they are expressed. Thus, given 418

vi = [10]T and qij = [cos βij sin βij ]T in the body frame of 419

agent i, the control input for balanced circular formation can be 420

written as (κ > 0) 421

ωi = ωo − κ
∑
j∈Ni

〈vi ,qij 〉 = ωo − κ
∑
j∈Ni

cos βij . (19)

Input (19) is the desired vision-based control input that drives 422

a group of nonholonomic planar agents into a balanced circular 423

formation. 424

VIII. EXPERIMENTS 425

In this section, we show the results of experimental tests 426

for balanced circular and parallel formations, but first, let us 427

describe the experimental test bed. 428

Robots: We use a series of small form-factor robots called 429

Scarab [26]. The Scarab is a 20 × 13.5 × 22.2 cm3 indoor 430

ground platform, with a mass of 8 kg. Each Scarab is equipped 431

with a differential drive axle placed at the center of the length 432

of the robot with a 21-cm wheel base (see Fig. 6). Each Scarab 433

is equipped with an onboard computer, a power-management 434

system, and wireless communication. Each robot is actuated by 435

stepper motors, which allows us to model it as a point robot 436

with unicycle kinematics (8) for its velocity range. The linear 437

velocity of each robot is bounded at 0.2 m/s. Each robot is able 438

to rotate about its center of mass at speeds below 1.5 rad/s. Typi- 439

cal angular velocities resulting from the control law were below 440

0.5 rad/s. 441
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Fig. 8. Five Scarabs form a circular formation starting with a complete-graph topology. (a) At time t = 0, robots start at random positions and orientations. (b)
t = 2 s. (c) t = 11 s. (d) At t = 25 s, the robots reach a stable balanced configuration around a circle with radius of 1 m. (e)–(h) Actual trajectories of the robots
and their connectivity graph at the times specified before. (h) Final configuration is a regular polygon.

Software: Every robot is running identical modularized soft-442

ware with well-defined interfaces connecting modules via the443

Player robot architecture system [11], which consists of libraries444

that provide access to communication and interface functional-445

ity. The Player also provides a close collaboration with the 3-D446

physics-based simulation environment Gazebo, which provides447

the powerful ability to transition transparently from code run-448

ning on simulated hardware to real hardware.449

Infrastructure: In the experiments, visibility of the robot’s set450

of neighbors is the main issue. Using omnidirectional cameras451

seems to be a natural solution. However, using onboard sensors452

would make the implementation quite challenging. Since the453

focus of this paper was not the vision or estimation problem,454

we have chosen to use an overhead tracking system to solve455

the occlusion problem and obtain more accurate bearing and456

time-to-collision information.457

The tracking system consists of LED markers on the robots458

and eight overhead cameras. This ground-truth-verification sys-459

tem can locate and track the robots with position error of ap-460

proximately 2 cm and an orientation error of 5◦. The overhead461

tracking system allows control algorithms to assume that pose462

is known in a global reference frame. The process and mea-463

surement models fuse local odometry information and tracking464

information from the camera system.465

Each robot locally estimates its pose based on the globally466

available tracking system data and local motion, using an ex-467

tended Kalman filter. We process global overhead tracking in-468

formation but hide the global state of the system from each469

robot, thus providing only the current state of the robot and the470

positions of each robot’s set of neighbors. In this way, we use the471

tracking system in lieu of an interrobot sensor implementation.472

In all the experiments, the neighborhood relations, i.e., the473

connectivity graphs, are fixed and undirected. Each robot com-474

putes the visual measurements with respect to its neighbors475

from (9) and (11). The conclusions for each set of experiments 476

are drawn from significant number of successful trials that sup- 477

ported the effectiveness of the designed controllers. The results 478

of the experiments are provided in the following sections. 479

A. Implementation With Collision Avoidance 480

In reality, any formation control requires collision avoidance, 481

and indeed, collision avoidance cannot be done without range. 482

Here, we show that the two tasks can be done with decoupled 483

additive terms in the control law, where the terms for parallel 484

and circular formations depend only on visual information. 485

An interagent potential function [29], [37] is defined to ensure 486

collision avoidance and cohesion of the formation during the ex- 487

periments. The control law from this artificial potential function 488

results in simple steering behaviors known as separation and 489

cohesion. The potential function fij (|rij |) is a symmetric func- 490

tion of the distance |rij | between agents i and j and is defined 491

as follows [37]. 492

Definition 4 (Potential function): Potential fij is a differen- 493

tiable, nonnegative function of the distance |rij | between agents 494

i and j such that the following hold. 495

1) fij → ∞ as |rij | → 0. 496

2) fij attains its unique minimum when agents i and j are 497

located at a desired distance. 498

The requirements for fij , which are given in Definition 4, 499

support a large class of functions. A common potential function 500

is shown in Fig. 7. The total potential function of agent i is then 501

given by 502

fi =
∑
j∈Ni

fij (|rij |). (20)

503

The collision-avoidance term in the control input must insert 504

a gyroscopic force that is perpendicular to the velocity vector 505
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Fig. 9. Five Scarabs form a circular formation starting with a complete-graph topology while avoiding collisions. (a) t = 0 s. (b) t = 8 s. (c) t = 20 s. (d) At
t = 36 s, the robots reach a stable balanced configuration around a circle with radius of 1 m. (a)–(d) Actual trajectories of the robots and their connectivity graph
at the times specified before.

vi (along v⊥
i ), and it must also be proportional to the negative506

gradient of the total potential function fi of agent i. Thus, as a507

result, the collision-avoidance controller takes the form508

αi = −κp〈v⊥
i ,∇ri

fi〉, κp > 0. (21)

