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Abstract— We study the problem of vision-based flocking and
coordination of a group of kinematic agents in 2 and 3 dimensions.
It is shown that in the absence of communication among agents,
and by using only visual information, a group of mobile agents
can align their velocity vectors and move in a formation. A
coordinate-free control law is used to develop a vision-based input
for each nonholonomic agent. The vision-based input does not
rely on heading measurements, but only requires measurements
of bearing, optical flow and time-to-collision, all of which can be
efficiently measured.

I. INTRODUCTION

Cooperative control of multiple autonomous agents has be-
come a vibrant part of control theory research. The main
underlying theme of this line of research is to analyze and/or
synthesize spatially distributed control architectures that can
be used for motion coordination of large groups of autonomous
vehicles. Each vehicle is assumed to be capable of local sensing
and communication, and there is often a global objective, such
as swarming, or reaching a stable formation, etc. Some of the
relevant research in control theory and robotics are [2], [9],
[12], [16], [19].

Many of the existing vision-based distributed control strate-
gies assume that the robots are capable of communicating an
estimation of their position with their neighbors [17], [21], [22]
and are based on distributed computation [1]. Other cooperative
systems based on local computation work in the configuration
space [7], [15]. From the vision point of view, our approach
is similar to visual versoing methods used in [5], [6], [18].
However, these approaches assume that a specific vertical pose
of an omnidirectional camera allows the computation of both
bearing and distance, while we use only bearing, the optical
flow (bearing derivative), and time-to-collision.

In the work of Cowan et al. [5] the formation control problem
is considered as a visual servoing task. For a pair of mobile
robots denoted as leader and follower, it is assumed that the
follower can measure a pair of features on the leader. The
relative kinematics of the leader and the follower in the image
plane is derived, and by using feedback linearization string
stability and leader-to-formation stability is achieved.

In [6] a framework for vision-based formation control of a
group of nonholonomic mobile robots is proposed. The two fea-
tures in their approach is first using the omnidirectional cameras
as the only sensor for the robots, and second a decentralized
controller that allows for changes in the formation. The images

from the omnidirectional cameras are used to estimate the
relative angle and distances between agents. Then, by applying
input-output feedback linearization they designed control laws
for leader following and obstacle avoidance.

While the nearest neighbor interactions have been shown to
be biologically plausible and have been observed in schools
of fish and flocks of birds, the assumptions about knowledge
of relative headings and distances is not biologically plausible.
Even if some species might use ultrasound to estimate distances
or binocular vision to estimate positions and motions of others,
such sensing mechanisms do not perform well for flocking
where simultaneous measurements in multiple directions are
needed. The simplest assumption we can make is that such
systems have only monocular vision and that they have basic
visual capabilities like the estimation of optical flow and time
to collision. Experimental evidence suggest that several animal
species, including pigeons, are capable of estimating time to
collision [11], [20]. Computationally, time to collision can be
estimated from the ratio of area change to area or from the
divergence of the optical flow [4], [10]. Regarding optical flow,
we refer the reader to the survey [3].

Based on the idea of a geodesic control law [14], which
results in velocity alignment of a group of agents in 2D and
3D, we generate a control algorithm that uses only visual clues
from images. Similar to [5] we approach the formation control
problem as a visual versoing task. We write the equation of
motion for each agent, and solve it for the input controllers.
Since we are not assuming that the relative distance measure-
ments are available, we are able to extend our results to motion
in three dimensional space. Also, we generalize the solutions
of the equations of motion to multiple agents.

In Section II we introduce a coordinate-free control law for
velocity alignment. We derive the optical flow equation for a
group of agents in section III. In Sections IV and V the control
law and the optical flow equation are used to develop a vision-
based control law for flocking in 2D and 3D that only needs
the measurements of bearing, optical flow and time-to-collision.
Finally, in Section VI we numerically verify the correctness of
our vision-based controllers.