The total control inputs for parallel and balanced circular509

formations include the additional component αi :510

ωi = ωformation
i + αi (22)

where ωformation
i is the vision-based control input given by (18)511

for parallel formation or (19) for the circular formation, and αi512

steers the agents to avoid collisions or pull them together if they513

are too far apart.514

B. Balanced Circular Formations515

The result of the experiments for the complete-graph topology516

and the ring topology are summarized in the following sections.517

1) Complete-Graph Topology: First, we applied the bearing-518

only control law (19) to a group of n = 5 robots without consid-519

ering collision avoidance among the agents. In Fig. 8(a) through520

(d), snapshots from the actual experiment are shown, and in521

Fig. 8(e) through (h), the corresponding trajectories, which522

are generated from overhead tracking information, are demon-523

strated. Note that for the complete-graph topology, the orderingQ3524

of the robots in the final configuration is not unique; it depends525

on the initial positions.526

Since no collision avoidance was implemented in the exper-527

iments of Fig. 8, the robots could become undesirably close to528

one another, as can be seen in Fig. 8(b). However, by applying529

control input (22), it can be seen that no collisions occur among530

the robots as they reach the equilibrium. The actual trajectories531

of n = 5 robots for this scenario are shown in Fig. 9. The com-532

parison of the potential energies of the system with and without533

αi term [see (21)] are presented in Fig. 10. The potential energy534

of the system is computed from f =
∑n

i=1 fi , where fi is given535

by (20). The peak in Fig. 10(a) corresponds to the configuration536

observed in Fig. 8(b), where robots become too close to each537

other. By using the control input (22), the potential energy of538

the five-agent system monotonically decreases [see Fig. 10(b)],539

and the system stabilizes to a state where the potential energy540

of the entire system is minimized.541

2) Ring Topology: If each robot can “sense” only two other542

robots in the group, the topology of the connectivity graph will543

Fig. 10. Comparison of the values of the five-agent system’s potential energy
while robots are applying (a) control input (19) and (b) control input (22) with
collision avoidance.

be a ring topology. Since the connectivity graph is assumed 544

fixed, the agents need to be numbered during the experiments. 545

For n even, the balancing term in the control input drives 546

the agents into a balanced circular formation, which is given by 547

polygon {n/d}, with d = n/2. This requires that robots with 548

even indices stay on one side of a line segment and robots 549

with odd indices stay at the other side (not physically possible). 550

However, the collision-avoidance term keeps the agents at the 551

desired separation. 552

For n odd, the largest region of attraction of the balancing 553

input is the star polygon {n/d}, with d = (n ± 1)/2; therefore, 554

only two orderings of the robots are possible in the final circular 555

formation. Fig. 11 shows that in our experiment, the robots are 556

stabilized to the star polygon {5/3}. 557

Remark 2: When the communication graph is a fixed, directed 558

graph with a ring topology, where agent i could see only agent 559

(i + 1)/mod(n), then the n-agent system would behave like a 560

team of robots in cyclic pursuit [25]. 561

C. Parallel Formation With Fixed Topology 562

The space limitations imposed by the ground-truth- 563

verification system prohibited us from testing the vision-based 564
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Fig. 11. Five Scarabs form a circular formation starting with a ring topology while avoiding collisions. (a) t = 0 s. (b) t = 16 s. (c) t = 40 s. (d) At t = 80 s,
the robots reach a stable balanced configuration, which is the star polygon {5/3} around a circle with radius of 1 m. (a)–(d) Actual trajectories of the robots and
their connectivity graph at the times specified before.

Fig. 12. Five Scarabs, starting with different initial orientations, apply the vision-based control input (18) to achieve a parallel formation. The simulation is done
in the simulator Gazebo. (a) t = 0 s. (b) t = 1 s. (c) t = 3 s. (d) t = 7 s.

control law for parallel motion directly on Scarabs. However,565

simulations were made in Gazebo, which is a physics-based566

simulator. Gazebo simulations accurately reflect the robot dy-567

namics and sensing capabilities, while permitting evaluation of568

the same code used during hardware experimentation. Fig. 12569

shows snapshots of the Gazebo simulation for a group of five570

Scarabs, with each applying (22), and the vision-based control571

law plus collision avoidance.Q4 572

IX. CONCLUSION AND FUTURE WORK573

The central contribution of this paper is to provide simple574

vision-based control laws to achieve parallel and balanced cir-575

cular formations. Of course, in reality, any formation control576

requires collision avoidance, and indeed, collision avoidance577

cannot be done without range. We have shown here that the two578

tasks can be done with decoupled additive terms in the control579

law, where the term for formation control depends only on visual580

information.581

The vision-based control laws were functions of quantities582

such as bearing, optical flow, and time to collision, all of583

which could be measured from images. Only bearing measure-584

ments were needed for achieving a balanced circular formation,585

whereas for a parallel formation, additional measurements of586

optical flow and time to collision were required. We verified the587

effectiveness of the theory though multirobot experiments.588

Note that when we work with robots that have limited589

field of view, directed connectivity graphs [24] come into590

play. The study of motion coordination in the presence of591

directed communication graphs is the subject of ongoing592

work.593
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Abstract—In this paper, we study the problem of distributed mo-5
tion coordination among a group of nonholonomic ground robots.6
We develop vision-based control laws for parallel and balanced cir-7
cular formations using a consensus approach. The proposed con-8
trol laws are distributed in the sense that they require information9
only from neighboring robots. Furthermore, the control laws are10
coordinate-free and do not rely on measurement or communica-11
tion of heading information among neighbors but instead require12
measurements of bearing, optical flow, and time to collision, all of13
which can be measured using vision. Collision-avoidance capabil-

Q1
14

ities are added to the team members, and the effectiveness of the15
control laws are demonstrated on a group of mobile robots.16

Index Terms—Cooperative control, distributed coordination,17
vision-based control.18

I. INTRODUCTION19

COOPERATIVE control of multiple autonomous agents20

has become a vibrant part of robotics and control theory21

research. The main underlying theme of this line of research is22

to analyze and/or synthesize spatially distributed control archi-23

tectures that can be used for motion coordination of large groups24

of autonomous vehicles. Some of this research focus on flocking25

and formation control [9], [14], [16], [22], [31], and synchro-26

nization [2], [39], while others focus on rendezvous, distributed27

coverage, and deployment [1], [5]. A key assumption implied inQ228

all of the previous references is that each vehicle or robot (here-29

after called an agent) communicates its position and/or velocity30

information to its neighbors.31

Inspired by the social aggregation phenomena in birds and32

fish [6], [30], researchers in robotics and control theory have33

developed tools, methods, and algorithms for distributed mo-34
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tion coordination of multivehicle systems. Two main collective 35

motions that are observed in nature are parallel motion and 36

circular motion [21]. One can interpret stabilizing the circular 37

formation as an example of activity consensus, i.e., individuals 38

are “moving around” together. Stabilizing the parallel forma- 39

tion is another form of activity consensus in which individuals 40

“move off” together [33]. Circular formations are observed in 41

fish schooling, which is a well-studied topic in ecology and 42

evolutionary biology [6]. 43

In this paper, we present a set of control laws for coordinated 44

motions, such as parallel and circular formations, for a group of 45

planar agents using purely local interactions. The control laws 46

are in terms of shape variables, such as the relative distances 47

and relative headings among the agents. However, these param- 48

eters are not readily measurable using simple and basic sensing 49

capabilities. This motivates the rewriting of the derived control 50

laws in terms of biologically measurable parameters. Each agent 51

is assumed to have only monocular vision and is also capable of 52

measuring basic visual quantities, such as bearing angle, opti- 53

cal flow (bearing derivative), and time to collision. Rewriting the 54

control inputs in terms of quantities that are locally measurable 55

is equivalent to expressing the inputs in the local body frame. 56

Such a change of coordinate system from a global frame to a 57

local frame provides us with a better intuition on how similar 58

behaviors are carried out in nature. 59

Verification of the theory through multirobot experiments 60

demonstrated the effectiveness of the vision-based control laws 61

to achieve the desired formations. Of course, in reality, any 62

formation control requires collision avoidance, and indeed, 63

collision avoidance cannot be done without range. In order 64

to improve the experimental results, we provided interagent- 65

collision-avoidance properties to the team members. In this 66

paper, we show that the two tasks of formation keeping and 67

collision avoidance can be done with decoupled additive terms 68

in the control law, where the terms for keeping parallel and 69

circular formations depend only on visual parameters. 70

This paper is organized as follows. In Section II, we review 71

a number of important related works. Some background infor- 72

mation on graph theory and other mathematical tools used in 73

this paper are provided in Section III. The problem statement 74

is given in Section IV. In Sections V and VI, we present the 75

controllers that stabilize a group of mobile agents into parallel 76

and balanced circular formations, respectively. In Section VII, 77

we derive the vision-based controllers that are in terms of the 78

visual measurements of the neighboring agents. In Section VIII, 79

collision-avoidance capabilities are added to the control laws, 80

and their effectiveness is tested on real robots. 81

1552-3098/$25.00 © 2009 IEEE



IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON ROBOTICS

II. RELATED WORK AND CONTRIBUTIONS82

The primary contribution of this paper is the presentation of83

simple control laws to achieve parallel and circular formations84

that require only visual sensing, i.e., the inputs are in terms85

of quantities that do not require communication among nearest86

neighbors. In contrast with the work of Justh and Krishnaprasad87

[17], Moshtagh and Jadbabaie [27], Paley et al. [32], [33], and88

Sepulchre et al. [35], where it is assumed that each agent has89

access to the values of its neighbors’ positions and velocities,90

we design distributed control laws that use only visual clues91

from nearest neighbors to achieve motion coordination.92

Our approach on deriving the vision-based control laws can93

be classified as an image-based visual seroving [41]. In image-94

based visual servoing, features are extracted from images, and95

then the control input is computed as a function of the image96

features. In [8], [12], and [38], authors use omnidirectional cam-97

eras as the only sensor for robots. In [8] and [38], input–output98

feedback linearization is used to design control laws for leader-99

following and obstacle avoidance. However, they assume that100

a specific vertical pose of an omnidirectional camera allows101

the computation of both bearing and distance. In the work of102

Prattichizzo et al. [12], the distance measurement is not used;103

however, the leader uses extended Kalman filtering to localize104

its followers, and computes the control inputs and guides the105

formation in a centralized fashion. In our paper, the control ar-106

chitecture is distributed, and we design the formation controllers107

based on the local interaction among the agents similar to that108

of [14] and [22]. Furthermore, for our vision-based controllers,109

no distance measurement is required.110

In [25] and [34], circular formations of a multivehicle sys-111

tem under cyclic pursuit is studied. Their proposed strategy is112

distributed and simple because each agent needs to measure113

the relative information from only one other agent. It is also114

shown that the formation equilibria of the multiagent system115

are generalized polygons. In contrast to [25], our control law is116

a nonlinear function of the bearing angles, and as a result, our117

system converges to a different set of stable equilibria.118

III. BACKGROUND119

In this section, we briefly review a number of important con-120

cepts regarding graph theory and regular polygons that we use121

throughout this paper.122

A. Graph Theory123

An (undirected) graph G consists of a vertex setV and an edge124

set E , where an edge is an unordered pair of distinct vertices inG.125

If x, y ∈ V and (x, y) ∈ E , then x and y are said to be adjacent,126

or neighbors, and we denote this by writing x ∼ y. The number127

of neighbors of each vertex is its degree. A path of length r from128

vertex x to vertex y is a sequence of r + 1 distinct vertices that129

start with x and end with y such that consecutive vertices are130

adjacent. If there is a path between any two vertices of a graph131

G, then G is said to be connected.132

The adjacency matrix A(G) = [aij ] of an (undirected) graph133

G is a symmetric matrix with rows and columns indexed by134

the vertices of G, such that aij = 1 if vertex i and vertex j are 135

neighbors, and aij = 0 otherwise. We also assume that aii = 0 136

for all i. The degree matrix D(G) of a graph G is a diagonal 137

matrix with rows and columns indexed by V , in which the (i, i)- 138

entry is the degree of vertex i. 139

The symmetric singular matrix defined as 140

L(G) = D(G) − A(G)