II. GEODESIC CONTROL LAWS

Consider a group of N agents in the 3 dimensional space.
Each agent is capable of sensing some information from its



neighbors as defined by

Ni
.= {j|i ∼ j} ⊆ {1, . . . , N}\{i}. (1)

The neighborhood set of agent i, Ni, is a set of agents that can
be “seen” by agent i. The precise meaning of “seeing” will
be cleared later in section IV. The size of the neighborhood
depends on the characteristics of the sensors. Our goal in this
section is to design a control law for each agent to drive the
multi-agent system to the consensus state.

Definition 2.1: (Consensus State) The state where all the
headings are the same is called the consensus state.

Without loss of generality, it is assumed that all agents
are kinematic agents and move with a constant unit speed
i.e |vi| = 1, i ∈ {1, . . . , N}. Let the rotation matrix Ri =
[Rix, Riy, Riz] represent the attitude of agent i in the fixed
world frame (Rik is the k-th column of matrix Ri). We have
assumed the velocity vector vi is along the third column of the
attitude matrix (or along the z-axis of the body frame), so we
have vi = Rie3 where e3 = [0, 0, 1]T . Using the kinematic
equation Ṙi = Riω̂i where ωi = [ωix, ωiy, ωiz]T is the body
angular velocity expressed in the body frame of agent i and

ω̂i =




0 −ωiz ωiy

ωiz 0 −ωix

−ωiy ωix 0


 ,

we write the kinematics of the system as

v̇i = Ṙie3 = Riω̂ie3 i = 1, . . . , N

which can be simplified to

v̇i = −ωixRiy + ωiyRix i = 1, . . . , N. (2)

System (2) is an underactuated system with control inputs
ωix and ωiy . Note that ωiz is free, which implies that we do
not directly control the torsion or rotation around vi (see Figure
1). We choose the control input ωi of the form

ωi =
∑
j∈Ni

1
lij

(vi × vj) (3)

where lij is the distance between agents i and j. Input (3) is a
coordinate-free control input, because it is in terms of vi and
vj , expressed the body-frame of agent i. Since the velocity of
agent i in its own frame is vi = [0, 0, 1]T , we have

ωi =
∑
j∈Ni

1
lij



−vjy

vjx

0


 =

∑
j∈Ni

1
lij



− < vj , Riy >
< vj , Rix >

0


 .

As shown in [13], the above control law is a geodesic control
law that minimizes the following misalignment potential

V =
1
2

∑
i∼j

‖vi − vj‖2

where the summation is over all the neighboring agents. The
above geodesic control input results in the alignment of the
velocity vectors, as long as the underlying proximity graph of
the multi-agent system remains connected. Thus, the consensus

Fig. 1. angular velocity

state is an stable equilibrium of the system. As mentioned in
[13], there are other stable equilibria besides all the velocity
vectors being equal. In summary, we have the following theo-
rem:

Theorem 2.2: Consider the system of N kinematic equations
v̇i = −ωixRiy + ωiyRix, i = 1, . . . , N. If the proximity graph
of the agents is fixed and connected, then by applying the
control law

ωi =
∑
j∈Ni

1
lij

(vi × vj) (4)

all trajectories converge to the equilibria given by ωi =
0. Furthermore, the consensus state is locally asymptotically
stable.

III. OPTICAL FLOW EQUATION

Let j ∈ Ni be a neighbor of agent i. In the body-frame of
agent i, the relative position of agents i and j can be represented
by a vector Qij ∈ R

3 as shown in Figure 3. The equation
of relative motion for a pair of agents i and j is derived in
Appendix A, and is given by

Q̇ij = −ωi ×Qij + (vj − vi) (5)

where ωi ∈ R
3 is the angular velocity vector of agent i, and vi

and vj are the velocity vectors of agents i and j respectively,
all given in the body-frame of agent i.