is called the Laplacian of G. The Laplacian matrix captures 141

many topological properties of the graph. The Laplacian L is 142

a positive-semidefinite matrix, and the algebraic multiplicity of 143

its zero eigenvalue (i.e., the dimension of its kernel) is equal 144

to the number of connected components in the graph. The n- 145

dimensional eigenvector associated with the zero eigenvalue is 146

the vector of ones, 1n = [1, . . . , 1]T . For more information on 147

graph theory, see [13]. 148

B. Regular Polygons 149

Let d < n be a positive integer, and define p = n/d. Let y1 150

be a point on the unit circle. Let Rα be clockwise rotation by 151

the angle α = 2π/p. The generalized regular polygon {p} is 152

given by the points yi+1 = Rαyi and edges between points i 153

and i + 1. 154

When d = 1, the polygon {p} is called an ordinary regular 155

polygon, and its edges do not intersect. If d > 1 and n and d are 156

coprime, then the edges intersect, and the polygon is a star. If n 157

and d have a common factor l > 1, then the polygon consists of l 158

traversals of the same polygon with {n/l} vertices and edges. If 159

d = n, the polygon {n/n} corresponds to all points at the same 160

location. If d = n/2 (with n even), then the polygon consists of 161

two endpoints and a line between them, with points having an 162

even index on one end and points having an odd index on the 163

other. For more information on regular graphs, see [7]. 164

IV. PROBLEM STATEMENT 165

Consider a group of n unit-speed planar agents. Each agent is 166

capable of sensing information from its neighbors. The neigh- 167

borhood set of agent i, that is, Ni , is the set of agents that can 168

be “seen” by agent i. The precise meaning of “seeing” will be 169

clarified later. The size of the neighborhood depends on the char- 170

acteristics of the sensors. The neighboring relationship between 171

agents can be conveniently described by a connectivity graph 172

G = (V, E ,W). 173

Definition 1 (Connectivity graph): The connectivity graph 174

G = (V, E ,W) is a graph consisting of 175

1) a set of vertices V indexed by the set of mobile agents; 176

2) a set of edges E = {(i, j)|i, j ∈ V, and i ∼ j}; 177

3) a set of positive edge weights for each edge (i, j). 178

The neighborhood of agent i is defined by 179

Ni
.= {j|i ∼ j} ⊆ V\{i}.

Let ri represent the position of agent i, and let vi be its 180

velocity vector. The kinematics of each unit-speed agent is
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Fig. 1. Trajectory of each agent is represented by a planar Frenet frame.

given by181

ṙi = vi

v̇i = ωiv⊥
i

v̇⊥
i = −ωivi (1)

where v⊥
i is the unit vector perpendicular to the velocity vector182

vi (see Fig. 1). The orthogonal pair {vi ,v⊥
i } forms a body frame183

for agent i. We represent the stack vector of all the velocities by184

v = [vT
1 , . . . ,vT

n ]T ∈ R
2n×1 .185

The control input for each agent is the angular velocity ωi .186

Since it is assumed that the agents move with constant unit187

speed, the force applied to each agent must be perpendicular to188

its velocity vector, i.e., the force on each agent is a gyroscopic189

force, and it does not change its speed (and hence, its kinetic190

energy). Thus, ωi serves as a steering control [16] for each agent.191

Let us formally define the formations that we are going to192

consider.193

Definition 2 (Parallel formation): The configuration in which194

the headings of all agents are the same and velocity vectors are195

aligned is called the parallel formation.196

Note that in this definition, we do not consider the value of197

the agreed upon velocity but just the fact that the agreement has198

been reached. At the equilibrium, the relative distances of the199

agents determine the shape of the formation. Another interesting200

family of formations is the balanced circular formation.201

Definition 3 (Balanced circular formation): The configuration202

where the agents are moving on the same circular trajectory203

and the geometric center of the agents is fixed is called the204

balanced circular formation. The shape of such a formation can205

be represented by an appropriate regular polygon.206

In the following sections, we study each formation and design207

its corresponding distributed control law.208

V. PARALLEL FORMATIONS209

Our goal in this section is to design a control law for each210

agent so that the headings of the mobile agents reach an agree-211

ment, i.e., their velocity vectors are aligned, thus resulting in a212

swarm-like pattern. For an arbitrary connectivity graph G, con-213

sider the Laplacian matrix L. We, therefore, define a measure214

of misalignment as follows [27], [35]:215

w(v) =
1
2

∑
i∼j

|vi − vj |2 =
1
2
〈v, L̄v〉 (2)

where the summation is over all the pairs (i, j) ∈ E , and L̄ = 216

L ⊗ I2 ∈ R
2n×2n , with I2 being the 2 × 2 identity matrix. The 217

time derivative of w(v) is given by 218

ẇ(v) =
n∑

i=1

〈v̇i , (L̄v)i〉 =
n∑

i=1

ωi〈v⊥
i , (L̄v)i〉

where (L̄v)i ∈ R
2 is the subvector of L̄v associated with the 219

ith agent. Thus, the following gradient control law guarantees 220

that the potential w(v) decreases monotonically: 221

ωi = κ〈v⊥
i , (L̄v)i〉 = −κ

∑
j∈Ni

〈v⊥
i ,vij 〉 (3)

where κ < 0 is the gain, and vij = vj − vi . 222

Remark 1: Let θi represent the heading of agent i as measured 223

in a fixed world frame (see Fig. 1). The unit velocity vector vi 224

and its orthogonal vector v⊥
i are given by vi = [cos θi sin θi ]T 225

and v⊥
i = [− sin θi cos θi ]T . Thus, the control input (3) becomes 226

ωi = κ
∑
j∈Ni

sin(θi − θj ), κ < 0. (4)

It is worth noting that the proposed controller is the one used in 227

the synchronization of the Kuramoto model of coupled nonlinear 228

oscillators, which has been extensively studied in mathematical 229

physics as well as control communities [15], [19], [36]. The 230

same model has also been used for phase regulation of cyclic 231

robotic systems [18]. 232

We have the following theorem [27] that provides a sufficient 233

condition to obtain a parallel formation. 234

Theorem 1: Consider a system of n unit-speed agents with 235

dynamics (1). If the underlying connectivity graph remains 236

fixed and connected, then by applying control input (4), the 237

system converges to the equilibria of ω = [ω1 · · ·ωn ]T = 0. 238

Furthermore, the velocity consensus set is locally attractive if 239

θi ∈ (−π/2, π/2). 240

Proof 1: See [27] for the proof. � 241

The velocity consensus set is the set of states where all the 242

agents have the same velocity vectors, and it corresponds to 243

the parallel formation, which is defined in Definition 2. Note 244

that θi ∈ (−π/2, π/2)∀i = {1, . . . , n} is the sufficient condi- 245

tion that restricts the initial headings to a half-circle. The results 246

can be extended to graphs with switching topology, as shown 247

in [27]. 248

VI. BALANCED CIRCULAR FORMATIONS 249

The circular formation is a circular relative equilibrium in 250

which all the agents travel around the same circle. We are in- 251

terested in balanced circular formations, which are defined in 252

Definition 3. At the equilibrium, the relative headings and the 253

relative distances of the agents determine the shape of the for- 254

mation, which can be easily described by a regular polygon. 255

Let ci represent the position of the center of the ith circle 256

with radius 1/ωo , as shown in Fig. 2; thus 257

ci = ri +
(

1
ωo

)
v⊥

i .
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Fig. 2. Center of the circular trajectory is defined as ci = ri + (1/ω0 )v⊥
i .

Fig. 3. By a change of coordinate zi = ωo (ri − ci ) = −v⊥
i , the problem of

generating circular motion in the plane reduces to the problem of balancing the
agents on a circle.

The shape controls for driving agents to a circular formation258

depend on the shape variables vij = vj − vi and rij = rj − ri .259

The relative equilibria of the balanced formation are character-260

ized by
∑n

i=1 vi = 0 and ci = co ∈ R
2 for all i ∈ {1, . . . , n},261

where co is the fixed geometric center of the agents.262

The control input for each agent has two components, which263

are given by264

ωi = ωo + ui.

The constant angular velocity ωo takes the agents into a cir-265

cular motion, and ui sets the agents into a balanced state. In266

order to design ui , we express the system in a rotating frame,267

which greatly simplifies the analysis. By the change of variable268

zi = ωo(ri − ci) = −v⊥
i

the problem reduces to balancing the agents on a unit circle, as269

shown in Fig. 3. The new coordinate system rotates with angular270

velocity ωo . The dynamics in the rotating frame are given by271

żi = viui

v̇i = −ziui , i = 1, . . . , n. (5)

Unit vector zi is normal to the velocity vector. However, in272

the rotating frame, zi represents the position of agent i on the273

unit circle, which is moving with speed ui (see Fig. 3).274

Let us define zij = zj − zi and qij = zij /|zij | as the unit275

vector along the new relative position vector zij . At the bal-276

anced state, the velocity of each agent is perpendicular to277

q̄i =
∑

j∈Ni
qij , which is a vector along the average of the278

relative position vectors incident to agent i. Thus, the quantity279

〈vi , q̄i〉 vanishes at the balanced state. Hence, we propose the280

following control law for the balanced circular formation: 281

ui = −κ〈vi , q̄i〉 = −κ
∑
j∈Ni

〈vi ,qij 〉, κ > 0. (6)

The following two theorems [28] present the results when 282

balanced circular formations are attained for a group of unit- 283

speed agents with fixed connectivity graphs. Theorem 2 is for 284

the case when G is a complete graph, and Theorem 3 is for the 285

ring graph. 286

Theorem 2: Consider a system of n agents with kinematics 287

(5). Given a complete connectivity graph G and applying control 288

law (6), the n-agent system (almost) globally asymptotically 289

converges to a balanced circular formation, which is defined in 290

Definition 3. 291

Proof: See [28] for the proof. � 292

The reason for “almost global” stability of the set of bal- 293

anced states is that there is a measure-zero set of states where 294

the equilibrium is unstable. This set is characterized by those 295

configurations that m agents are at antipodal position from the 296

other n − m agents, where 1 ≤ m < n/2. Next, we consider the 297

situation that the connectivity graph has a ring topology Gring . 298

Theorem 3: Consider a system of n agents with kinematics 299

(5). Suppose the connectivity graph has the ring topology Gring 300

and that each agent applies the balancing control law (6). Then, 301

the relative headings will converge to the same angle φo . If 302

φo ∈ (π/2, 3π/2), the balanced state is locally exponentially 303

stable. 304

Proof: See [28] for the proof. � 305

At the equilibrium, the final configuration for Gring is a reg- 306

ular polygon {n/d} in which the relative angle between two 307

connected nodes is φo = 2πd/n. From Theorem 3, if this an- 308

gle satisfies φo ∈ (π/2, 3π/2), then the balanced state is stable. 309

Thus, the stable configuration corresponds to a polygon with 310

d ∈ (n/4, 3n/4). 311

For example, for n = 5, the stable formations are polygons 312

{5/3} and {5/4}, which are the same polygons as obtained with 313

reverse ordering of the nodes. For n = 4, the stable formation is 314

{4/2}. Actually, simulations suggest that the largest region of 315

attraction for n even belongs to a polygon {n/d}, with d = n/2, 316

and for n odd, it is a star polygon {n/d}, with d = (n ± 1)/2. 317

VII. VISION-BASED CONTROL LAWS 318

Note that the control inputs (4) and (6) for parallel and cir- 319

cular formations depend on the shape variables, i.e., relative 320

headings and positions, which are not directly measurable using 321

visual sensors, such as a single camera on a robot, because es- 322

timation of the relative position and motion requires binocular 323

vision. This motivates us to rewrite inputs (4) and (6) in terms 324

of parameters that are entirely measurable using a simple visual 325

sensor. Next, we define the visual parameters that we will use 326

to derive the vision-based control laws. 327

Bearing angle—Let ri = [xiyi ]T be the location of agent i in 328

a fixed world frame, and let vi = [ẋi ẏi ]T be its velocity vector. 329

The heading or orientation of agent i is then given by 330

θi = atan2(ẏi , ẋi). (7)
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Fig. 4. Bearing angle βij is measured as the angle between the velocity vector
(along body x-axis) and vector rij , which connects the two neighboring agents.