Let lij denote the distance between agents i and j. We
normalize the optical flow equation (5) by dividing it by lij
to get

Q̇ij/lij = −ωi × qij +
1
lij

(vj − vi), ∀j ∈ Ni (6)

where qij = Qij/lij is the unit-length bearing vector. Equation
(6) holds for all the agents that are in Ni. Thus, we sum (6)
over all j ∈ Ni to get:

∑
j∈Ni

Q̇ij/lij = −
∑
j∈Ni

ωi × qij +
∑
j∈Ni

1
lij

(vj − vi) (7)

The goal is to solve (7) for input ωi so that it is only a
function of some measurable quantities such as bearing and
time-to-collision.



Fig. 2. Vectors vi, vj and ωi in the special case of planar motion.

IV. VISION-BASED PLANAR FORMATION

When nonholonomic robots move on the plane, we can
model their motion with unicycle kinematic agents. It is as-
sumed that all agents move with constant unit speed. Thus, for
each agent the kinematic model becomes:

ẋi = cos θi

ẏi = sin θi

θ̇i = ωi i = 1, . . . , N . (8)

When we restrict the motion of agents to plane z = 0, the
control law presented in section II will reduce to

ωix = ωiy = 0, ωiz = −
∑
j∈Ni

1
lij

sin(θi − θj) (9)

which results in velocity alignment in a multi-agent system [8].
In this section we use this control law to solve the optical flow
equation (7) for ωi so that it is only in terms of the measurable
quantities.

For planar agents, the horizontal bearing βij is defined by the
angle that the projection of agent j makes with the body-frame
of agent i, and is given by:

βij = atan2
(
yj − yi , xj − xi

) − θi +
π

2
(10)

and its rate of change β̇ij defines the optical flow. It can be
shown that the time-to-collision between agents i and j can be
measured as the rate of growth of the image area [11], i.e. the
relative change in the area Aij of projection of agent j on the
image plane of agent i. In other words

τij =
Aij

Ȧij

=
lij

l̇ij
. (11)

To formally define the sensing, we assume that each agent i
can measure:

• βij or the relative bearing in agent i’s reference frame
• β̇ij or ”optical flow”: the rate of change of bearing
• τij or ”time-to-collision”

for any agent j in the set of its neighbors Ni.

Fig. 3. The polar angle βij and the azimuth ψij for two agents in 3D.

For robots moving on the ground, the solution of the optical
flow equation (7) can be obtained by substituting values for
qij , ωi, vi and vj restricted to the planar motion (corresponding
to plane z = 0). The body-frame of agent i is such that the
velocity vector vi is along the y-axis, and the angular velocity
ωi is orthogonal to the (x, y)-plane (see Figure 2). Thus

vi = [0, 1, 0]T ωi = [0, 0, ωiz]T .

The bearing vector Qij and the velocity vector vj of a neigh-
boring agent in the body-frame of agent i becomes

Qij =



lij cosβij

lij sinβij

0


 , vj =




sin(θi − θj)
cos(θi − θj)

0




where βij is the bearing angle. A simple differentiation of
Qij reveals that we have Q̇ij = Mij Qij where Mij is the
measurement matrix, and is given by:

Mij =




1/τij −β̇ij 0
β̇ij 1/τij 0
0 0 1/τij


 .

By substituting for vi, vj , ωi and qij in (7) we get:

∑
j∈Ni

Mij qij = −



0
0
ωiz


×

∑
j∈Ni

qij +
∑
j∈Ni

1
lij




sin(θi − θj)
cos(θi − θj)

−1


 .

Out of the three linear equations we obtained only the first one
is used to solve for ωiz , and by using (9) we get

ωiz =

∑
j∈Ni

(
β̇ij sinβij − 1

τij
cosβij

)

1 − ∑
j∈Ni

sinβij
. (12)

This is the vision-based control law that is equivalent to (9) and
gives us velocity alignment for a group of kinematic agents. See
section VI for simulations that show the effectiveness of this
vision-based control input.



V. VISION-BASED FORMATION CONTROL IN 3D

Consider a group of N agents in the 3 dimensional space.
Each agent is capable of sensing some information from its
neighbors as defined by (1). Similar assumptions on the neigh-
borhood relationships hold as explained in section II. In three
dimensions, the location of agent i in a fixed world coordinates
is given by (xi, yi, zi) and its velocity is vi = (ẋi, ẏi, żi)T .