Fig. 5. Optical flow β̇ij and loom 1/τij can be written in terms of the scaled
relative velocity.

As per the earlier definitions and knowing that agents have331

unit speed, dynamic model (1) becomes the unicycle model:332

ẋi = cos θi

ẏi = sin θi

θ̇i = ωi (8)

where ωi is the angular velocity of agent i. The bearing angle βij ,333

which is defined as the relative angle between qij = rij /|rij |334

and vi , is given by (see Fig. 4)335

βij
.= atan2(yi − yj , xi − xj ) − θi. (9)

336

Optical flow is the rate of change of the bearing βij , which337

corresponds to the relative motion of agents i and j, as seen338

by agent i. One can see from Fig. 5 that β̇ij is equal to the339

projection of the scaled relative velocity vector ṙij /lij , which is340

perpendicular to the unit bearing vector qij = [cos βij sin βij ]T .341

More precisely342

β̇ij =
〈

ṙij

lij
,q⊥

ij

〉
(10)

where lij = |rij |. Note that only one optical flow measurement343

per agent is taken, thus making it impossible to rely on structure344

from motion algorithms. Regarding optical flow, see [3].345

Time to collision τij can be estimated from the ratio of area346

change to area or from the divergence of the optical flow [4].347

Incidentally, experimental evidence suggests that several animal 348

species, including pigeons and flies, are capable of estimating 349

time to collision [10], [20], [40], or the inverse of time to colli- 350

sion, known as loom [23]. Actually “loom” is the parameter that 351

we need, which is given by 352

1
τij

=
ȧij

aij
=

l̇ij
lij

=
〈

ṙij

lij
,qij

〉
(11)

where the last equality can be deduced from Fig. 5. Note that the 353

measurement of time to collision τij (or loom) is not equivalent 354

to the measurement of the relative distance between the agents 355

as is usually the case in visual motion problems. This is due to 356

the fact that time to collision can only recover the distance up 357

to an unknown factor, which, in our case, is different for every 358

neighboring agent. 359

Thus, to formally define sensing, we assume that each agent 360

i can measure 361

1) βij as the bearing angle; 362

2) β̇ij as the optical flow; 363

3) τij as time to collision; 364

for any agent j in the set of neighbors Ni . In the following, we 365

show how to write the control inputs (4) and (6) in terms of the 366

measurable quantities defined before. 367

A. Parallel Formation 368

In this section, we derive a vision-based control law for gener- 369

ating parallel formations within a group of nonholonomic agents 370

that does not require the direct communication of the heading 371

information [unlike input (4)]. In order to derive such a vision- 372

based control law, we normalized each term in (4) by the relative 373

distance lij , because the normalized relative velocity vector can 374

be written in terms of the measurable quantities of optical flow 375

and time to collision, as shown in Fig. 5. Consider the following 376

modified version of the control law (4) with κ < 0: 377

ωi =
∑
j∈Ni

−κ

|rij |
〈v⊥

i ,vij 〉 =
∑
j∈Ni

κ

lij
sin(θi − θj ). (12)

Now, we derive the vision-based control law for the parallel 378

formation that is equivalent to (12). The equation that describes 379

the relative motion of agents i and j is given by 380

ṙij = −ωi × rij + vij (13)

where ωi is the body angular velocity vector of agent i, and all 381

vectors in this equation are expressed in the body frame of agent 382

i. We normalize the optical flow equation (13) by dividing it by 383

lij to get 384

ṙij

lij
= −ωi × qij +

vij

lij
∀j ∈ Ni . (14)

Equation (14) holds for all the agents that are in Ni . Thus, we 385

sum (14) over all j ∈ Ni to get 386

∑
j∈Ni

ṙij

lij
= −

∑
j∈Ni

ωi × qij +
∑
j∈Ni

vij

lij
. (15)
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Note that all the parameters in (15) are expressed in the body387

frame of agent i. The goal is to solve (15) for input ωi so that it388

is only a function of the measurable quantities defined earlier.389

Let us use the following notation:390

mi =
∑
j∈Ni

ṙij

lij
, qi =

∑
j∈Ni

qij .

It is easy to show that mi is a measurable vector. To see this,391

we differentiate rij = lijqij , and we get ṙij = l̇ijqij + lij q̇ij .392

Therefore,393

mi =
∑
j∈Ni

ṙij

lij
=

∑
j∈Ni

(
qij

τij
+ q̇ij

)
. (16)

The bearing vector qij and the optical flow vector q̇ij in the394

body frame of agent i are given by395

qij =
[

cos βij

sin βij

]
, q̇ij = β̇ij

[
− sin βij

cos βij

]
= β̇ijq⊥

ij .

Therefore, mi is measurable (see Fig. 5).396

Given that the velocity of agent i is along the x-axis of its397

body frame, then vectors vi and vj can be expressed in the ith398

body frame as399

vi =
[

1
0

]
, vj =

[
cos(θj − θi)
sin(θj − θi)

]
=

[
cos(θi − θj )
− sin(θi − θj )

]
.

By substituting for ωi and vij in (15), we get400

mi = −
[

0 −ωi

ωi 0

]
qi +

∑
j∈Ni

1
lij

[
cos(θi − θj ) − 1
− sin(θi − θj )

]
.

This relation gives us two sets of linear equations. The second401

equation is402

(mi)y = −ωi(qi)x −
∑
j∈Ni

1
lij

sin(θi − θj ) (17)

where (·)x and (·)y are the x and y components of a vector. We403

can see that the last term on the right-hand side is actually the404

input given by (12) that is scaled by factor 1/κ. Hence, (17)405

becomes406

(mi)y = −ωi(qi)x +
1
κ

ωi

which can be solved for ωi . After substituting for (mi)y and407

(qi)x , we get408

ωi =
−κ

∑
j∈Ni

(
(1/τij ) sin βij + β̇ij cos βij

)
1 + κ

∑
j∈Ni

cos βij
, κ < 0.

(18)
This is the vision-based control law that is equivalent to (4)409

and takes a group of kinematic agents to a parallel formation.410

See Section VIII for the experimental verification of the results.411

B. Balanced Circular Formation412

As we will see shortly, the only visual parameter that is re-413

quired to generate a balanced circular formation is the bearing414

angle βij . It is remarkable that we can generate interesting global415

patterns using only a single measurement of the bearing angle.416

Fig. 6. Scarab is a small robot with a differential drive axle. LED markers are
placed on top of each Scarab for pose estimation.

Fig. 7. Artificial potential function fij = (d0 /|rij |) + log |rij |, where d0
is the desired distance between the neighboring agents. The variable µij is the
norm of its gradient.

Note that the inner product of two vectors is independent of 417

the coordinate system in which they are expressed. Thus, given 418

vi = [10]T and qij = [cos βij sin βij ]T in the body frame of 419

agent i, the control input for balanced circular formation can be 420

written as (κ > 0) 421

ωi = ωo − κ
∑
j∈Ni

〈vi ,qij 〉 = ωo − κ
∑
j∈Ni

cos βij . (19)

Input (19) is the desired vision-based control input that drives 422

a group of nonholonomic planar agents into a balanced circular 423

formation. 424

VIII. EXPERIMENTS 425

In this section, we show the results of experimental tests 426

for balanced circular and parallel formations, but first, let us 427

describe the experimental test bed. 428

Robots: We use a series of small form-factor robots called 429

Scarab [26]. The Scarab is a 20 × 13.5 × 22.2 cm3 indoor 430

ground platform, with a mass of 8 kg. Each Scarab is equipped 431

with a differential drive axle placed at the center of the length 432

of the robot with a 21-cm wheel base (see Fig. 6). Each Scarab 433

is equipped with an onboard computer, a power-management 434

system, and wireless communication. Each robot is actuated by 435

stepper motors, which allows us to model it as a point robot 436

with unicycle kinematics (8) for its velocity range. The linear 437

velocity of each robot is bounded at 0.2 m/s. Each robot is able 438

to rotate about its center of mass at speeds below 1.5 rad/s. Typi- 439

cal angular velocities resulting from the control law were below 440

0.5 rad/s. 441
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Fig. 8. Five Scarabs form a circular formation starting with a complete-graph topology. (a) At time t = 0, robots start at random positions and orientations. (b)
t = 2 s. (c) t = 11 s. (d) At t = 25 s, the robots reach a stable balanced configuration around a circle with radius of 1 m. (e)–(h) Actual trajectories of the robots
and their connectivity graph at the times specified before. (h) Final configuration is a regular polygon.

Software: Every robot is running identical modularized soft-442

ware with well-defined interfaces connecting modules via the443

Player robot architecture system [11], which consists of libraries444

that provide access to communication and interface functional-445

ity. The Player also provides a close collaboration with the 3-D446

physics-based simulation environment Gazebo, which provides447

the powerful ability to transition transparently from code run-448

ning on simulated hardware to real hardware.449

Infrastructure: In the experiments, visibility of the robot’s set450

of neighbors is the main issue. Using omnidirectional cameras451

seems to be a natural solution. However, using onboard sensors452

would make the implementation quite challenging. Since the453

focus of this paper was not the vision or estimation problem,454

we have chosen to use an overhead tracking system to solve455

the occlusion problem and obtain more accurate bearing and456

time-to-collision information.457

The tracking system consists of LED markers on the robots458

and eight overhead cameras. This ground-truth-verification sys-459

tem can locate and track the robots with position error of ap-460

proximately 2 cm and an orientation error of 5◦. The overhead461

tracking system allows control algorithms to assume that pose462

is known in a global reference frame. The process and mea-463

surement models fuse local odometry information and tracking464

information from the camera system.465

Each robot locally estimates its pose based on the globally466

available tracking system data and local motion, using an ex-467

tended Kalman filter. We process global overhead tracking in-468

formation but hide the global state of the system from each469

robot, thus providing only the current state of the robot and the470

positions of each robot’s set of neighbors. In this way, we use the471

tracking system in lieu of an interrobot sensor implementation.472

In all the experiments, the neighborhood relations, i.e., the473

connectivity graphs, are fixed and undirected. Each robot com-474

putes the visual measurements with respect to its neighbors475

from (9) and (11). The conclusions for each set of experiments 476

are drawn from significant number of successful trials that sup- 477

ported the effectiveness of the designed controllers. The results 478

of the experiments are provided in the following sections. 479

A. Implementation With Collision Avoidance 480

In reality, any formation control requires collision avoidance, 481

and indeed, collision avoidance cannot be done without range. 482

Here, we show that the two tasks can be done with decoupled 483

additive terms in the control law, where the terms for parallel 484

and circular formations depend only on visual information. 485

An interagent potential function [29], [37] is defined to ensure 486

collision avoidance and cohesion of the formation during the ex- 487

periments. The control law from this artificial potential function 488

results in simple steering behaviors known as separation and 489

cohesion. The potential function fij (|rij |) is a symmetric func- 490

tion of the distance |rij | between agents i and j and is defined 491

as follows [37]. 492

Definition 4 (Potential function): Potential fij is a differen- 493

tiable, nonnegative function of the distance |rij | between agents 494

i and j such that the following hold. 495

1) fij → ∞ as |rij | → 0. 496

2) fij attains its unique minimum when agents i and j are 497

located at a desired distance. 498

The requirements for fij , which are given in Definition 4, 499

support a large class of functions. A common potential function 500

is shown in Fig. 7. The total potential function of agent i is then 501

given by 502

fi =
∑
j∈Ni

fij (|rij |). (20)