Let qij be a unit vector starting from agent i and pointing
towards agent j, as shown in Figure 3. The bearing of agent
j with respect to agent i is the projection of agent j and is
represented by a pair of angles (βij , ψij). The polar angle βij

is given by the angle between projection of qij and the x-axis
of agent i’s body frame and the azimuth angle ψij is given by
the angle between the vector qij and the z-axis of agent i’s
body frame:

βij = atan2
(
yj − yi , xj − xi

) − θi +
π

2
(13)

ψij =
π

2
− φi − atan2

(
rij , zj − zi

)
(14)

where rij =
√

(yj − yi)2 + (xj − xi)2.
The speed of projection is the optical flow and is given by

the rate of change of bearing (β̇ij , ψ̇ij), and time-to-collision
between agents i and j can be measured as in (11). In summary,
each agent i can measure:

• (βij , ψij) as the bearing angles
• (β̇ij , ψ̇ij) as the optical flow
• τij or ”time-to-collision”

for any agent j in the set of neighbors Ni.
For a group of agents moving in the 3-dimensional space,

a controller that results in velocity alignment is the one that
steers the headings and attitudes of all the agents to a common
value. In what follows, we use the control law (4) to solve
the optical flow equation (7). By solving the above equation
we mean finding an expression for vector ωi that is only a
function of the measurable quantities.

Next, we show how we can write the terms of optical flow
equation in terms of either inputs or measurable quantities.

1) Position Vector Qij: The position vector Qij ∈ R
3 is

given by

Qij =



lij sinψij cosβij

lij sinψij sinβij

lij cosψij


 . (15)

A simple differentiation of Qij shows that Q̇ij = MijQij

where the measurement matrix Mij is given by

Mij =




1/τij −β̇ij ψ̇ij cosβij

β̇ij 1/τij ψ̇ij sinβij

−ψ̇ij cosβij −ψ̇ij sinβij 1/τij


 .

Thus, we have the left-hand-side of (7) in terms of the
measurements:

∑
j∈Ni

Q̇ij/lij =
∑
j∈Ni

Mijqij (16)

2) Relative velocity (vi − vj): Given vi = [0, 0, 1]T and
vj = [vjx, vjy, vjz]T the control input (4) becomes

ωi =
∑
j∈Ni

1
lij

(vi × vj) =
∑
j∈Ni

1
lij



−vjy

vjx

0


 =



ωix

ωiy

0




Now, we write the relative velocities in terms of the inputs ωiy

and ωix.

∑
j∈Ni

1
lij

(vj−vi) =
∑
j∈Ni

1
lij




vjx

vjy

vjz − 1


 =




ωiy

−ωix∑
j

1
lij

(vjz − 1)


 .

(17)
As we will see, the third element has no effect on our solution,
so we leave it as it is.

3) Solving The Optical Flow Equation: Now, we have every
term in (7) in terms of either the input ωi or the measurable
quantities. We plug in (16) and (17) into optical flow equation,
which we repeat here:

∑
j∈Ni

Q̇ij/lij = −
∑
j∈Ni

ωi × qij +
∑
j∈Ni

1
lij

(vj − vi).

After substitution we have

∑
j∈Ni

Mijqij = −


ωix

ωiy

0


 ×

∑
j∈Ni

qij +



ωiy

−ωix

. . .


 .

The above gives us 3 linear equations in terms of the input and
our measurements, but only the first two are used to solve for
the control inputs. By solving the first two equations for ωix

and ωiy we get

ωix =
−(

∑
j Mijqij)2

1 − ∑
j∈Ni

cosψij
(18)

ωiy =
(
∑

j Mijqij)1
1 − ∑

j∈Ni
cosψij

(19)

where the numerators are

( ∑
j∈Ni

Mijqij
)
1

=
1
τij

sinψij cosβij − β̇ij sinψij sinβij

+ ψ̇ij cosψij cosβij

( ∑
j∈Ni

Mijqij
)
2

=
1
τij

sinψij sinβij + β̇ij sinψij cosβij

+ ψ̇ij cosψij sinβij .