503

The collision-avoidance term in the control input must insert 504

a gyroscopic force that is perpendicular to the velocity vector 505
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Fig. 9. Five Scarabs form a circular formation starting with a complete-graph topology while avoiding collisions. (a) t = 0 s. (b) t = 8 s. (c) t = 20 s. (d) At
t = 36 s, the robots reach a stable balanced configuration around a circle with radius of 1 m. (a)–(d) Actual trajectories of the robots and their connectivity graph
at the times specified before.

vi (along v⊥
i ), and it must also be proportional to the negative506

gradient of the total potential function fi of agent i. Thus, as a507

result, the collision-avoidance controller takes the form508

αi = −κp〈v⊥
i ,∇ri

fi〉, κp > 0. (21)

The total control inputs for parallel and balanced circular509

formations include the additional component αi :510

ωi = ωformation
i + αi (22)

where ωformation
i is the vision-based control input given by (18)511

for parallel formation or (19) for the circular formation, and αi512

steers the agents to avoid collisions or pull them together if they513

are too far apart.514

B. Balanced Circular Formations515

The result of the experiments for the complete-graph topology516

and the ring topology are summarized in the following sections.517

1) Complete-Graph Topology: First, we applied the bearing-518

only control law (19) to a group of n = 5 robots without consid-519

ering collision avoidance among the agents. In Fig. 8(a) through520

(d), snapshots from the actual experiment are shown, and in521

Fig. 8(e) through (h), the corresponding trajectories, which522

are generated from overhead tracking information, are demon-523

strated. Note that for the complete-graph topology, the orderingQ3524

of the robots in the final configuration is not unique; it depends525

on the initial positions.526

Since no collision avoidance was implemented in the exper-527

iments of Fig. 8, the robots could become undesirably close to528

one another, as can be seen in Fig. 8(b). However, by applying529

control input (22), it can be seen that no collisions occur among530

the robots as they reach the equilibrium. The actual trajectories531

of n = 5 robots for this scenario are shown in Fig. 9. The com-532

parison of the potential energies of the system with and without533

αi term [see (21)] are presented in Fig. 10. The potential energy534

of the system is computed from f =
∑n

i=1 fi , where fi is given535

by (20). The peak in Fig. 10(a) corresponds to the configuration536

observed in Fig. 8(b), where robots become too close to each537

other. By using the control input (22), the potential energy of538

the five-agent system monotonically decreases [see Fig. 10(b)],539

and the system stabilizes to a state where the potential energy540

of the entire system is minimized.541

2) Ring Topology: If each robot can “sense” only two other542

robots in the group, the topology of the connectivity graph will543

Fig. 10. Comparison of the values of the five-agent system’s potential energy
while robots are applying (a) control input (19) and (b) control input (22) with
collision avoidance.

be a ring topology. Since the connectivity graph is assumed 544

fixed, the agents need to be numbered during the experiments. 545

For n even, the balancing term in the control input drives 546

the agents into a balanced circular formation, which is given by 547

polygon {n/d}, with d = n/2. This requires that robots with 548

even indices stay on one side of a line segment and robots 549

with odd indices stay at the other side (not physically possible). 550

However, the collision-avoidance term keeps the agents at the 551

desired separation. 552

For n odd, the largest region of attraction of the balancing 553

input is the star polygon {n/d}, with d = (n ± 1)/2; therefore, 554

only two orderings of the robots are possible in the final circular 555

formation. Fig. 11 shows that in our experiment, the robots are 556

stabilized to the star polygon {5/3}. 557

Remark 2: When the communication graph is a fixed, directed 558

graph with a ring topology, where agent i could see only agent 559

(i + 1)/mod(n), then the n-agent system would behave like a 560

team of robots in cyclic pursuit [25]. 561

C. Parallel Formation With Fixed Topology 562

The space limitations imposed by the ground-truth- 563

verification system prohibited us from testing the vision-based 564
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Fig. 11. Five Scarabs form a circular formation starting with a ring topology while avoiding collisions. (a) t = 0 s. (b) t = 16 s. (c) t = 40 s. (d) At t = 80 s,
the robots reach a stable balanced configuration, which is the star polygon {5/3} around a circle with radius of 1 m. (a)–(d) Actual trajectories of the robots and
their connectivity graph at the times specified before.

Fig. 12. Five Scarabs, starting with different initial orientations, apply the vision-based control input (18) to achieve a parallel formation. The simulation is done
in the simulator Gazebo. (a) t = 0 s. (b) t = 1 s. (c) t = 3 s. (d) t = 7 s.

control law for parallel motion directly on Scarabs. However,565

simulations were made in Gazebo, which is a physics-based566

simulator. Gazebo simulations accurately reflect the robot dy-567

namics and sensing capabilities, while permitting evaluation of568

the same code used during hardware experimentation. Fig. 12569

shows snapshots of the Gazebo simulation for a group of five570

Scarabs, with each applying (22), and the vision-based control571

law plus collision avoidance.Q4 572

IX. CONCLUSION AND FUTURE WORK573

The central contribution of this paper is to provide simple574

vision-based control laws to achieve parallel and balanced cir-575

cular formations. Of course, in reality, any formation control576

requires collision avoidance, and indeed, collision avoidance577

cannot be done without range. We have shown here that the two578

tasks can be done with decoupled additive terms in the control579

law, where the term for formation control depends only on visual580

information.581

The vision-based control laws were functions of quantities582

such as bearing, optical flow, and time to collision, all of583

which could be measured from images. Only bearing measure-584

ments were needed for achieving a balanced circular formation,585

whereas for a parallel formation, additional measurements of586

optical flow and time to collision were required. We verified the587

effectiveness of the theory though multirobot experiments.588

Note that when we work with robots that have limited589

field of view, directed connectivity graphs [24] come into590

play. The study of motion coordination in the presence of591

directed communication graphs is the subject of ongoing592

work.593
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