Therefore, equations (18) and (19) are the vision-based control
inputs. They are only in terms of the measured quantities of
bearing, optical flow and time-to-collision, as desired. In section
VI we numerically show the vision-based control laws result
in a stable flocking according to definition 2.1.



Fig. 4. Configuration of two agents.

VI. SIMULATIONS

To numerically verify our theory of vision-based formation
control, a Simulink simulation was made. For each agent the
required measurements were numerically computed. From (13)
and (14) the bearing βij and attitude ψij were computed and by
numerically differentiating them the optical flow was computed.
Also, equation (11) was used to compute time-to-collision τij
between two agents.

Figure 5 shows that in a planar motion seven agents can
align their velocity vectors by using vision-based control law
(12). The proximity graph is not complete, i.e. not every agent
can “see” every other agent. In Figure 6, four kinematic agents
align their velocity vectors in 3D by using vision-based control
laws (18) and (19) and achieve a stable formation.

We can designate one of the agents to be the leader of
the group. It was proved in [14] that in the presence of a
leader all other agents (followers) are forced to align their
velocities with that of the leader. Figure 7 shows an example
of a leader-following using vision-based control laws with a
dynamic leader. All agents follow the leader moving in a
sinusoidal path.

In a real experiment, the measurements of the bearing angles
and time-to-collision will include noise. The noise will be
amplified when we differentiate the bearing to compute the
optical flow. To study the effect of noise on our vision-
based flocking, a Gaussian random noise was added to the
measurements of bearing.

Figure 8.a shows five agents, in the noise-free case. The
heading of all agents in plotted in Figure 8.b. Addition of the
noise to the measurements of the bearing decreases the rate of
convergence, as it can be seen in Figures 8.c and 8.d.

VII. CONCLUSIONS

We have developed control laws for nonholonomic robots
that only use visual measurements from cameras for velocity
alignment. We saw that these vision-based controllers only need
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Fig. 5. 7 agents flock in 2D.

the values of bearing, optical flow and time-to-collision, all of
which can be measured from images. The designed control laws
are distributed and can be used for velocity alignment in multi-
agent systems.

The experiments on real robots is an ongoing work. A series
of Evolution Robots (ER) robots are being used to verify the
theory. Each robot is equipped with a camera that has a fish-eye
lens capable of seeing the entire surrounding of the robot (with
a field of view of 360 degrees). The challenging part of the
experiment is making accurate measurements of optical flow
and time-to-collision in the presence of noise in the images.
Both quantities require differentiating noisy measurements that
will amplify the noise and increase the error.

VIII. APPENDICES

In Appendix A we derive the equation of motion (5).

A. Equation of Motion

Let b(·) denote a vector in the body frame of agent i and f(·)
a vector in the fixed world frame. Let j ∈ Ni be any neighbor
of agent i. As shown in Figure 4 the relative position of agents
i and j can be represented by a vector bQij ∈ R

3:

bQij = (bRf )(fQij)

where bRf is the rotation matrix from the fixed frame to the
body frame. Since Q̇ij = Q̇j − Q̇i = vj −vi, by differentiating
Qij with respect to time, we get:

˙bQij = ( ˙bRf )(fQij) + (bRf )(fvj − fvi)
= −ω̂b(bRf )(fQij) + (bvj −b vi)

where ωb is the angular velocity vector of agent i and for the
last equality we have used ω̂b = (bRf )( ˙fRb). In the end we
get

˙bQij = −ωb × bQij + (bvj −b vi)

which is the relative equation of motion presented in (5).
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Fig. 8. The effect of noisy measurements on convergence of the velocity vectors. a,b) ideal case: The trajectories and the heading angles of all agents with the
noise-free measurements. c,d) noisy measurements of the bearing decreases the rate of convergence.
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Fig. 6. 4 agents align their velocities in 3D.
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Fig. 7. Agents follow a dynamic leader in 2D.
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